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Overview

Goal: datatype mechanism with binding and computation.

• LF-like representations of syntactic objects with binding and
scope.

• ML-like computation by structural induction (modulo
renaming).

• Dependent families of types indexed by such objects.

Applications:

• Security-typed languages based on proof-carrying API’s.

• Mechanized metatheory via total functional programming.



Overview

Main methods: polarization and contextualization.

• Distinguish positive from negative types.

• Manage binding and scope in the types.

Key idea: positive and negative function spaces.

• Negative = computational = admissible.

• Positive = representational = derivable.



Judgements and Evidence

Judgements are forms of assertion.

• e expr, e : τ , etc..

• Defined by a collection of rules.

Evidence for J is a derivation, ∇, composing rules.

• Abstract syntax trees, typing derivations, etc..

• Write ∇ : J to mean that ∇ is a derivation of J.



Derivability

The derivability judgement J1 ` J2 states that J2 is derivable from
the assumption J1.

• Assumption is a local axiom.

• Evidence is a pattern, a.∇, consisting of evidence ∇ : J2

involving the parameter a : J1.

• Primitive rules are just assumed evidence for derivabilities.

In general, a rule
J1 . . . Jn

J

is derivable iff J1, . . . , Jn ` J.



Iterated Derivability

Left-iterated derivability (J1 ` J2) ` J states that J is derivable
from rule J1 ` J2.

• cf. Schroeder-Heister’s definitional reflection

• Gives rise to higher-order rules (cf. LF representations).

• Evidence is a pattern with a parameter corresponding to the
assumed rule.

Right-iterated derivability J1 ` (J2 ` J3) means J1, J2 ` J3, with
multiple assumptions.



Iterated Derivability

Higher-order rules:
A true ` B true

A ⊃ B true

Expressed as a derivability,

(A true ` B true) ` A ⊃ B true

Derivable rules:

(A true ` B true) ` (A ∧ C true ` B ∧ C true)



Admissibility

The admissibility judgement J1 |= J2 states that evidence for J1

may be transformed into evidence for J2.

• Evidence is any (computable) function sending any ∇1 : J1 to
some ∇2 : J2.

• Typically defined by pattern matching against derivations
∇1 : J1 to obtain ∇2 : J2 in each case.

A rule
J1 . . . Jn

J

is admissible iff J1, . . . , Jn |= J.



Admissibility

Admissibility, being implication, is structural:

• Reflexivity: J |= J.

• Transitivity: if J1 |= J2 and J2 |= J3, then J1 |= J3.

• Weakening: if J1 |= J, then J1, J2 |= J.

• Contraction: if J1, J1 |= J, then J1 |= J.

• Exchange: if J1, J2 |= J, then J2, J1 |= J.

These properties may be phrased as iterated admissibilities, e.g.,

(J1 |= J) |= (J1, J2 |= J).



Admissibility

Admissibilities J1 |= J2 are not stable under rule extension!

• If J1 |= J2, then J |= (J1 |= J2), but not J ` (J1 |= J2).

• Why? Admissibility considers all derivations of antecedent.

Adding new rules disrupts evidence for admissibility.

• (IL ` ∃x .φ true) |= (IL ` φ(t) true) for some term t.

• But this fails for CL = IL + LEM.

Admissibilities circumscribe the evidence for a judgement.



Admissibility

If all primitive rules are pure, then derivability is structural.

• Reflexivity: J ` J.

• Transitivity: (J1 ` J2, J2 ` J3) |= (J1 ` J3).

• Weakening: (J1 ` J) |= (J1, J2 ` J).

• Contraction: (J1, J1 ` J) |= (J1 ` J).

• Exchange: (J1, J2 ` J) |= (J2, J1 ` J).

Pure rules are those without side conditions, i.e., without
constraints on applicability.



Weakening

Evidence for weakening transforms derivations rule-by-rule.

Γ ` J1 . . . Γ ` Jn

Γ ` J

That is, we pattern match on the last rule of ∇ : Γ ` J, and
recursively transform premises and apply the same rule.

The validity of this argument depends on purity! The rule
continues to apply after transformation of premises.



