
Enforcing Determinism for the Consistent Replication

of Multithreaded CORBA Applications �

P. Narasimhan, L. E. Moser, P. M. Melliar-Smith

Department of Electrical and Computer Engineering

University of California, Santa Barbara, CA 93106

priya@alpha.ece.ucsb.edu, moser@ece.ucsb.edu, pmms@ece.ucsb.edu

Abstract

In CORBA-based applications that depend on object

replication for fault tolerance, inconsistencies in the

states of the replicas of an object can arise when con-

current threads within those replicas perform updates

in di�erent orders. By imposing a single logical thread

of control on every replicated multithreaded CORBA

client or server object, and by providing deterministic

scheduling of threads and operations across the replicas

of each object, the Eternal system achieves consistent

object replication. The Eternal system does this trans-

parently, with no modi�cation to the application, the

ORB, or the concurrency model employed by the ORB.

1 Introduction

Distributed object systems, based on standards such
as the Object Management Group's Common Ob-
ject Request Broker Architecture (CORBA) [9], pro-
vide applications with valuable features such as
language transparency, interoperability and location
transparency. Unfortunately, most distributed object
standards, including CORBA, make no provision for
other desirable features, such as fault tolerance, that
current and future CORBA-based applications will
need. The Object Management Group (OMG) has rec-
ognized the need to provide fault tolerance for CORBA
applications by issuing a Request for Proposals (RFP)
[10] for fault-tolerant CORBA.

A major requirement of the OMG's RFP is that
strong replica consistency must be maintained as op-
erations are performed that change the states of the
replicas. However, strong replica consistency requires
that the behavior of the application objects is deter-
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ministic. Unfortunately, many practical CORBA ap-
plications use nondeterministic mechanisms such as lo-
cal timers, processor-speci�c functions and, in partic-
ular, multithreading.

The Eternal system [7] addresses this challenge in
its provision of fault tolerance for CORBA applica-
tions, while ensuring low overheads, transparency and
interoperability. To ensure strong replica consistency,
the Eternal system exploits reliable totally ordered
multicasts for the communication of operations be-
tween replicated objects, and implements mechanisms
for the detection and suppression of duplicate oper-
ations and the transfer of state to new, recovering
and backup replicas. This paper focuses on the mech-
anisms that the Eternal system employs to guaran-
tee consistent replication in the face of one speci�c
source of nondeterminism, namely, multithreading in
the ORB or the application.

2 Replicating Multithreaded

Applications

Many commercial ORBs are multithreaded, and mul-
tithreading can yield substantial performance advan-
tages. Unfortunately, the speci�cation of multithread-
ing in the CORBA 2.2 standard [9] does not place any
guarantee on the order of operations dispatched by
a multithreaded ORB. In particular, the speci�cation
of the Portable Object Adapter (POA), which is a key
component of the CORBA standard, provides no guar-
antee about how the ORB or the POA dispatches re-
quests across threads. The ORB may dispatch several
requests for the same object within multiple threads
at the same time.

In addition to ORB-level threads, the CORBA ap-
plication may itself be multithreaded, with the thread
scheduling having been determined by the application
programmer. The application programmer must en-
sure correct sequencing of operations and must prevent



thread hazards. Careful application programming can
ensure thread-safe operations within a single replica of
an object; however, it does not guarantee that threads
and operations are dispatched in the same order across
all of the replicas of the object. Making the application
programmer responsible for concurrency control and
ordering of dispatched operations in replicated objects
is unacceptable for maintaining strong replica consis-
tency in a fault-tolerant system.

Several di�erent concurrency models [13] are sup-
ported by current commercial ORBs. These include
thread-per-request, where one thread is spawned for
each new invocation on an object, and thread-per-
object, where a single thread executes all invocations
on an object. Most practical CORBA applications
consist of servers that contain multiple objects, each
having possibly multiple threads. Objects that are co-
located within the same server process may access and
update shared data; thus, irrespective of the threading
model used by the ORB, multiple threads may exist
within each server. Because a server may itself assume
the role of a client, we do not distinguish between the
problem of multithreading for clients and servers.

