

Course Format

- ~30 lectures
 - · Cover the "principles and practice"
 - · Complete readings before lecture
- 4 homework assignments
 - "Paper": Do you understand and can you apply the material?
 - · "Lab": Illustrate networking concepts
 - · Loosely tied to lecture materials
 - · Teach networking concepts/tools
- 3 programming projects
 - · How to use and build networks / networked applications
 - · Application-layer programming; include key ideas from kernel
 - Larger, open-ended group projects. Start early!
- · Midterm and final
 - · Covers each of the above 3 parts of class

5

Recitation Sections

- Key 441 objective: system programming
- Different from what you've done before!
 - Low level (C)
 - Often designed to run indefinitely. Handle all errors!
 - Must be secure
 - Interfaces specified by documented protocols
 - · Concurrency involved (inter and intra-machine)
 - · Must have good test methods
- Recitations address this
 - "A system hackers' view of software engineering"
 - Practical techniques designed to save you time & pain!

6

Sounds Great! How Do I Get In?

- Currently 49 people are enrolled there is no waiting list.
 - If you do not plan to take the course, please drop it ASAP
 - While nobody is waiting for your slot, it helps in preparing projects, handouts, ...

Administrative Stuff

- Watch the course web page
 - http://www.cs.cmu.edu/~prs/15-441-F10/
 - Handouts, readings, ..
- Read bboards
 - academic.cs.15-441[.announce] for official announcements
 - cyrus.academic.cs.15-441.discuss for questions/answers
- Office hours posted on web page
 - By appointment this week
- Course secretary
 - Angela Miller, Gates 9118

Grading

- Roughly equal weight in projects and testing
 - 45% for Project I, II and III
 - 15% for Project II
 - 15% for Midterm exam
 - 25% for Final exam
 - 15% for Homework
- You MUST demonstrate competence in both projects and tests to pass the course
 - · Fail either and you fail the class!

9

Policy on Collaboration

- · Working together is important
- Discuss course material in general terms
- · Work together on program debugging, ..
- · Final submission must be your own work
 - · Homeworks, midterm, final
- Projects: Solo (P1) + Teams of two (P2,P3)
 - · Collaboration, group project skills
 - Both students should understand the entire project
- · Web page has details
- Things we don't want to have to say: We run projects through several cheat-checkers against all previously and concurrently handed in versions...

10

Late Work and Regrading

- Late work will receive a 15% penalty/day
- No assignment can be more than 2 days late
- No penalty for a limited number of handins see web page
- Only exceptions are documented illness and family emergencies
- Requests for regrading must be submitted in writing to course secretary within 2 weeks.
 - · Do not contact us by e-mail
 - Office hours are fine for discussion but not for regrading
 - · Regrading will be done by original grader
- No assignments with a "short fuse"
 - Homeworks: ~1-2 weeks Projects: ~4 weeks
 - · Start on time!
 - Every year some students discover that a 4 week project cannot be completed in a week

The Slides

- The slides are a resource that is shared by the many instructors of 15-441
 - Also some sharing with 18-345
- They include contributions from Peter Steenkiste, Srini Seshan, Dave Andersen, Hui Zhang, and others

This Week

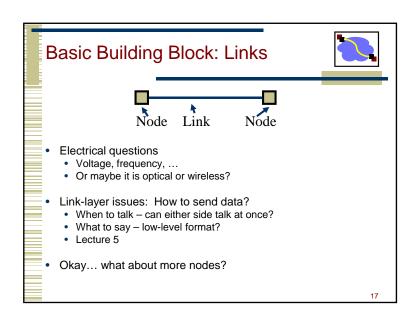
- Intro what's this all about?
- Protocol stacks and layering
- Recitations start this week: Socket programming (213 review++)
- On to the good stuff...Whirlwind tour of networking
 - Course outline:
 - Low-level (physical, link, circuits, etc.)
 - Internet core concepts (addressing, routing, DNS)
 - Advanced topics

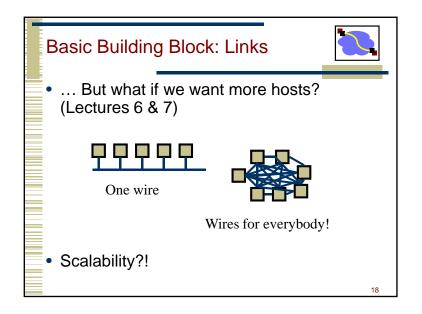
13

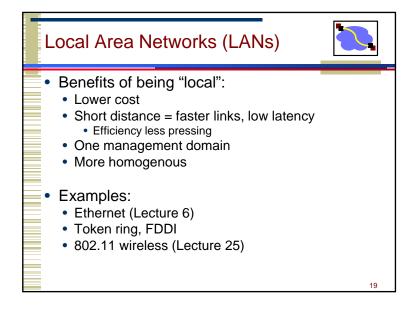
What is the Objective of Networking?