Weakening

Evidence for weakening transforms derivations rule-by-rule.

Γ Γ′ ` J1 . . . Γ Γ′ ` Jn

Γ Γ′ ` J

That is, we pattern match on the last rule of ∇ : Γ ` J, and
recursively transform premises and apply the same rule.

The validity of this argument depends on purity! The rule
continues to apply after transformation of premises.



Side Conditions

Side conditions on rules may be seen as admissibility premises.

• ¬J is just J |= #.

• Need not be negations, but this is a common case.

Side conditions may disrupt structural properties, e.g.,

Γ ` J1 . . . Γ ` Jn Γ ` ¬J
Γ ` J



Side Conditions

Side conditions on rules may be seen as admissibility premises.

• ¬J is just J |= #.

• Need not be negations, but this is a common case.

Side conditions may disrupt structural properties, e.g.,

Γ Γ′ ` J1 . . . Γ Γ′ ` Jn Γ Γ′ 6` ¬J

Γ Γ′ ` J



Derivability and Admissibility

Two notions of entailment:

• Derivability: introduced by patterns, eliminated by pattern
matching.

• Admissibility: introduced by any computable transformation
and eliminated by application.

Intermixing these leads to a general theory of rules that accounts
for side conditions, and allows us to express meta-theoretic
properties such as admissibility and derivability of rules.

It also generalizes higher-order abstract syntax, and typical
syntactic operations such as substitution.



Polarized Types

Two views of the meaning of a logical connective:

• Verificationist: defined by introduction; elimination inverts
introduction.

• Pragmatist: defined by elimination; introduction inverts
elimination.

Operationally, these determine different connectives:

• Positive, or eager: values are compositions of patterns;
elimination by pattern matching.

• Negative, or lazy: experiments are compositions of patterns;
introduction by pattern matching.



Polarized Types

Positive type: natural numbers.

• Introduction: z, s(z), s(s(z)), . . . .

• Elimination:

φ s.t.


z 7→ e0

s(z) 7→ e1

s(s(z)) 7→ e2

. . .

Crucially, elimination must cover all values!



Polarized Types

Negative type: infinite streams.

• Elimination: hd, tl.

• Introduction:

σ s.t.


hd 7→ e0

tl; hd 7→ e1

tl; tl; hd 7→ e2

. . .

Crucially, introduction must cover all experiments!



Polarized Types

Computational (ML, Coq) functions are negative:

• Introduced by defining response to an argument, not by
internal structure.

• Eliminated by application to an argument value.

Computational functions are open-ended:

• Any mapping from domain to range is acceptable.

• Pragmatically, allows us to import functions from other
systems.



Polarized Types

Representational (LF) functions are positive:

• Introduced by compositions of constructors, starting with
variables.

• Eliminated by pattern matching, not application.

Representational functions are closed-ended:

• Cannot enrich with operations that analyze form of input.

• Essentially a value with (some/any) indeterminate.



Functions and Entailments

Positive (representational) functions witness derivability.

• Parameters are “fresh” axioms/assumptions.

• Body is a derivation schema with distinguished parameters.

• Generalizes higher-order abstract syntax.

Negative (computational) functions witness admissibility.

• Analyzes all possible derivations of antecedent.

• Computes a derivation for each possible argument.

• Captures meta-reasoning and meta-computation.



Types for Binding and Computation

Focusing (Andreoli, Girard, Zeilberger)

• Patterns mediate between focus and inversion.

• Positive: (right) focus = values, (left) inversion = matching.

• Negative: (left) focus = matching, (right) inversion = values.

Contextual Modality (Nanevski and Pientka)

• Object M : 〈Ψ〉A has type A with parameters in Ψ.

• Supports pronominal account of derivability.
• Parameters are pronouns, not nouns.
• Specializes to binding and scope of identifiers.

• cf. pre-sheaf models of Plotkin, Tiuri, Fiori.



Types for Binding and Computation

Type structure (simplified):

Positive A+ ::= ↓ A- | A+

1 ⊗ A+

2 | A+

1 ⊕ A+

2 | R+ ⇒ A+ | D

Negative A- ::= ↑ A+ | A+

1 → A-
2

Rules R ::= D ⇐ A+

Extensible pronominal data types, D, defined by rules.

