
1

15-441 Computer Networking

Lecture 5 - Coding and Error Control
Peter Steenkiste

Fall 2010
www.cs.cmu.edu/~prs/15-441-F10

15-441 © CMU 2010

From Signals to Packets

Analog Signal

“Digital” Signal

Bit Stream 0 0 1 0 1 1 1 0 0 0 1

0100010101011100101010101011101110000001111010101110101010101101011010111001Packets 0100010101011100101010101011101110000001111010101110101010101101011010111001

Header/Body Header/Body Header/Body

ReceiverSender
Packet

Transmission

215-441 © CMU 2010

Link Layer: Implementation

• Implemented in “adapter”
• E.g., PCMCIA card, Ethernet card
• Typically includes: RAM, DSP chips, host bus interface, and link

interface

application
transport
network network

M
M
M

Ht

HH data linknetwork
link

physical

network
link

physical

M
M

HtHn
HtHnHl MHtHnHl

framephys. link

data link
protocol

adapter card

315-441 © CMU 2010

Datalink Functions

• Framing: encapsulating a network layer datagram into
a bit stream.
• Add header, mark and detect frame boundaries

• Media access: controlling which frame should be sent
over the link next.

• Error control: error detection and correction to deal
with bit errors.
• May also include other reliability support, e.g. retransmissiony y pp , g

• Flow control: avoid that the sender outruns the
receiver

• Hubbing, bridging: extend the size of the network

415-441 © CMU 2010

2

Outline

• Encoding and decoding
• Translate between bits and digital signal• Translate between bits and digital signal

• Framing
• Bit stream to packets

• Packet loss & corruption
• Error detection
• Flow control• Flow control
• Loss recovery

515-441 © CMU 2010

How Encode?

• Seems obvious, why take time with this?
0 0 0 11 0 1 0 1

V 0

.85

-.85

615-441 © CMU 2010

Why Encode?

0 1 0 1 How many more ones?

715-441 © CMU 2010

Why Do We Need Encoding?

• Keep receiver synchronized with sender.
• Create control symbols, in addition to regular data C eate co t o sy bo s, add t o to egu a data

symbols.
• E.g. start or end of frame, escape, ...

• Error detection or error corrections.
• Some codes are illegal so receiver can detect certain

classes of errors
• Minor errors can be corrected by having multiple adjacent

signals mapped to the same data symbol
• Encoding can be done one bit at a time or in multi-bit

blocks, e.g., 4 or 8 bits.
• Encoding can be very complex, e.g. wireless.

815-441 © CMU 2010

3

Non-Return to Zero (NRZ)

0 0 0 11 0 1 0 1

• 1  high signal; 0  low signal

V 0

.85

-.85

• Used by Synchronous Optical Network (SONET)
• Long sequences of 1’s or 0’s can cause problems:

• Sensitive to clock skew, i.e. hard to recover clock
• DC bias hard to detect – low and high detected by difference

from average voltage
915-441 © CMU 2010

Clock Recovery

• When to sample voltage?
• Synchronized sender and receiver clocks• Synchronized sender and receiver clocks
• Need easily detectible event at both ends

• Signal transitions help resync sender and receiver
• Need frequent transitions to prevent clock skew
• SONET XOR’s bit sequence to ensure frequent

transitionstransitions

1015-441 © CMU 2010

Non-Return to Zero Inverted
(NRZI)

0 0 0 11 0 1 0 1

• 1  make transition; 0  signal stays the same

V 0

.85

-.85

• Solves the problem for long sequences of 1’s, but
not for 0’s.

1115-441 © CMU 2010

Manchester Encoding

85

0 1 1 0

• Used by Ethernet
• 0=low to high transition 1=high to low transition

V 0

.85

-.85

.1s

• 0=low to high transition, 1=high to low transition
• Transition for every bit simplifies clock recovery
• DC balance has good electrical properties
• But you pay a price …

• Doubles the number of transitions – more spectrum!
• Circuitry must run twice as fast

1215-441 © CMU 2010

4

4B/5B Encoding

• Data coded as symbols of 5 line bits  4 data
bits so 100 Mbps uses 125 MHzbits, so 100 Mbps uses 125 MHz.
• Uses less frequency space than Manchester encoding

• Encoding ensures no more than 3 consecutive 0’s
• Uses NRZI to encode resulting sequence
• 16 data symbols, 8 control symbols

D t b l 4 d t bit• Data symbols: 4 data bits
• Control symbols: idle, begin frame, etc.