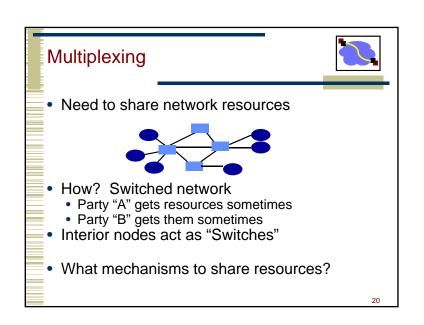
- Enable communication between applications on different computers
 - Web (Lecture 22)
 - Peer to Peer (Lecture 23)
 - Audio/Video (Lecture 20)
 - Funky research stuff (Lecture 27)
- Must understand application needs/demands (Lecture 3)
 - Traffic data rate
 - Traffic pattern (bursty or constant bit rate)
 - Traffic target (multipoint or single destination, mobile or fixed)
 - Delay sensitivity
 - Loss sensitivity

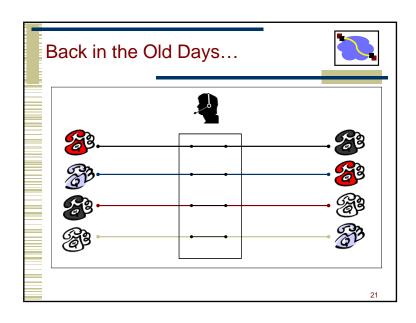
14

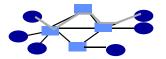

What Is a Network?




- Collection of nodes and links that connect them
- This is vague. Why? Consider different networks:
 - Internet
 - Andrew
 - Telephone
 - Your house
 - Others sensor nets, cell phones, ...
- Class focuses on Internet, but explores important common issues and challenges


15

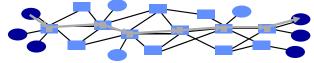

How to Draw a Network Node Link Node

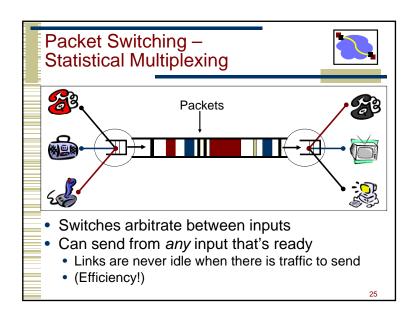


Circuit Switching destination

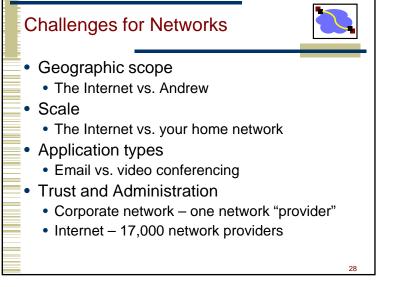
- Source first establishes a connection (circuit) to the
 - Each switch along the way stores info about connection (and possibly allocates resources)
- Source sends the data over the circuit
 - No need to include the destination address with the data since the switches know the path
- The connection is explicitly torn down
- Example: telephone network (analog)

Circuit Switching Discussion

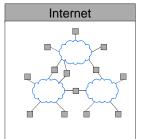



- Circuits have some very attractive properties.
 - Fast and simple data transfer, once the circuit has been established
 - Predictable performance since the circuit provides isolation from other users
 - E.g. guaranteed bandwidth
- · But it also has some shortcomings.
 - How about bursty traffic
 - · circuit will be idle for significant periods of time
 - · How about users with different bandwidth needs
 - · do they have to use multiple circuits
- · Alternative: packet switching.

Packet Switching (our emphasis)


- Source sends information as self-contained packets that have an address.
 - Source may have to break up single message in multiple
- Each packet travels independently to the destination host.
 - Switches use the address in the packet to determine how to forward the packets
 - · Store and forward
- Analogy: a letter in surface mail.

Packet Switching Discussion • Efficient • Can send from any input that is ready • General • Multiple types of applications • Accommodates bursty traffic • Addition of queues • Store and forward • Packets are self contained units • Can use alternate paths – reordering • Contention (i.e. no isolation) • Congestion • Delay


Networks Juggle Many Goals • Efficiency – resource use; cost • The "ilities": • Evolvability • Managability • Security (securability, if you must) • Ease of: • Creation • Deployment • Creating useful applications • Scalability

Internet

- An inter-net: a network of networks.
 - Networks are connected using routers that support communication in a hierarchical fashion
 - Often need other special devices at the boundaries for security, accounting, ...
- The Internet: the interconnected set of networks of the Internet Service Providers (ISPs)
 - About 17,000 different networks make up the Internet