We use the term MT-domain to refer to any
CORBA client or server that supports multiple
(application-level or ORB-level) threads that may
access shared data and that contains one or more
CORBA objects. The MT-domain abstraction is in-
dependent of the concurrency model of the ORB, the
role of the MT-domain as a client or server, and the
commercial ORB that hosts the MT-domain.

In Sections 2.1 and 2.2, we provide examples that il-
lustrate how replica inconsistency can arise for active
and passive replication of MT-domains. We assume
that all of the mechanisms that guarantee replica con-
sistency for single-threaded objects are present, i.e.,
messages are delivered to the ORB in a reliable totally
ordered sequence, duplicate operations are detected
and suppressed, and state transfers are provided for
recovering replicas. While these mechanisms su�ce to
guarantee replica consistency, they serve only to facil-
itate, but not to guarantee, replica consistency when
either the ORB or the application is multithreaded.
In particular, reliable totally ordered multicasts en-
sure only that the ORBs that host the various replicas
receive the same messages in the same order. They
do not guarantee that the ORBs will dispatch these
incoming messages onto the threads of the replicas in
the same order.

We assume further that other sources of nondeter-
minism, e.g., system calls (such as local timers) that
return processor-speci�c information, are handled by
other mechanisms. We also assume that all replicas of

the application are located on the same type of plat-
form, �.e., same vendor's ORB, same operating sys-
tem, same type of workstation (same processing speed,
same amount of memory, etc). In addition, we assume
deterministic behavior of the operating system. Thus,
any replica inconsistency that arises can be attributed
to the multithreading of the ORB or the application.

2.1 Active Replication

For active replication, strong replica consistency
means that, at the end of each operation invoked on
the replicas, each of the replicas of an object have the
same state. The example shown in Figure 1 illustrates
the problem of replica inconsistency when the only
support for consistent replication is that provided for
single-threaded ORBs.

In the �gure R1 and R2 are active replicas of the
same MT-domain. The ORB at each replica receives
messages in the same order, but dispatches two threads
T1 and T2 to perform operations on the replicas. The
two threads are simultaneously active within each
replica, and can access and update shared data. Sup-
pose that threads T1 and T2 issue update operations
A and B, respectively, on the shared data and that
operation B (A) is executed before operation A (B)
in replica R1 (R2). Even if the MT-domain is pro-
grammed to avoid race conditions and other thread
hazards, the order of operations in the two replicas of
the MT-domain may di�er and, thus, their states may
be inconsistent at the end of the update operations.

Replica inconsistency can also arise when the ORB
initially dispatches only a single thread, which later
spawns other threads within the same replica.

2.2 Passive Replication

For passive (primary-backup) replication, strong
replica consistency means that, at the end of each
state transfer, each of the replicas of an object have
the same state. The example shown in Figure 2 illus-
trates the problem of replica inconsistency for passive
replication.

In the �gure MT-domain C is passively replicated,
with primary replica C2 and backup replica C1. Ob-
jects A, B, D and E (not shown) with which C inter-
acts are not necessarily multithreaded or replicated.
The example focusses on the passive replication of MT-
domain C, and how C's multithreading results in the
inconsistency of its replicas.

The invocation IAC (IBC ) of object A (B) on MT-
domain C requires thread T1 (T2) to be dispatched.
If thread T1 (T2) is dispatched, MT-domain C will is-
sue the nested invocation ICE (ICD) to object E (D).
Thus, MT-domainC invokes two di�erent nested oper-
ations through its two threads, and must obtain results
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Figure 1: Inconsistency with active replication of multithreaded objects.

from both operations. Consider the following sequence
shown in Figure 2:

1. The primary replica C2 is initially operational.
The ORB hosting C2 dispatches thread T2 to han-
dle invocation IBC �rst.

