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Focused Proofs

Andreoli: focusing proof search for classical linear logic.

• Refinement of cut-free proofs for more effective proof search.

• Implementations and generalizations by Pfenning, Miller,
Chaudhuri, and others.

Two key ideas:

• Invertibility: control “don’t care” indeterminacy.

• Focusing: control “don’t know” indeterminacy.



Inversion

A rule is invertible if the premises are derivable from the conclusion:

Left :
Γ,A ` C Γ,B ` C

Γ,A ∨ B ` C
Right :

Γ,A ` B

Γ ` A ⊃ B

An inversion step composes invertible rules:

Left :
Γ,A ` D Γ,B ` D Γ,C ` D

Γ,A ∨ (B ∨ C ) ` D
Right :

Γ,A,B ` C

Γ ` A ⊃ (B ⊃ C )



Focus

Non-invertible rules involve choices:

Left :
Γ ` A Γ,B ` C

Γ,A ⊃ B ` C
Right : Γ ` A

Γ ` A ∨ B

A focusing step composes choices:

Left :
Γ ` A Γ ` B Γ,C ` D

Γ,A ⊃ (B ⊃ C ) ` D
Right :

Γ ` B
Γ ` A ∨ (B ∨ C )



Polarities

In linear logic the connectives may be classified by polarity:

• Positive: left invertible, right focus. ⊗, ⊕, 1, 0.

• Negative: right invertible, left focus. (, &, >, `.

Girard: distinguish positive and negative connectives a priori.

• Positive = verificationist = eager = inductive.

• Negative = pragmatist = lazy = coinductive.

Zeilberger: provides link to type systems via pattern matching.



Polarities

Positive types: defined by introduction.

• Right focus: choose a (compound) value of a type.

• Left inversion: match all possible values.

Negative types: defined by elimination.

• Left focus: choose a (compound) experiment for a type.

• Right inversion: match all possible experiments.

Cut elimination establishes safety via exhaustiveness of matching.



Positive Types

Positive sum: A+

1 ⊕ A+

2 .

• Introduce by choosing a value:

inl ◦ v+

1

inr ◦ v+

2

• Eliminate by matching all values:

inl ◦ v+

1 7→ m1

inr ◦ v+

2 7→ m2



Negative Types

Negative product: A-
1&A-

2.

• Eliminate by choosing an experiment:

fst; k-
1

snd; k-
2

• Introduce by matching all experiments:

fst; k-
1 7→ m1

snd; k-
2 7→ m2



Polarities

Positive types:

A+ ::= 1 | 0 | A+

1 ⊗ A+

2 | A
+

1 ⊕ A+

2 | ↓A-

Negative types:

A- ::= A-
1&A-

2 | A+

1 → A-
2 | ↑A+

Shift operators intermix positive and negative:

• ↓A-: inclusion of negative into positive.

• ↑A+: suspension of positive computation.



Focusing

Positive fragment:

Right Focus = Value Left Inversion = Match
Γ `

v+ :

A+ Γ `

k+ :

A+ > γ

Negative fragment:

Left Focus = Experiment Right Inversion = Response
Γ `

k- :

A- > γ Γ `

v - :

A-

Neutral (computation) fragment (with result γ):

Γ `0

m :

γ
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Focusing

Positive fragment:

Right Focus = Value Left Inversion = Match
Γ ` v+ : A+ Γ ` k+ : A+ > γ

Negative fragment:

Left Focus = Experiment Right Inversion = Response
Γ ` k- : A- > γ Γ ` v - : A-

Neutral (computation) fragment (with result γ):

Γ `0 m : γ



Focusing

Positive disjunction (derivable):

Right Focus Left Inversion

Γ `

v+ :

A+

1

Γ `

inl ◦ v+ :

A+

1 ⊕ A+

2

Γ `

v+ :

A+

2

Γ `

inr ◦ v+ :

A+

1 ⊕ A+

2

Γ `

k1 :

A+

1 > γ Γ `

k2 :

A+

2 > γ

Γ `

{ inl 7→ k1 | inr 7→ k2 } :

A+

1 ⊕ A+

2 > γ



Focusing

Positive disjunction (derivable):

Right Focus Left Inversion

Γ ` v+ : A+

1

Γ ` inl ◦ v+ : A+

1 ⊕ A+

2

Γ ` v+ : A+

2

Γ ` inr ◦ v+ : A+

1 ⊕ A+

2

Γ ` k1 : A+

1 > γ Γ ` k2 : A+

2 > γ

Γ ` { inl 7→ k1 | inr 7→ k2 } : A+

1 ⊕ A+

2 > γ



Higher-Order Focusing

Choices and patterns are maximal.