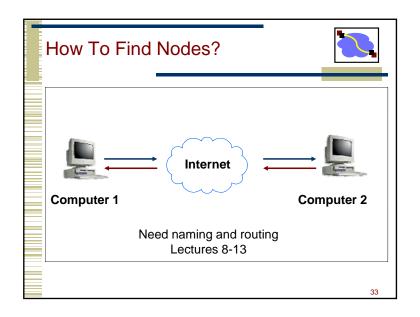
29

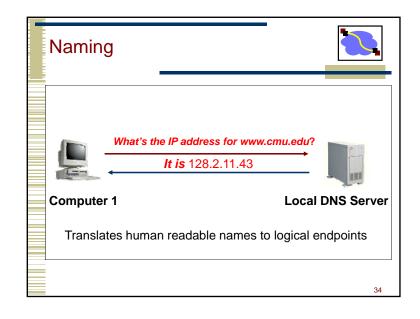
Challenges of the Internet

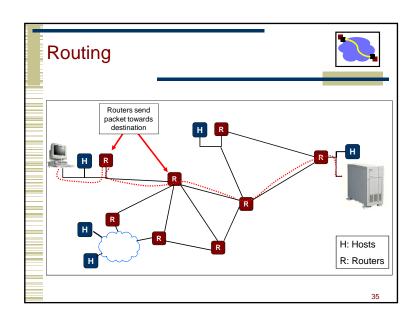
- Heterogeneity
 - Address formats
 - Performance bandwidth/latency
 - Packet size
 - · Loss rate/pattern/handling
 - Routing
 - Diverse network technologies → satellite links, cellular links, carrier pigeons

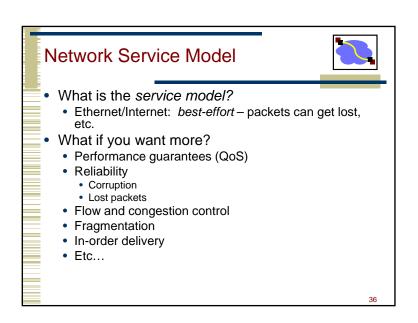
30

Challenges of the Internet

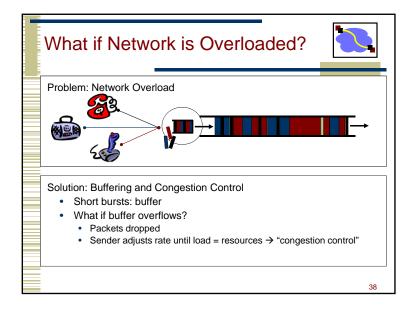

- Scale
 - 100.000.000s of hosts
 - 18,000+ administrative domains,
 - Thousands of applications
- Adversarial environment
- Oh, and let's make it easy to use...
- How to translate between various network technologies?

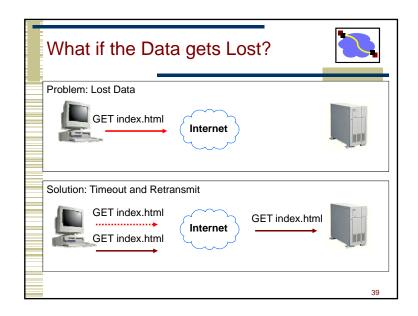

21

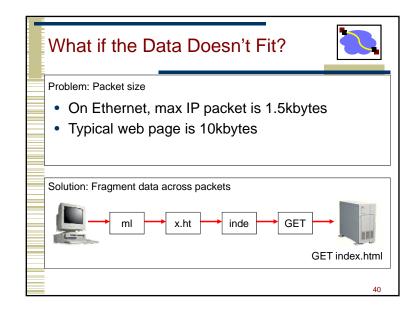

Internet Design

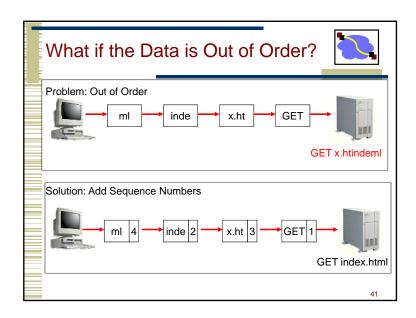


- In order to inter-operate, all participating networks have to follow a common set of rules
- E.g., requirements for packets:
 - Header information: Addresses, etc. (Lecture 9)
 - Data. What is packet size limit? (Lectures 5—9)









- Link
- Multiplexing
- Routing
- Addressing/naming (locating peers)
- Reliability
- Flow control
- Fragmentation
- Etc....

42

Meeting Application Demands

- Sometimes interior of the network can do it
 - · E.g., Quality of Service
 - · Benefits of circuit switching in packet-switched net
 - · Hard in the Internet, easy in restricted contexts
 - Lecture 21
- · OR hosts can do it
 - E.g., end-to-end *Transport protocols*
 - TCP performs end-to-end retransmission of lost packets to give the illusion of a reliable underlying network.
 - Lectures 16-19

12

Next Lecture

- How to determine split of functionality
 - · Across protocol layers
 - · Across network nodes
- Read two papers on the motivations for the Internet architecture (web site):
 - "The design philosophy of the DARPA Internet Protocols", Dave Clark, SIGCOMM 88
 - "End-to-end arguments in system design", Saltzer, Reed, and Clark, ACM Transactions on Computer Systems, November 1984