2. Thread T2 issues a nested invocation ICD on ob-
ject D.

3. The primary replica fails before handling invoca-
tion IAC . The backup replica C1 becomes the new
primary replica for MT-domain C.

4. The ORB hosting the new primary replica C1 dis-
patches thread T1 to handle invocation IAC �rst.

5. Thread T1 issues a nested invocation ICE on ob-
ject E.

6. Before the new primary's ORB handles invoca-
tion IBC , object D returns the response RCD to
the old primary's nested invocation ICD. The re-
ceiving ORB delivers this response to C1, which
is unable to handle this response to the nested in-
vocation (ICD) that it has no knowledge of ever
having issued.

The inconsistency arises precisely because of the non-
deterministic behavior of multithreaded ORBs, and
the lack of speci�cation of the order of dispatch of the
operations that such ORBs receive.

3 Enforcing Determinism

A MT-domain is the basic unit of replication for mul-
tithreaded applications in the Eternal system. To pre-

serve replica consistency for MT-domains, the Eter-
nal system provides mechanisms that govern the order
in which the threads (and operations) are dispatched
within each replica of a MT-domain, over and above
the total order in which the messages containing the
operations are delivered to the ORB.

The Eternal system enforces deterministic behavior
within a MT-domain by allowing only a single logical

thread of control, at any point in time, within each
replica of the MT-domain. Although multiple threads
may exist in a MT-domain, all of themmust be related
to (and required for the completion of) the single oper-
ation that \holds" the logical thread-of-control. Fur-
thermore, at most one of these threads can be actively
executing; all of the other threads must be suspended
or awaiting a response.

The Eternal system controls the dispatching of
threads and operations within every replicated MT-
domain, transparently both to the objects and threads
within the MT-domain, and to the multithreaded
ORB that hosts the MT-domain. To achieve this,
the Eternal system employs a deterministic operation

scheduler� that is inserted into the address space of ev-
ery replica of a MT-domain, and that maps incoming
invocations to the thread-of-control within the replica,
or enqueues unrelated invocations for later dispatch.

The scheduler dictates the creation, activation,
deactivation and destruction of threads, within the
replica of a MT-domain, as required for the execu-

�The scheduling of operations for replica consistency is orthog-
onal to the real-time scheduling of operations. The operation
scheduler described here does not factor in any considerations
for real-time operation.
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Figure 2: Inconsistency with passive replication of multithreaded objects when (a) the primary replica is
initially operational, and (b) the primary later fails and the backup replica becomes the new primary replica.

tion of the current operation \holding" the logical
thread-of-control. The scheduler is inserted into a po-
sition such that it can override any thread or opera-
tion scheduling performed by either the nondetermin-
istic multithreaded ORB within the replica, or by the
replica itself.

Operations are mapped identically onto the logical
thread-of-control at all of the replicas of a MT-domain,
thereby ensuring that the same operation \holds" the
thread-of-control at each replica at any logical point
in time. To enable this, the Eternal system ensures
that the scheduler at each replica of a MT-domain re-
ceives the same sequence of totally ordered messages
containing invocations and responses destined for the
MT-domain. Based on this incoming sequence of mes-
sages, the scheduler at each replica decides on the im-
mediate delivery, or the delayed delivery, of the mes-
sages to that replica. At each replica of a MT-domain,
the scheduler's decisions are identical and, thus, op-
erations and threads within the MT-domain are dis-
patched identically at each replica.

4 Scheduling for Consistency

While the MT-domain model may seem somewhat re-
strictive in terms of the e�ective concurrency achieved
in the application, those restrictions are necessary
to achieve replica consistency for replicated multi-
threaded CORBA applications. To ensure a single
logical thread-of-control within the MT-domain, the
scheduler may delay or reschedule invocations and re-
sponses on a MT-domain. This is necessary because

another operation can assume the MT-domain's logi-
cal thread-of-control only when the current operation
within the MT-domain completes.