• Short-cut pattern matches are definable (identity lemma).

• All variables are of negative type.

A positive value v+ may be decomposed into p+[σ] where

• p+ is a positive pattern, which can be matched, and

• σ is a negative substitution for variables, which are opaque.

Example: 1⊕ (1⊕ ↓A-).

• Patterns: inl ◦ 〈〉, inr ◦ inl ◦ 〈〉, inr ◦ inr ◦ x .

• Values: inl ◦ 〈〉, inr ◦ inl ◦ 〈〉, (inr ◦ inr ◦ x)[v -/x ].



Higher-Order Focusing

Patterns are the fulcrum of the type theory:

∆ 


p+ :

A+ ∆ 


p- :

A- > γ

Example: positive disjunction patterns.

∆ 


p+

1 :

A+

1

∆ 


inl ◦ p+

1 :

A+

1 ⊕ A+

2

∆ 


p+

2 :

A+

2

∆ 


inr ◦ p+

2 :

A+

1 ⊕ A+

2

Example: negative function patterns.

∆ 


p+

1 :

A+

1 ∆ 


p-
2 :

A2 > γ

∆ 


ap(p+

1 ); p-
2 :

(A+

1 → A-
2) > γ
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Higher-Order Focusing

Example: positive shift pattern ends matching.

x :

A- 


x :

↓A-

Example: positive product patterns.

∆1 


p+

1 :

A+

1 ∆2 


p+

2 :

A+

2

∆1 ∆2 


〈p+

1 , p
+

2 〉 :

A+

1 ⊗ A+

2

Patterns are linear: no repeated negative variables.



Higher-Order Focusing

Example: positive shift pattern ends matching.

x : A- 
 x : ↓A-

Example: positive product patterns.

∆1 
 p+

1 : A+

1 ∆2 
 p+

2 : A+

2

∆1 ∆2 
 〈p+

1 , p
+

2 〉 : A+

1 ⊗ A+

2

Patterns are linear: no repeated negative variables.



Higher-Order Focusing

Positive right focus = instantiate a value pattern:

∆ 


p+ :

A+ Γ `

σ :

∆

Γ `

p+[σ] :

A+

Positive left inversion = analyze all patterns:

∆ 


p+ :

A+ −→ Γ,∆ `0

φ+(p) :

γ

Γ `

case(φ+) :

A+ > γ

Premise is a meta-function mapping patterns to computations:

∀ ∆ 
 A+ ∃ Γ,∆ `0 γ
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Higher-Order Focusing

Positive right focus = instantiate a value pattern:

∆ 
 p+ : A+ Γ ` σ : ∆

Γ ` p+[σ] : A+

Positive left inversion = analyze all patterns:

∆ 
 p+ : A+ −→ Γ,∆ `0 φ
+(p) : γ

Γ ` case(φ+) : A+ > γ

Premise is a meta-function mapping patterns to computations:

∀ ∆ 
 A+ ∃ Γ,∆ `0 γ



Higher-Order Focusing

Example: x :A- ` case(φ+) : (1⊕ (1⊕ ↓A-)) > γ.

φ+ :


inl ◦ 〈〉 7→ m1

inr ◦ inl ◦ 〈〉 7→ m2

inr ◦ inr ◦ x 7→ m3

One case for each possible pattern: may even be infinitary!



Higher-Order Focusing

Negative left focus = instantiate an experiment pattern:

∆ 


p- :

A- > γ0 Γ `

σ :

∆ Γ `

k+ :

γ0 > γ

Γ `

p-[σ]; k+ :

A- > γ

Negative right inversion = analyze all experiments:

∆ 


p- :

A- > γ −→ Γ,∆ `

φ-(p-)

: γ

Γ `

case(φ-) :

A-

Negative right inversion rule involves meta-function, dually to
positive left inversion.