• Higher-order rules: D ⇐ (A+

1 ⇒ A+

2).

• Side conditions on rules: D ⇐↓ (↑ A+

1 → A+

2).



Types for Binding and Computation

Rule contexts: Ψ = u1 : R1, . . . , un : Rn.

• Each rule is represented by a parameter, ui .

• Order matters: Ψ ≈ R1× · · · ×Rn (names are surface syntax.)

• Not necessarily structural (because rules need not be pure).

Judgements (simplified):

• Positive values: Γ ` v + : 〈Ψ〉A+.

• Positive matches: Γ ` k+ : 〈Ψ0〉A+ > 〈Ψ1〉B-.

• Neutral: Γ ` e : 〈Ψ〉A.



Pronominal Data Types

D introduction: create an instance of a rule.

u:D⇐A+ ∈ Ψ Γ ` v + : 〈Ψ〉A+

Γ ` u(v +) : 〈Ψ〉D

D elimination: pattern matching on all rules for D.

Γ ` e : 〈Ψ〉D
(u:D⇐A+ ∈ Ψ) −→ Γ, x : 〈Ψ〉A+ ` e ′ : 〈Ψ′〉C

Γ ` case e { . . . u(x) 7→ e ′ . . . } : 〈Ψ′〉C



Positive Functions

Positive functions extend the rule context:

Γ ` v + : 〈Ψ, u : R〉A+

Γ ` λ+u.v + : R ⇒ 〈Ψ〉A+

Positive functions are eliminated by matching:

Γ ` e : 〈Ψ〉R ⇒ A+ Γ, x : 〈Ψ, u : R〉A+ ` e ′ : 〈Ψ′〉C
Γ ` case e {λ+u.x [u]⇒ e ′ } : 〈Ψ′〉C

NB: parameters may or may not induce substitution functions!



Contextual Hypotheses

Variables in context are instantiated on use:

Ψ′ ` θ : Ψ
Γ, x : 〈Ψ〉A ` x [θ] : 〈Ψ′〉A

Officially, Ψ is an ordered product: Ψ = Ψ′, θ = id.

External syntax supports renamings of parameters (exchange,
contraction) witnessed by θ.



Structural Properties

Structurality of Ψ is not assured (side conditions disrupt it).

• May not validate weakening = adding a new rule.

• May not validate substitution = deriving a rule.

• Always supports exchange (swapping of parameters).

Structurality must be programmed wherever needed.

• When rules are pure: generically definable.

• When subordination ensures that parameter is irrelevant.

• Admissibility witnessed by computational (negative) functions.



Subordination

A type A+ is subordinate to a type B+ (modulo Ψ) iff a value of
type A may be used to construct a value of type B.

For example, nat might be subordinate to exp, but not
vice versa.

If A is not subordinate to B, then weakening by A cannot disrupt a
side condtion that circumscribes B.

For example, a computational function on nat cannot be
affected by adding parameters of type exp, but would be
disrupted by a parameter of type nat.



Example

A simple expression language:

e ::= num[k] | e1 �f e2 | let x = e1 in e2

Represented by rule context Ψexp:

zero : nat

succ : nat⇐ nat

num : nat⇐ exp

binop : exp⇐ exp⇐ (nat⊗ nat→ nat)⇐ exp

let : exp⇐ exp⇐ (exp⇒ exp)



Example

We wish to define an evaluator for expressions:

eval : 〈Ψexp〉(exp→ nat)

Match on argument x of type 〈Ψexp〉exp:

num n 7−→ n

binop e1 f e2 7−→ f (eval e1) (eval e2)

let e1 (λu.e2[u]) 7−→ eval(subst (λu.e2[u]) e1)



Example

The function subst witnesses admissibility of transitivity.

• Realizing Ψexp, u : exp in Ψ.

• Definable because exp not subordinate to nat.

By contrast we cannot substitute for, say, z in an exp!

• Binary operation f analyzes each value of type nat.

• Cannot expect f to be stable under substitution.