Thus, the scheduler enqueues, in the order of their
arrival, all incoming invocations and responses that
are unrelated to the current operation or the logical
thread-of-control. The next operation to be sched-
uled on the MT-domain, upon release of the thread-of-
control, is the �rst operation that has been enqueued
or, in the absence of enqueued operations, the next
operation that the scheduler receives.

Figure 3 shows a replica of a MT-domain, along
with its operation scheduler, and the sequence of ac-
tions of the MT-domain's scheduler for the given to-
tally ordered messages. All of the replicas of the MT-
domain are forced to behave identically, as the example
illustrates.

The MT-domain in this example consists of two ob-
jects A and B, each capable of supporting a thread.
Invocations Ai, Bi and Ci are destined for objects A,
B and C, respectively (object C is in some other MT-
domain not shown in the �gure). The invocation Ai
gives rise to a nested invocation Ci; the invocation Bi
is independent of both Ai and Ci.

At the start of the sequence of actions in Fig-
ure 3(a), there is no operation executing in the replica
of the MT-domain, and the thread-of-control is free to
be assumed by the next operation. Thus, the oper-
ation scheduler delivers the invocation Ai (which oc-
curs �rst in the total order of messages), leading to a
thread executing within object A. The scheduler as-
signs the MT-domain's thread-of-control to the logical
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Figure 3: Sequence of actions of the operation scheduler at a replica of a MT-domain.

operation represented by the invocation Ai until Ai
completes.

The invocation Ai on object A leads to the subse-
quent invocation Ci on object C, and Ai can complete
only when the response Cr to the invocation Ci is re-
turned to object A. Because the thread-of-control has
been assigned to Ai, the scheduler delivers to the MT-
domain only those incoming invocations and responses
that correspond to Ai. In this case, the only message
in the total order that is related to Ai is Cr. Note
that the invocation Bi is independent of Ai. Thus,
although Bi has been received by the scheduler ahead
of Cr in the total order of messages, it is not delivered
to its target object B until the thread-of-control is re-
leased by Ai. To deliver only those invocations related
to the thread-of-control, the scheduler requires some
means of recognizing, and relating, the operations con-
tained in the totally ordered messages. Identi�ers for
associating operations with the thread-of-control are
discussed in Section 4.2.

Figure 3(b) shows the receipt of the response Cr by
the MT-domain, and its delivery to object A, when the
scheduler determines that its delivery is appropriate.

After processing the response Cr, object A com-
pletes the invocation Ai and the thread-of-control
again becomes available. The scheduler also performs
garbage collection of the threads that were used by the
thread-of-control. The MT-domain's scheduler then

reassigns the thread-of-control to the next operation,
which is the invocation Bi. The MT-domain's sched-
uler then delivers the invocation Bi, leading to a new
thread of execution within the target object B, as
shown in Figure 3(c).

This delaying of invocation Bi in favor of the re-
sponse Cr (although Bi precedes Cr in the total order
of operations) does not itself introduce any inconsis-
tency between the replicas of the MT-domain. The
reason is that the operation scheduler at each of the
replicas of the MT-domain arrives at the same schedul-
ing decision regarding the delivery of Cr before Bi.

Replica consistency is thus maintained as a result
of the deterministic behavior across all of the replicas
of a MT-domain through the totally ordered messages
that they receive, as well as the deterministic behav-
ior within each replica of the MT-domain through the
identical scheduling of distinct operations onto a single
thread-of-control.

