“. 15-441 Computer Networking

Lecture 5 - Coding and Error Control
Peter Steenkiste

Fall 2010
www.cs.cmu.edu/~prs/15-441-F10

15-441 © CMU 2010

From Signals to Packets i‘.

Analog Signal
“Digital” Signal
Bit Stream 00101110001
0100010101011100101010101011101110000001111010101110101010101101011010111001
Packets
Header/Body Header/Body Header/Body

Packet -
Transmission Sender(} — ()Receiver

15-441 © CMU 2010 2

Link Layer: Implementation “

* Implemented in “adapter”
* E.g., PCMCIA card, Ethernet card

¢ Typically includes: RAM, DSP chips, host bus interface, and link
interface

application
Hil M || transport

HaH:{ M]| network data link W
Hi[HnlH M link |eereiocel L7 Tink HiHIH] M
physical Py physical frame

adapter card

15-441 © CMU 2010 3

Datalink Functions i‘.

« Framing: encapsulating a network layer datagram into
a bit stream.
¢ Add header, mark and detect frame boundaries
» Media access: controlling which frame should be sent
over the link next.
» Error control: error detection and correction to deal
with bit errors.
« May also include other reliability support, e.g. retransmission
* Flow control: avoid that the sender outruns the
receiver

* Hubbing, bridging: extend the size of the network

15-441 © CMU 2010 4

Outline

«

» Encoding and decoding

¢ Translate between bits and digital signal
* Framing

 Bit stream to packets
* Packet loss & corruption

* Error detection

* Flow control

* Loss recovery

15-441 © CMU 2010

How Encode? “.

» Seems obvious, why take time with this?
0 1 0 0 0 1 1 0 1

.85
\ 0
-.85

15-441 © CMU 2010 6

Why Encode?

L\

0 1 0 1 How many more ones?

15-441 © CMU 2010

Why Do We Need Encoding? i‘.

« Keep receiver synchronized with sender.
 Create control symbols, in addition to regular data
symbols.
» E.g. start or end of frame, escape, ...
» Error detection or error corrections.

* Some codes are illegal so receiver can detect certain
classes of errors

* Minor errors can be corrected by having multiple adjacent
signals mapped to the same data symbol

* Encoding can be done one bit at a time or in multi-bit
blocks, e.g., 4 or 8 bits.

* Encoding can be very complex, e.g. wireless.

15-441 © CMU 2010 8

Non-Return to Zero (NRZ) “.

.85 |
\ 0
-.85 |

* 1 - high signal; 0 - low signal

» Used by Synchronous Optical Network (SONET)

» Long sequences of 1's or 0’s can cause problems:
* Sensitive to clock skew, i.e. hard to recover clock

» DC bias hard to detect — low and high detected by difference
from average voltage

15-441 © CMU 2010 9

Clock Recovery “.

* When to sample voltage?

» Synchronized sender and receiver clocks

* Need easily detectible event at both ends
 Signal transitions help resync sender and receiver
« Need frequent transitions to prevent clock skew
e SONET XOR'’s bit sequence to ensure frequent

Non-Return to Zero Inverted
(NRZI) “‘

.85

-.85

* 1 > make transition; 0 - signal stays the same

» Solves the problem for long sequences of 1's, but
not for 0’s.

15-441 © CMU 2010 11

transitions
15-441 © CMU 2010 10
Manchester Encoding i‘.
0 1 1 0
.85 .
\% 0
-85 —
Adps

Used by Ethernet
O=low to high transition, 1=high to low transition
Transition for every bit simplifies clock recovery
DC balance has good electrical properties
But you pay a price ...
« Doubles the number of transitions — more spectrum!
« Circuitry must run twice as fast

15-441 © CMU 2010 12

4B/5B Encoding “.

» Data coded as symbols of 5 line bits 2> 4 data
bits, so 100 Mbps uses 125 MHz.

» Uses less frequency space than Manchester encoding
» Encoding ensures no more than 3 consecutive 0's
» Uses NRZI to encode resulting sequence

e 16 data symbols, 8 control symbols
» Data symbols: 4 data bits
» Control symbols: idle, begin frame, etc.

e Example: FDDI.