Higher-Order Focusing

Negative left focus = instantiate an experiment pattern:

∆ 
 p- : A- > γ0 Γ ` σ : ∆ Γ ` k+ : γ0 > γ

Γ ` p-[σ]; k+ : A- > γ

Negative right inversion = analyze all experiments:

∆ 
 p- : A- > γ −→ Γ,∆ ` φ-(p-) : γ

Γ ` case(φ-) : A-

Negative right inversion rule involves meta-function, dually to
positive left inversion.



Higher-Order Focusing

Neutral computations may have effects, structured monadically:

• Unit computation = return a value:

Γ `

v+ :

A+

Γ `0

ret(v+) :

A+

• Composition of computations:

x :

A- ∈ Γ Γ `

k- :

A- > γ

Γ `0

x • k- :

γ

Zeilberger: distinct focused forms are observationally distinct,
given enough effects.
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Higher-Order Focusing

Neutral computations may have effects, structured monadically:

• Unit computation = return a value:

Γ ` v+ : A+

Γ `0 ret(v+) : A+

• Composition of computations:

x : A- ∈ Γ Γ ` k- : A- > γ
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Zeilberger: distinct focused forms are observationally distinct,
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Higher-Order Focusing

Various cut principles are admissible, for example

Γ `

v+ :

A+ Γ `

k+ :

A+ > γ

Γ `

v+ • k+ :

γ

Cut elimination yields an intrinsically safe operational semantics:

(p+[σ] • case(φ+)) 7−→ φ+(p+)[σ]

Higher-order inversion rule ensures that φ+ responds to all possible
values, so execution cannot “get stuck.”
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Higher-Order Focusing

Various cut principles are admissible, for example

Γ ` v+ : A+ Γ ` k+ : A+ > γ

Γ ` v+ • k+ : γ

Cut elimination yields an intrinsically safe operational semantics:

(p+[σ] • case(φ+)) 7−→ φ+(p+)[σ]

Higher-order inversion rule ensures that φ+ responds to all possible
values, so execution cannot “get stuck.”



Polarization

Polarize to expose operational distinctions.

Γ `ML e : τ ; eML : ΓML > τML

Γ `H e : τ ; ΓH ` eH : τH.

unitML = 1 unitH = >
(τ1 ∗ τ2)ML = τML

1 ⊗ τML
2 (τ1, τ2)H = τH

1 & τH
2

voidML = 0 voidH =↑↓ 0

(τ1 + τ2)ML = τML
1 ⊕ τML

2 (τ1 + τ2)H =↑ (↓ τH
1 ⊕ ↓ τH

2 )

(τ1 → τ2)ML =↓ (τML
1 →↑ τML

2 ) (τ1 → τ2)H = (↓ τH
1 )→ τH

2



Applications of Focusing

Focusing has many applications in PL design and semantics!

• Operationally sensitive typing: intersections and unions.

• Deciding full equivalence for finite typed λ-calculus.

• Categorial semantics with link to Levy’s call-by-push-value.

• Dependent types in the presence of effects.

• Computation with binding and scope.
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Applications of Focusing

Focusing has many applications in PL design and semantics!

• Operationally sensitive typing: intersections and unions.

• Deciding full equivalence for finite typed λ-calculus.

• Categorial semantics with link to Levy’s call-by-push-value.

• Dependent types in the presence of effects.

• Computation with binding and scope.

(Not to mention many applications in proof theory!)



Binding and Computation

Goal: datatype mechanism with binding and computation.

• LF-style representations of syntactic objects.

• ML-style computation by structural induction.

• cf Beluga [Pientka and Dunfield], Delphin [Schuermann],
FreshML [Pitts, et al.; Pottier].

Focusing provides a natural framework for integrating these!

• Binding = positive function space.

• Computation = negative function space.



Binding and Computation

The key is to integrate two forms of entailment:

• Derivability: J1, . . . , Jn ` J.

• Admissibility: J1, . . . , Jn |= J.