Replica determinism, unfortunately but inevitably,
reduces the degree of concurrency within the applica-
tion. However, if objects are indeed independent of
each other, and do not share data, they can be as-
signed to di�erent processes and Eternal's operation
scheduler will schedule them concurrently without re-
striction. The memory protection between processes,
provided by the operating system, ensures that the
objects do not share data and are indeed independent.
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4.1 Reentrant Operations
In the example of Figure 3, the operation Ai was not
reentrant on the MT-domain because the execution of
Ai did not lead to further invocations on the sameMT-
domain. A reentrant operation may lead to multiple
nested invocations on the same MT-domain, each of
which must be delivered and executed in order for the
operation to complete. Thus, for such an operation,
the single logical thread-of-control is realized through
multiple threads within the MT-domain, at most one
of which is actively executing, while the others are
suspended or awaiting a response.

Figure 4 shows the interaction between a replicated
MT-domain X and a replicated MT-domain Y . Here,
invocation I1 on object A, when dispatched to the log-
ical thread-of-control in X, results in the invocation I2
of object C in the MT-domain Y . The invocation I2
leads to a further nested invocation I3 on object B

within the MT-domain X. I1 requires that I2 com-
pletes, and I2 requires that I3 completes. Thus, the
invocation I3 must be allowed to proceed inside every
replica of X and return a response to object C within
every replica of Y . Because the scheduler ensures iden-
tical behavior at all of the replicas of a MT-domain, it
su�ces to consider replicas X1 and Y1 (shown in the
�gure) of the MT-domains X and Y , respectively.

To permit a second invocation I3 on a MT-domain
X1 that already has the invocation I1 pending a re-
sponse, the scheduler for X1 needs to verify that the
second invocation is a descendant of the �rst (parent)
operation and that the parent operation is suspended.
A descendant of a particular parent operation is an
invocation that arises from the execution of the par-
ent operation, and that must be allowed to execute for
the parent operation to complete. A descendant invo-
cation may be reentrant. In this example, invocations



I2 and I3 are descendants of the parent invocation I1,
with I3 being reentrant on the MT-domain X1.

After the scheduler for X1 determines that I3 is
a descendant of I1 and that the thread for I1 is sus-
pended, awaiting a response (in this case from object C
in Y1), it proceeds to activate a thread to handle invo-
cation I3. If the thread executing I1 is not suspended
before I3 is allowed to start executing, the states of
the objects within X1 may become inconsistent due to
the multiple threads being active. The logical thread-
of-control within X1 is still associated with the �rst
invocation I1 because all other operations within the
concurrency domain are direct descendants of I1. Once
the invocation I3 completes and B returns a response
to the invoking object C, the scheduler for X1 disposes
of the thread for I3.

A reentrant descendant invocation on a MT-domain
can generate further reentrant descendant invocations
that are also reentrant on the sameMT-domain. Thus,
the MT-domain scheduler must maintain a stack of
invocations dispatched in the MT-domain. Every
reentrant descendant invocation is pushed onto the
stack when it is dispatched onto the MT-domain, and
popped o� the stack when it completes.

4.2 Scheduling Identi�ers

To handle nested reentrant operations, the operation
scheduler uses scheduling identi�ers that allow the
scheduler to associate parent and descendant opera-
tions at the MT-domain level. These scheduling iden-
ti�ers are internal to, and examined by, Eternal's op-
eration schedulers, and are never seen by the CORBA
application or the ORB.

At the point that it dispatches an invocation Iq onto
the replica of the MT-domain that it controls, the op-
eration scheduler assigns Iq the scheduling identi�er
sqsp, where sq is the sequence number of the message
containing Iq, and sp is the scheduling identi�er of the
parent, if any, of Iq.

For the example of Figure 4, the MT-domain sched-
ulers assign the identi�ers s1, s2s1 and s3s2s1 to the
invocations I1, I2 and I3, respectively. In this case, s1
and s2 (s3) are (is) uniquely assigned by the scheduler
at every replica of the MT-domain X1 (Y1). Further-
more, the same unique identi�ers are generated within
every replica of the MT-domainX1 (Y1) because these
identi�ers are derived, in an identical manner, from the
totally ordered messages that the operation scheduler
at each replica receives.