Normalization by Evaluation

Define context Ψnbe for syntax and semantics.

app : exp ⇐ (exp ⊗ exp)
lam : exp ⇐ (exp ⇒ exp)

napp : neu ⇐ (neu ⊗ sem)
neut : sem ⇐ neu
slam : sem ⇐ (∀ (Ψ ∈ neu*). Ψ ⇒ sem → sem)

In what follows Ψ consists of parameters of types exp and neu.



Normalization by Evaluation

The function eval has type

〈Ψnbe〉 ∀ Ψ Ψ ⇒ (exp → (exp # → sem) → sem)

Spelled out, this means that

• in context Ψnbe . . .

• in any extension by neu and exp parameters . . .

• given an expression and . . .

• a mapping of expr variables to semantic values . . .

• eval yields a semantic value.
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Evaluation

eval : ∀ Ψ. Ψ ⇒ (exp → (exp # → sem) → sem)
eval[Ψ] x σ = σ x
eval[Ψ] app(e1,e2) σ = appsem (eval[Ψ] e1 σ)

(eval[Ψ] e2 σ)
eval[Ψ] lam(λx.e[x]) σ = slam ϕ where ϕ = . . .

appsem : ∀ Ψ. Ψ ⇒ (sem → sem → sem)
appsem[Ψ] slam(ϕ) s2 = ϕ [·] s2
appsem[Ψ] neut(n) s2 = neut(napp(n , s2))



Evaluation

The semantic function ϕ is defined as follows:

ϕ : < Ψ > (∀ (Ψ′ ∈ neu*). Ψ′ ⇒ sem → sem)

ϕ[Ψ′] s’ = strengthen x from
(eval[Ψ, x:exp , Ψ′] (weaken e[x] with Ψ′) σ′)
where
σ′ : < Ψ, x:exp , Ψ′ > (exp # → sem)
σ′ x = weaken s’ with x
σ′ (y ∈ Ψ) = weaken (σ y) with (x,Ψ′)



Evaluation

The definition of ϕ uses auxiliaries strengthen and weaken.

• weaken is a computational function that weakens with respect
to a fresh parameter of type exp.

• strengthen uses subordination to remove parameter of type
exp in result of type sem.

These are type-generic programs that are generated automatically,
when they exist.



Reification

reify : ∀ Ψ. Ψ ⇒ (sem → (exp # → neu #) → exp)

reify[Ψ] neut(n) σ = reifyn[Ψ] n σ
reify[Ψ] slam(ϕ) σ =
lam (λx.

strengthen y from
(reify[Ψ, y:neu , x:exp]
(weaken (ϕ [y:neu] neut(y)) with x)
σ′))

where
σ′ : < Ψ, y:neu , x:exp > exp # -> neu #
σ′ x = y
σ′ (x’ ∈ Ψ′) = weaken (σ x) with [x , y]



Semantic Application

reifyn : ∀ Ψ. Ψ ⇒ (neu → (exp # → neu #) → exp)

reifyn[Ψ] x σ = σ x
reifyn[Ψ] napp(n,s) σ = napp (reifyn[Ψ] n σ ,

reify [Ψ] s σ)



Summary

A pronominal approach to binding and computation:

• Names are pronouns (references), not nouns (objects).

• Avoids reliance on state, or associated logics of purity.

• Captures central concepts of judgements-as-types, including
higher-order abstract syntax.

• Admits precise types for admissibilities.

But there is a cost for expressiveness and generality:

• If impurities are admitted, admissibilities are not assured.

• Expressing more precise types takes real work.

• Extension to dependent computation and representation
types?



Ongoing and Future Work

Implementation.

• Implemented as a universe within Agda (see my web page).

• Designing an external language with elaboration for named
form.

Positive Dependent Types [LH PLPV09]

• Admit Πx : A+

1 .A
-
2 (negative) and Σx : A+

1 .A
+

2 (positive).

• Avoids testing equivalence of negative values.

• Relies on simultaneous induction-recursion.

Richer Rule Formalisms

• Pure dependent LF, without side conditions.

• Impure LF: how to intermix dependency and side conditions?



Thank You!

Questions?