Derivability expresses binding and scope:

u1 exp, . . . , un exp︸ ︷︷ ︸
Ψ

` e exp

Admissibility expresses computation:

e exp |= sz(e) nat



Judgements and Evidence

Basic judgements J are inductively defined assertions.

• e exp, e : τ , e ↪→ e ′, . . . .

• Defined by a collection of rules.

Evidence for J is a derivation, ∇ : J.

• Consists of a composition of rules.

• Ending with judgement J.



Derivability

Derivability judgement J1 ` J2.

• J2 is derivable from J1.

• J1 is a local axiom, or hypothesis.

Evidence for J1 ` J2 has the form u.∇, where

• ∇ is a derivation of J2 involving ...

• . . . the local rule, u, deriving J1.

Schroeder-Heister: derivability may be iterated.

• J1 ` (J2 ` J3) equivalent to J1, J2 ` J3.

• (J1 ` J2) ` J: assume a rule J1 ` J2 while deriving J.



Higher-Order Abstract Syntax

Example: untyped λ-terms.

u1 exp, . . . , un exp︸ ︷︷ ︸
Ψ

` e exp

Ψ, u exp ` u exp

Ψ ` e1 exp Ψ ` e2 exp

Ψ ` ap(e1, e2) exp

Ψ, u exp ` e exp

Ψ ` λ(u.e) exp

Pronominal: choice of parameter does not matter!

• Fiore, Plotkin, Tiuri: pre-sheaves.

• Gabbay, Pitts: FM sets, equivariance.



Higher-Order Abstract Syntax

Example: untyped λ-terms.

u1 exp, . . . , un exp︸ ︷︷ ︸
Ψ

` e exp

Ψ, u exp ` u exp

Ψ ` e1 exp Ψ ` e2 exp

Ψ ` ap(e1, e2) exp

Ψ, u′ exp ` [u′/u]e exp

Ψ ` λ(u.e) exp

Pronominal: choice of parameter does not matter!

• Fiore, Plotkin, Tiuri: pre-sheaves.

• Gabbay, Pitts: FM sets, equivariance.



Admissibility

Admissibility judgement J1 |= J2.

• If J1 is derivable, then J2 is also derivable.

• May hold vacuously.

• Negation ¬J of J: J |= #.

Evidence is a meta-function on derivations.

• ∇ : J1 7−→ φ(∇) : J2.

• Constructively, the transformation φ is computable.



Admissibility and Derivability

Expressing computations over syntax with binding mixes
entailments:

u1 exp, . . . , un exp︸ ︷︷ ︸
Ψ

` (e exp |= sz(e) nat)

• given expression variables u1, . . . , un, . . .

• if e exp is an expression, . . .

• the size of e exists as a natural number.
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Admissibility and Derivability

Expressing computations over syntax with binding mixes
entailments:

u1 exp, . . . , un exp︸ ︷︷ ︸
Ψ

` (e exp |= sz(e) nat)

Spelled out in words, this judgement means
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Admissibility and Derivability

Evidence consists of a function S such that

S (Ψ, u) u 7→ 1

S Ψ ap(e1, e2) 7→ 1 + (S Ψ e1) + (S Ψ e2)

S Ψ λ(u.e) 7→ 1 + (S (Ψ, u) e)

Defined by pattern matching against derivations!

• Abstracted over parameters Ψ.

• Parameters are extended in the recursion.



Representing Judgements and Evidence

Basic derivations are are positive values.

• Inductively generated by rules, or constructors.

• Inductively analyzed by pattern matching and recursion.

Derivability judgements are positive functions J1 ⇒ J2.

• A value of type J2 with a rule constructor u of type J1.

• Closed-ended: derivation schemas, not computations!

Admissibility judgements are negative functions J1 → J2.

• A (computable) transformation from J1 to J2.

• Open-ended: arbitrary transformation.



Contextualization

Key technique: contextual modality 〈Ψ〉A+ [Nanevski, Pientka].

• Internalizes derivability from assumptions R1, . . . ,Rn.

• Ψ is a rule context u1 : R1, . . . , un : Rn.

• Each R is D ⇐ A+

1 , . . . ,A
+
n , where D is a pronominal data

type.