15-441 © CMU 2010 13

4B/5B Encoding

N

Data | Code
0000 | 11110
0001 | 01001
0010 | 10100
0011 | 10101
0100 | o1010
0101 | 01011
0110 | o1110
0111 | 01111

15-441 © CMU 2010

Data

1000
1001
1010
1011
1100
1101
1110
1111

Code

10010
10011
10110
10111
11010
11011
11100
11101

14

Other Encodings “

e 8B/10B: Fiber Channel and Gigabit Ethernet
64B/66B: 10 Ghit Ethernet
B8ZS: T1 signaling (bit stuffing)

Things to Remember

» Encoding necessary for clocking
Lots of approaches

Rule of thumb:
« Little bandwidth - complex encoding
 Lots of bandwidth - simple encoding

15-441 © CMU 2010 15

From Signals to Packets

"N

Analog Signal
“Digital” Signal
Bit Stream 00101110001
0100010101011100101010101011101110000001111010101110101010101101011010111001
Packets
Header/Body Header/Body Header/Body

Packet -
Transmission SenderO =

O Receiver

15-441 © CMU 2010

16

Outline i‘.

» Encoding
« Digital signal to bits
* Framing
 Bit stream to packets
* Packet loss & corruption
* Error detection
* Flow control
* Loss recovery

15-441 © CMU 2010 17

Framing “.

» How do we break up a stream of bits into frames?

0100010101011100101010101011101110000001111010101110101010101101011010111001

15-441 © CMU 2010 18

Framing i‘.

» Alink layer function, defining which bits have
which function.

» Minimal functionality: mark the beginning and end
of packets (or frames).
* Some techniques:

e out of band delimiters (e.g. FDDI 4B/5B control
symbols)

 frame delimiter characters with character stuffing
 frame delimiter codes with bit stuffing
 synchronous transmission (e.g. SONET)

15-441 © CMU 2010 19

Out-of-band: E.g., 802.5 O\ Y

e 802.5/token ring uses 4b/5b
» Start delim & end delim are “illegal” data codes

S{ET Access Frame Dest Src End BEEWE
. Body checksum

delim ctrl ctrl adr adr d status
15-441 © CMU 2010 20

Delimiter Based

«

» SYN: sync character
SOH: start of header
STX: start of text
ETX: end of text

What happens when ETX is in Body?

Header STX| Body |ETX| CRC |

15-441 © CMU 2010

21

Character and Bit Stuffing “.

» Mark frames with special character.
* What happens when the user sends this character?
¢ Use escape character when controls appear in data:
. *abc*def >*abc*def
* Very common on serial lines, in editors, etc.

» Mark frames with special bit sequence
e must ensure data containing this sequence can be transmitted
* example: suppose 11111111 is a special sequence.
 transmitter inserts a 0 when this appears in the data:
¢ 11111111 - 111111101
» must stuff a zero any time seven 1s appear:
¢ 11111110 > 111111100
* receiver unstuffs.

15-441 © CMU 2010 22

Ethernet Framing

L\

» Preamble is 7 bytes of 10101010 (5 MHz square

wave) followed by one byte of 10101011

 Allows receivers to recognize start of transmission

after idle channel

15-441 © CMU 2010

23

Clock-Based Framing “.

Used by SONET
Fixed size frames (810 bytes)

Look for start of frame marker that appears every
810 bytes

Will eventually sync up

15-441 © CMU 2010 24

How avoid clock skew? “

» Special bit sequences sent in first two chars of
frame
e But no bit stuffing. Hmmm?

 Lots of transitions by xoring with special pattern
(and hope for the best)

15-441 © CMU 2010 25

Outline “,

» Encoding
« Digital signal to bits
e Framing
¢ Bit stream to packets
» Packet loss & corruption
« Error detection
* Flow control
e Loss recovery

15-441 © CMU 2010 26

Error Coding “

» Transmission process may introduce errors into a
message.

* Single bit errors versus burst errors

» Detection:
» Requires a convention that some messages are invalid
» Hence requires extra bits

e An (n,k) code has codewords of n bits with k data bits and r
= (n-k) redundant check bits

» Correction

« Forward error correction: many related code words map to
the same data word

» Detect errors and retry transmission

15-441 © CMU 2010 27

Error Detection “.