• Example: FDDI.

1315-441 © CMU 2010

4B/5B Encoding

Data Code Data Code

0000
0001
0010
0011
0100

11110
01001
10100
10101
01010

1000
1001
1010
1011
1100

10010
10011
10110
10111
110100100

0101
0110
0111

01010
01011
01110
01111

1100
1101
1110
1111

11010
11011
11100
11101

1415-441 © CMU 2010

Other Encodings

• 8B/10B: Fiber Channel and Gigabit Ethernet
• 64B/66B: 10 Gbit Ethernet64B/66B: 10 Gbit Ethernet
• B8ZS: T1 signaling (bit stuffing)

• Encoding necessary for clocking
• Lots of approaches

Things to Remember

• Lots of approaches
• Rule of thumb:

• Little bandwidth  complex encoding
• Lots of bandwidth  simple encoding

1515-441 © CMU 2010

From Signals to Packets

Analog Signal

“Digital” Signal

Bit Stream 0 0 1 0 1 1 1 0 0 0 1

0100010101011100101010101011101110000001111010101110101010101101011010111001Packets 0100010101011100101010101011101110000001111010101110101010101101011010111001

Header/Body Header/Body Header/Body

ReceiverSender
Packet

Transmission

1615-441 © CMU 2010

5

Outline

• Encoding
• Digital signal to bits• Digital signal to bits

• Framing
• Bit stream to packets

• Packet loss & corruption
• Error detection
• Flow control• Flow control
• Loss recovery

1715-441 © CMU 2010

Framing

• How do we break up a stream of bits into frames?

0100010101011100101010101011101110000001111010101110101010101101011010111001

1815-441 © CMU 2010

Framing

• A link layer function, defining which bits have
which functionwhich function.

• Minimal functionality: mark the beginning and end
of packets (or frames).

• Some techniques:
• out of band delimiters (e.g. FDDI 4B/5B control

symbols)symbols)
• frame delimiter characters with character stuffing
• frame delimiter codes with bit stuffing
• synchronous transmission (e.g. SONET)

1915-441 © CMU 2010

Out-of-band: E.g., 802.5

• 802.5/token ring uses 4b/5b
• Start delim & end delim are “illegal” data codesStart delim & end delim are illegal data codes

Start
delim

Access
ctrl Body checksumFrame

ctrl
Dest
adr

Src
adr

End
delim

Frame
status

2015-441 © CMU 2010

6

Delimiter Based

• SYN: sync character
• SOH: start of header• SOH: start of header
• STX: start of text
• ETX: end of text

• What happens when ETX is in Body?

SYN SYN SOH Header STX Body ETX CRC

2115-441 © CMU 2010

Character and Bit Stuffing

• Mark frames with special character.
• What happens when the user sends this character?
• Use escape character when controls appear in data:
• *abc*def *abc*def
• Very common on serial lines, in editors, etc.

• Mark frames with special bit sequence
• must ensure data containing this sequence can be transmitted
• example: suppose 11111111 is a special sequence.
• transmitter inserts a 0 when this appears in the data:transmitter inserts a 0 when this appears in the data:
• 11111111  111111101
• must stuff a zero any time seven 1s appear:
• 11111110  111111100
• receiver unstuffs.

2215-441 © CMU 2010

Ethernet Framing

• Preamble is 7 bytes of 10101010 (5 MHz square
wave) followed by one byte of 10101011wave) followed by one byte of 10101011

• Allows receivers to recognize start of transmission
after idle channel

preamble datagram length more stuff

2315-441 © CMU 2010

Clock-Based Framing

• Used by SONET
• Fixed size frames (810 bytes)• Fixed size frames (810 bytes)
• Look for start of frame marker that appears every

810 bytes
• Will eventually sync up

2415-441 © CMU 2010

7

How avoid clock skew?

• Special bit sequences sent in first two chars of
frameframe
• But no bit stuffing. Hmmm?