Contextualized typing judgements:

• Right focus: Γ ` v+ : 〈Ψ〉A+.

• Left inversion: Γ ` k+ : 〈Ψ〉A+ > γ.



Pronominal Data Types

Pronominal data types, D, are inductively defined by context Ψ.

• Rules generate values of the type.

• Rules are extensible within a scope.

Contextualized types track the scopes of parameters.

• Enforces proper scoping of names.

• cf nominal data types, which do not.



Pronominal Data Types

Patterns:

u:

D⇐A+ ∈ Ψ ∆ 


p+ :

〈Ψ〉A+

∆ 


u(p+) :

〈Ψ〉D

Values (derivable):

u:

D⇐A+ ∈ Ψ Γ `

v+ :

〈Ψ〉A+

Γ `

u(v+) :

〈Ψ〉D

Matches (derivable):

(

u:

D ⇐ A+ ∈ Ψ ∧ ∆ 


p+ :

A+) −→ Γ `0

m :

γ

Γ `

case(· · · | u(p+) 7→ m | . . . ) :

〈Ψ〉D > γ
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Patterns:
u:D⇐A+ ∈ Ψ ∆ 
 p+ : 〈Ψ〉A+

∆ 
 u(p+) : 〈Ψ〉D

Values (derivable):

u:D⇐A+ ∈ Ψ Γ ` v+ : 〈Ψ〉A+

Γ ` u(v+) : 〈Ψ〉D

Matches (derivable):

(u:D ⇐ A+ ∈ Ψ ∧ ∆ 
 p+ : A+) −→ Γ `0 m : γ

Γ ` case(· · · | u(p+) 7→ m | . . . ) : 〈Ψ〉D > γ



Positive Functions

Positive function type R ⇒ A+:

∆ 


v+ :

〈Ψ, u:R〉A+

∆ 


u.v+ :

〈Ψ〉(R ⇒ A+)

Matching for positive function types:

∆ 


p+ :

〈Ψ,

u:

R〉A+ −→ Γ,∆ `0

m :

γ

Γ `

case(u.p+ 7→ m) :

〈Ψ〉(R ⇒ A+) > γ

The parameter u is a pronoun, not a noun!



Positive Functions

Positive function type R ⇒ A+:

∆ 
 v+ : 〈Ψ, u:R〉A+

∆ 
 u.v+ : 〈Ψ〉(R ⇒ A+)

Matching for positive function types:

∆ 


p+ :

〈Ψ,

u:

R〉A+ −→ Γ,∆ `0

m :

γ

Γ `

case(u.p+ 7→ m) :

〈Ψ〉(R ⇒ A+) > γ

The parameter u is a pronoun, not a noun!



Positive Functions

Positive function type R ⇒ A+:

∆ 
 v+ : 〈Ψ, u:R〉A+

∆ 
 u.v+ : 〈Ψ〉(R ⇒ A+)

Matching for positive function types:

∆ 
 p+ : 〈Ψ, u:R〉A+ −→ Γ,∆ `0 m : γ

Γ ` case(u.p+ 7→ m) : 〈Ψ〉(R ⇒ A+) > γ

The parameter u is a pronoun, not a noun!



Higher-Order Syntax, Revisited

Rule context Ψexp declares constructors:

ap : exp⇐ exp, exp

λ : exp⇐ (exp⇒ exp)

Rule context Ψvar declares expression variables:

u1 : exp, . . . , un : exp

Adequacy: the type 〈Ψexp Ψvar〉exp internalizes the judgement

u1 exp, . . . , un exp ` e exp



Computing With Binders

Define sz = case(φ-) of negative function type

〈Ψexp〉Ψvar ⇒ (exp→ nat)

The meta-function φ- is defined by

φ- (Ψ, u:exp) u = 1

φ- Ψ (ap(e1, e2)) = 1 + (φ- Ψ e1) + (φ- Ψ e2)

φ- Ψ (λ(u.e)) = 1 + (φ- (Ψ, u:exp) e)

The recursive call acts on the value e of contextualized type

〈Ψexp Ψvar u:exp〉exp



Normalization by Evaluation

Pronominal data types enforce scoping of bound variables.

• cf, nominal approaches, which do not (names abound).