« EDC= Error Detection and Correction bits (redundancy)
« D =Data protected by error checking, may include header fields
« Error detection not 100% reliable!

» Protocol may miss some errors, but rarely

» Larger EDC field yields better detection and correction

%

=«d data bits—{
5 Temel |

-— (] bit-error prone link [}

15-441 © CMU 2010 28

Parity Checking

«

Single Bit Parity:

Detect single bit errors

— d data bits — 0o

0111000110101011] 0

15-441 © CMU 2010

29

Internet Checksum “.

e Goal: detect “errors” (e.g., flipped bits) in transmitted
segment

Sender Receiver
» Treat segment contents ||* Compute checksum of
as sequence of 16-bit received segment
integers . Chheclb if computled heck
. R— , checksum equals checksum
Checksum: addition (1's field value:

complement sum) of

segment contents YES - no error detected
e Sender puts checksum But maybe errors :

value into checksum field nonethiess?
in header

* NO - error detected

15-441 © CMU 2010 30

Basic Concept:
Hamming Distance

» Hamming distance of two bit
strings = number of bit
positions in which they differ.

* If the valid words of a code
have minimum Hamming
distance D, then D-1 bit
errors can be detected.

« If the valid words of a code
have minimum Hamming
distance D, then [(D-1)/2] bit
errors can be corrected.

15-441 © CMU 2010

Examples i‘.

e A (4,3) parity code has D=2:
« 0001 0010 0100 0111 1000 1011 1101 1110
¢ (last bit is binary sum of previous 3, inverted - “odd parity”)
e A (7,4) code with D=3 (2ED, 1EC):
« 0000000 0001101 0010111 0011010
« 0100011 0101110 0110100 0111001
¢ 1000110 1001011 1010001 1011100
« 1100101 1101000 1110010 1111111
¢ 1001111 corrects to 1001011
* Note the inherent risk in correction; consider a 2-bit
error resulting in 1001011 - 1111011.
* There are formulas to calculate the number of extra
bits that are needed for a certain D.

15-441 © CMU 2010 32

Cyclic Redundancy Codes
(CRC) i"

» Commonly used codes that have good error
detection properties.

e Can catch many error combinations with a small
number of redundant bits

» Based on division of polynomials.
e Errors can be viewed as adding terms to the polynomial
 Should be unlikely that the division will still work
e Can be implemented very efficiently in hardware.
* Examples:
e CRC-32: Ethernet
« CRC-8, CRC-10, CRC-32: ATM

15-441 © CMU 2010 33

CRC: Basic idea i‘.

 Treat bit strings as polynomials:
101 1

X4+ X2+X1+XO
» Sender and Receiver agree on a divisor polynomial
of degree k
* Message of M bits = send M+k bits
* No errors if M+k is divisible by divisor polynomial
« If you pick the right divisor you can:
» Detectall 1 & 2-bit errors
« Any odd number of errors
e All Burst errors of less than k bits
e Some burst errors >= Kk bits

15-441 © CMU 2010 34

Outline “

» Encoding
« Digital signal to bits
e Framing
* Bit stream to packets
» Packet loss & corruption
 Error detection
 Flow control
e Loss recovery

15-441 © CMU 2010 35

Link Flow Control and i‘.

Error Recovery

« Dealing with receiver overflow: flow control.
» Dealing with packet loss and corruption: error control.
» Meta-comment: these issues are relevant at many
layers.
 Link layer: sender and receiver attached to the same “wire”

¢ End-to-end: transmission control protocol (TCP) - sender
and receiver are the end points of a connection

» How can we implement flow control?
* “You may send” (windows, stop-and-wait, etc.)
« “Please shut up” (source quench, 802.3x pause frames, etc.)
* Where are each of these appropriate?

15-441 © CMU 2010 36

A Naive Protocol i‘.

» Sender simply sends to the receiver whenever it
has packets.

» Potential problem: sender can outrun the receiver.

* Receiver too slow, buffer overflow, ..

* Not always a problem: receiver might be fast
enough.