• Lots of transitions by xoring with special pattern
(and hope for the best)

2515-441 © CMU 2010

Outline

• Encoding
• Digital signal to bits• Digital signal to bits

• Framing
• Bit stream to packets

• Packet loss & corruption
• Error detection
• Flow control• Flow control
• Loss recovery

2615-441 © CMU 2010

Error Coding

• Transmission process may introduce errors into a
message.
• Single bit errors versus burst errors

• Detection:
• Requires a convention that some messages are invalid
• Hence requires extra bits
• An (n,k) code has codewords of n bits with k data bits and r

= (n-k) redundant check bits
• Correction

• Forward error correction: many related code words map to
the same data word

• Detect errors and retry transmission

2715-441 © CMU 2010

Error Detection
• EDC= Error Detection and Correction bits (redundancy)
• D = Data protected by error checking, may include header fields
• Error detection not 100% reliable!Error detection not 100% reliable!

• Protocol may miss some errors, but rarely
• Larger EDC field yields better detection and correction

2815-441 © CMU 2010

8

Parity Checking

Single Bit Parity:
Detect single bit errors

2915-441 © CMU 2010

Internet Checksum

• Goal: detect “errors” (e.g., flipped bits) in transmitted
segment

Sender
• Treat segment contents

as sequence of 16-bit
integers

• Checksum: addition (1’s
complement sum) of
segment contents

Receiver
• Compute checksum of

received segment
• Check if computed

checksum equals checksum
field value:
• NO - error detected

30

segment contents
• Sender puts checksum

value into checksum field
in header

• YES - no error detected.
But maybe errors
nonethless?

15-441 © CMU 2010

Basic Concept:
Hamming Distance

• Hamming distance of two bit
strings = number of bit 1 0 1 1 0 HD=2st gs u be o b t
positions in which they differ.

• If the valid words of a code
have minimum Hamming
distance D, then D-1 bit
errors can be detected.

1 0 1 1 0
1 1 0 1 0

HD=2

HD=3

• If the valid words of a code
have minimum Hamming
distance D, then [(D-1)/2] bit
errors can be corrected.

3115-441 © CMU 2010

Examples

• A (4,3) parity code has D=2:
• 0001 0010 0100 0111 1000 1011 1101 1110
• (last bit is binary sum of previous 3, inverted - “odd parity”)

• A (7,4) code with D=3 (2ED, 1EC):
• 0000000 0001101 0010111 0011010
• 0100011 0101110 0110100 0111001
• 1000110 1001011 1010001 1011100
• 1100101 1101000 1110010 1111111

• 1001111 corrects to 10010111001111 corrects to 1001011
• Note the inherent risk in correction; consider a 2-bit

error resulting in 1001011  1111011.
• There are formulas to calculate the number of extra

bits that are needed for a certain D.

3215-441 © CMU 2010

9

Cyclic Redundancy Codes
(CRC)
• Commonly used codes that have good error

detection properties.p p
• Can catch many error combinations with a small

number of redundant bits
• Based on division of polynomials.

• Errors can be viewed as adding terms to the polynomial
• Should be unlikely that the division will still work

• Can be implemented very efficiently in hardware• Can be implemented very efficiently in hardware.
• Examples:

• CRC-32: Ethernet
• CRC-8, CRC-10, CRC-32: ATM

3315-441 © CMU 2010

CRC: Basic idea

• Treat bit strings as polynomials:
1 0 1 1 1
X4+ X2+X1+X0X4+ X2+X1+X0

• Sender and Receiver agree on a divisor polynomial
of degree k

• Message of M bits  send M+k bits
• No errors if M+k is divisible by divisor polynomial
• If you pick the right divisor you can:

• Detect all 1 & 2 bit errors• Detect all 1 & 2-bit errors
• Any odd number of errors
• All Burst errors of less than k bits
• Some burst errors >= k bits

3415-441 © CMU 2010

Outline

• Encoding
• Digital signal to bits• Digital signal to bits

• Framing
• Bit stream to packets

• Packet loss & corruption
• Error detection
• Flow control• Flow control
• Loss recovery

3515-441 © CMU 2010

Link Flow Control and
Error Recovery

• Dealing with receiver overflow: flow control.
• Dealing with packet loss and corruption: error control• Dealing with packet loss and corruption: error control.
• Meta-comment: these issues are relevant at many

layers.
• Link layer: sender and receiver attached to the same “wire”
• End-to-end: transmission control protocol (TCP) - sender

and receiver are the end points of a connection
• How can we implement flow control?