Example: normalization by evaluation [ICFP09 forthcoming].

eval : 〈Ψnbe〉 ∀Ψ Ψ⇒ (exp→ (exp#→ sem)→ sem)

reify : 〈Ψnbe〉 ∀Ψ Ψ⇒ (sem→ (exp#→ neu#)→ exp)

Normalization therefore has type

〈Ψnbe〉 ∀Ψ Ψ⇒ exp→ exp.

Result involves only parameters from the input.



Rule Conjunction

Representational conjunction: R f A-.

∆ 
 p- : 〈Ψ, u:R〉A- > γ

∆ 
 unpack; u, p- : 〈Ψ〉(R f A-) > γ

Patterns are destructor patterns in an expanded rule context.



Some/Any

Representational connectives exhibit some/any equivalences:

• ↓ (R f A-) ≈ R ⇒↓ A-.

• ↑ (R ⇒ A+) ≈ Rf ↑ A+.

Informally,

• A (destructor in an expanded context) is a destructor (in an
expanded context).

• A (constructor in an expanded context) is a constructor (in an
expanded context).



(Non-) Structurality

The rule context Ψ need not behave structurally!

• Reflexivity is assured: parameters are values of their type.

• Exchange and contraction are admissible.

• Weakening and transivity need not hold!

Rules may have side conditions.

r : J ⇐ J1, . . . , Jn,¬K

Last premise demands that there are no derivations of K .

• eg, disequalities such as l 6= l ′ for store lookup.



(Non-) Structurality

Negation ¬K means ↓ (K →↑ 0).

• Circumscribes possible derivations of K .

• Witnesses absence of parameters of type K .

Hence weakening fails:

v+ : 〈Ψ〉A+ 6⊃ v+ : 〈Ψ Ψ′〉A+

Example: v+ = r(v+

1 , . . . , v
+
n , case(φ-)), where φ- refutes K .

• Could be well-formed in context Ψ.

• Yet ill-formed in context Ψ, u:K .



(Non-) Structurality

Integrating binding and computation refutes structurality!

• Side conditions on rules may obstruct weakening, substitution.

• Structurality not always appropriate, eg assignable variables.

But structurality holds if side conditions govern subordinate types.

• eg, stratifies judgements into iterated form.

• eg, location equality is prior to expression transition.

When available, structural properties are generically definable.

• Generated from types, as in Haskell.



(Non-)Structurality

Failure of structurality implies that positive functions are not
restricted forms of negative function!

• No substitution action A+ ⇒ B+ ↪→ ↓ (A+ →↑ B+).

• Cannot “cut down” negative functions to positive functions
using modalities, polymorphism, etc.

When all rules are pure (no side conditions), then every positive
function induces a negative function by substitution.

• An advantage of pure rule formalisms.

• But cannot scale to rules with impurities.



Shocking Equivalences

Representational connectives contradict computational intuitions!

• R ⇒ (A+

1 ⊕ A+

2 ) ≈ (R ⇒ A+

1 )⊕ (R ⇒ A+

2 )

• (R f A-
1)&(R f A-

2) ≈ R f (A-
1&A-

2).

Informally,

• (A choice of values) involving a parameter is a choice of
(values involving a parameter).

• A pair of (destructors in an expanded context) is a (pair of
destructors) in an expanded context.



Summary

Focusing is a useful tool for programming language research!

• Integration of “eager” and “lazy” types.

• Supports operationally sensitive type systems.

• Point of contact between proof search and proof reduction
paradigms.

Pronominal integration of binding and computation.

• Pattern matching over higher-order representations.

• Side conditions are “first-class citizens.”

• Adequately expressive for many problems.



Ongoing Work

Implementation.

• A universe within Agda.

• deBruijn representations for parameters.

• Meta-functions are Agda functions.

• Serviceable for examples such as NBE.

Semantics (with Awodey, Lumsdaine, Birkedal).

• Categorical formulation of focusing largely in hand.

• Contextualization remains under investigation.

Comparison with other approaches [ICFP09 forthcoming].

• Well-known examples such as NBE.

• Relate to Beluga, Delphin, FreshML approach.