‘ CRCEaCECa ‘

Adding Flow Control “.

» Stop and wait flow control: sender waits to send
the next packet until the previous packet has been
acknowledged by the receiver.

¢ Receiver can pace the receiver

» @
) 0

Sender Receiver

15-441 © CMU 2010 38

Sender Receiver
15-441 © CMU 2010 37
Drawback: Performance “
RTT
Sender >
Receives >
= Time =——p
Max Throughput = 1 pkt —
Roundtrip Time
15-441 © CMU 2010 39

Window Flow Control i‘.

« Stop and wait flow control results in poor throughput
for long-delay paths: packet size/ roundtrip-time.
 Solution: receiver provides sender with a window that
it can fill with packets.
* The window is backed up by buffer space on receiver

* Receiver acknowledges the a packet every time a packet is
consumed and a buffer is freed

‘I:II:II:I'
T 0 0 @O

Sender Receiver

15-441 © CMU 2010 40

10

Bandwidth-Delay Product i‘.

Sender RTT\ \ \T\T >
I
A\;i:\\\\\\\\:

Receives

=— Time =—p

Error Recovery i‘.

Two forms of error recovery
 Error Correcting Codes (ECC)
¢ Automatic Repeat Request (ARQ)

« ECC
« Send extra redundant data to help repair losses
* ARQ
e Receiver sends acknowledgement (ACK) when it
receives packet

* Sender uses ACKs to identify and resend data that was
lost

Which should we use? Why? When?

15-441 © CMU 2010 42

Max Throughput = WindO\,N Si'ze
Roundtrip Time
15-441 © CMU 2010 41
Error Recovery Example: “

Error Correcting Codes (ECC)

Two Dimensional Bit Parity:
Detect and correct single bit errors

p2ry
dyq 1 nt d‘-.j dy j*1
dzq -0 dgjldgie
column
pariy

10101 1¢101h

! A parity
11110 41 iap-Pam
011100 011101

Qo1lo01jp 0@_110‘_|o

no errors pariy
error

correciable
single bit error

15-441 © CMU 2010 43

Stop and Wait “.

* Simplest ARQ

protocol

* Send a packet, Sender Receiver
stop and wait until | Packe;
acknowledgement | time |
arrives ACK

* Will examine ARQ

issues later in
semester

___Timeout

15-441 © CMU 2010 44

11

Recovering from Error “.

How to Recognize i“

Retransmissions?

» Use sequence numbers
¢ both packets and acks Pkt o

e Sequence # in packet is

finite & How big should it Pd‘g
be? Pkt o

e For stop and wait?

H%g SRk | i Racker |
i g ACK g o
Time | = Q\/ = v
L Packet] Packet 3 ket
H a1
nu§ wi wi ‘A/
Bl —| K| &
Packet lost ACK lost Early timeout
15-441 © CMU 2010 45
Implementation Issues with “
Window-based Protocol

» Receiver window size: # of out-of-sequence
packets that the receiver can receive

» Sender window size: # of total outstanding
packets that sender can send without
acknowledged

» How to deal with sequence number wrap around?

15-441 © CMU 2010 47

* One bit —won't send seq #1 L

until received ACK for seq ‘W

#0
15-441 © CMU 2010 46
What is Used in Practice? O\ Y

* No flow or error control.

e E.g. regular Ethernet, just uses CRC for error detection
* Flow control only.

« E.g. Gigabit Ethernet
* Flow and error control.

e E.g. X.25 (older connection-based service at 64 Kbs
that guarantees reliable in order delivery of data)

15-441 © CMU 2010 48

12

So far ...

«

U Can connect two nodes

- ... But what if we want more nodes?

Wires for everybody!

15-441 © CMU 2010

49

Sofar ...

N

U Can connect two nodes

- ... But what if we want more nodes?

Wires for everybody!

15-441 © CMU 2010

50

Better Solutions:
Datalink Architectures

L\

g

__[l_l
5
-@-hi

Host G |0 Swich 3 Blom

L ..
D=
e

B L LLL.

* Point-Point with switches * Multiple access networks
* Media access control.

15-441 © CMU 2010

51

13