• “You may send” (windows, stop-and-wait, etc.)
• “Please shut up” (source quench, 802.3x pause frames, etc.)
• Where are each of these appropriate?

15-441 © CMU 2010 36

10

A Naïve Protocol

• Sender simply sends to the receiver whenever it
has packetshas packets.

• Potential problem: sender can outrun the receiver.
• Receiver too slow, buffer overflow, ..

• Not always a problem: receiver might be fast
enough.

Sender Receiver

3715-441 © CMU 2010

Adding Flow Control

• Stop and wait flow control: sender waits to send
the next packet until the previous packet has beenthe next packet until the previous packet has been
acknowledged by the receiver.
• Receiver can pace the receiver

Sender Receiver

3815-441 © CMU 2010

Drawback: Performance

Sender
RTT

Sender

Receiver
Time

Max Throughput = 1 pkt
Roundtrip Time

3915-441 © CMU 2010

Window Flow Control

• Stop and wait flow control results in poor throughput
for long-delay paths: packet size/ roundtrip-time.o o g de ay pat s pac et s e/ ou dt p t e

• Solution: receiver provides sender with a window that
it can fill with packets.
• The window is backed up by buffer space on receiver
• Receiver acknowledges the a packet every time a packet is

consumed and a buffer is freed

Sender Receiver

4015-441 © CMU 2010

11

Bandwidth-Delay Product

Sender
RTT

Sender

Receiver
Time

Max Throughput = Window Size
Roundtrip Time

4115-441 © CMU 2010

Error Recovery

• Two forms of error recovery
• Error Correcting Codes (ECC)
• Automatic Repeat Request (ARQ)

• ECC
• Send extra redundant data to help repair losses

• ARQ
• Receiver sends acknowledgement (ACK) when it

receives packet
• Sender uses ACKs to identify and resend data that was

lost

• Which should we use? Why? When?

4215-441 © CMU 2010

Error Recovery Example:
Error Correcting Codes (ECC)

Two Dimensional Bit Parity:
Detect and correct single bit errors

0 0

4315-441 © CMU 2010

Stop and Wait

• Simplest ARQ
protocol

Time

Ti
m

eo
ut

protocol
• Send a packet,

stop and wait until
acknowledgement
arrives

Sender Receiver

44

• Will examine ARQ
issues later in
semester

15-441 © CMU 2010

12

Recovering from Error

Ti
m

eo
ut

Ti
m

eo
ut

Time

m
eo

ut

m
eo

ut

Ti
m

eo
ut

m
eo

ut

45

Ti
m

Packet lost

Ti
m

Early timeout

Ti
m

ACK lost

15-441 © CMU 2010

How to Recognize
Retransmissions?

• Use sequence numbers
• both packets and acks• both packets and acks

• Sequence # in packet is
finite  How big should it
be?
• For stop and wait?

• One bit – won’t send seq #1• One bit – won t send seq #1
until received ACK for seq
#0

4615-441 © CMU 2010

Implementation Issues with
Window-based Protocol

• Receiver window size: # of out-of-sequence
packets that the receiver can receivepackets that the receiver can receive

• Sender window size: # of total outstanding
packets that sender can send without
acknowledged

• How to deal with sequence number wrap around?

4715-441 © CMU 2010

What is Used in Practice?

• No flow or error control.
• E.g. regular Ethernet, just uses CRC for error detectiong g , j

• Flow control only.
• E.g. Gigabit Ethernet

• Flow and error control.
• E.g. X.25 (older connection-based service at 64 Kbs

that guarantees reliable in order delivery of data)

4815-441 © CMU 2010

13

So far …

Can connect two nodes

•… But what if we want more nodes?

Wires for everybody!

4915-441 © CMU 2010

So far …

Can connect two nodes

•… But what if we want more nodes?

Wires for everybody!

5015-441 © CMU 2010

Better Solutions:
Datalink Architectures

• Point-Point with switches • Multiple access networks
• Media access control.

15-441 © CMU 2010 51