Ongoing Work

Positive Dependency [PLPV09]

• Admit Πx : A+

1 .A
-
2 (negative) and Σx : A+

1 .A
+

2 (positive).

• Supports GADT-like computations over families of types.

• Relies on induction-recursion for proof theory.

Dependent rules for pronominal data types.

• Essential to achieve full power of LF.

• Straightforward, provided that side conditions are excluded.

• Admitting side conditions is problematic.



Thank You!

Questions?



α-Equivalence

Meta-functions must respect α-equivalence.

• φ+(u.p+) = φ+(u′.[u′/u]p+).

• In Agda we rely on deBruijn representations.

But what is α-equivalence for patterns?

• A pattern may contain negative variables.

Need parameter renamings at shifts:

π : Ψ ∼= Ψ′

x : 〈Ψ′〉A- 
 xπ : 〈Ψ〉 ↓ A-

π : Ψ′ ∼= Ψ
∆ 
 forceπ : 〈Ψ〉 ↑ A+ > 〈Ψ′〉A+



Evaluation

eval : ∀ Ψ. Ψ ⇒ (exp → (exp # → sem) → sem)
eval[Ψ] x σ = σ x
eval[Ψ] app(e1,e2) σ = appsem (eval[Ψ] e1 σ)

(eval[Ψ] e2 σ)
eval[Ψ] lam(λx.e[x]) σ = slam ϕ where ϕ = . . .

appsem : ∀ Ψ. Ψ ⇒ (sem → sem → sem)
appsem[Ψ] slam(ϕ) s2 = ϕ [·] s2
appsem[Ψ] neut(n) s2 = neut(napp(n , s2))



Evaluation

The semantic function ϕ is defined as follows:

ϕ : < Ψ > (∀ (Ψ′ ∈ neu*). Ψ′ ⇒ sem → sem)

ϕ[Ψ′] s’ = strengthen x from
(eval[Ψ, x:exp , Ψ′] (weaken e[x] with Ψ′) σ′)
where
σ′ : < Ψ, x:exp , Ψ′ > (exp # → sem)
σ′ x = weaken s’ with x
σ′ (y ∈ Ψ) = weaken (σ y) with (x,Ψ′)



Bonus Slides

Deciding Equivalence for the Finite Typed
λ-Calculus



Finite Typed λ-Calculus

Problem: decide equivalence for finite typed λ-calculus.

• Types 0, 1, A× B, A + B, A→ B.

• Main issue: sums as coproducts.

Universal condition on coproducts:

[M/x ]N ≡ case M { inl(y)⇒ [inl(y)/x ]N | inr(z)⇒ [inr(z)/x ]N}

Generalizes Shannon expansion for 2 = 1 + 1:

[M/x ]N ≡ if M then [tt/x ]N else [ff/x ]N

≡ (M ∧ [tt/x ]N) ∨ (¬M ∧ [ff/x ]N)

(basis for (O)BDD-based methods in verification)



Finite Typed λ-Calculus

The decidability is well-known, proved by two main methods:

• Term rewriting [Lindley TLCA 07]: compute canonical form
using several confluent reduction systems.

• Normalization by evaluation [Altenkirch, Dybjer, Scott,
Hofmann, et al]: interpret into model, extract canonical form.

Focusing provides an alternative proof [with Ahmad and Licata]:

• Polarize: Sums are positive, others are negative.

• Standardize: Analyze values of sum types as early as possible,
eg as soon as variable comes into scope.



Finite Typed λ-Calculus

Theorem Two terms are equivalent in the finite typed λ-calculus
iff their polarized, standardized forms are equivalent focused terms.

Equivalence of focused forms is extensional:

v : A+ −→ φ+(v) ≡ ψ+(v) : γ

case(φ+) ≡ case(ψ+) : A+ > γ

Theorem Extensional equality of focused terms is decidable.

• Essentially, only finite many values need be considered.

• Proof computes a generalized BDD for comparison.



Finite Typed λ-Calculus

Compared to rewriting:

• Similarity: purely proof-theoretic (structurally inductive).

• Difference: no reduction involved!

Compared to NBE:

• Similarity: polarized, standardized form is like a “model.”

• Difference: purely proof-theoretic argument.