To detect a reentrant incoming invocation, the op-
eration scheduler uses the scheduling identi�er to de-
termine if the invocation is a descendant of any opera-
tion that has been invoked, and is awaiting a response

within the MT-domain. For instance, the scheduler
at X1 detects that invocation I3 is a descendant of I1
due to the presence of I1's identi�er s1 in I3's identi-
�er s3s2s1. Once the scheduler veri�es that an opera-
tion is indeed a descendant, it waits for the currently
executing thread-of-control within the MT-domain to
suspend itself, and then dispatches the descendant op-
eration.

4.3 Scheduling Algorithm

To dispatch an operation to the thread-of-control, or
to delay an operation that may lead to inconsistency,
each operation scheduler for a MT-domain replica
maintains:

� The scheduling identi�er sD , and semantics (syn-
chronous or asynchronous), of the current opera-
tion ID being executed by the logical thread-of-
control TD within the MT-domain. The schedul-
ing identi�er sD is used by the operation scheduler
to detect reentrant invocations. The scheduler
compares the scheduling identifer of every incom-
ing operation with sD to determine any descen-
dants of ID . If an incoming message is a descen-
dant of ID, or a response to an invocation issued
by the MT-domain, the operation scheduler dis-
patches it when all of the threads within the MT-
domain are suspended, or awaiting a response.

� A dispatch queue Qop of operations (invocations,
responses and state transfer messages) waiting to
be assigned to the thread of control when it be-
comes available. When the current operation ID
completes, the operation scheduler can dispatch a
new operation from Qop. Operations that are not
related to the thread-of-control in the MT-domain
are enqueued in the total order in which the op-
eration scheduler receives them. Operations that
are descendants of ID are scheduled for execution,
in the order of their arrival, ahead of all operations
that are not descendants of ID .

� A stack of the reentrant descendant operations
that have already been dispatched onto threads
within the MT-domain, and are awaiting re-
sponses. When the thread-of-control becomes
available, the stack is empty. The �rst operation
ID to be pushed onto the stack is the one that
assumes the thread-of-control TD . Subsequently,
descendants of ID that are reentrant on the MT-
domain are also pushed onto the stack. The in-
vocation on top of the stack is removed from the
stack as soon as it completes, and an invocation is
pushed onto the stack as soon as it is dispatched
to a thread within the MT-domain.



switch (Reason for Activation)

== The thread-of-control for the MT-domain is

== available to be assigned to a new operation.

case THREAD OF CONTROL RELEASED:
if (operation queue Qop is not empty)
ID = operation at the head of Qop

sD = scheduling identi�er for ID
if (thread pool Qthr is empty)
Create new threads into Qthr

endif

TD = �rst available thread in Qthr

Dispatch operation ID onto the thread TD
Push ID onto stack of reentrant descendant invocations
endif

return

endcase

== A new operation intended for the MT-domain is

== delivered in the totally ordered messages.

case INCOMING INVOCATION OR RESPONSE:
Insert incoming message at the end of Qop

return

endcase

== The thread-of-control for the MT-domain is

== suspended on the operation ID. In addition to TD,

== numDesc threads could be suspended due to incomplete

== reentrant descendant operations of ID. All of these

== threads are awaiting responses.

case THREAD OF CONTROL SUSPENDED:
if (dispatch queue Qop is not empty)
if (dispatch queue Qop has descendants of ID)
ITop = reentrant descendant at the top of the stack
Increment numDesc
InumDesc = �rst enqueued descendant of ITop in Qop

if (InumDesc completes operation ITop)
Remove ITop from the stack of operations
else

Push InumDesc onto the stack of operations
endif

inumDesc = scheduling identi�er for InumDesc

if (thread pool Qthr is empty)
Create new threads into Qthr

endif

TnumDesc = �rst available thread in Qthr

Dispatch operation InumDesc onto thread TnumDesc

endif

endif

return

endcase

endswitch

Figure 5: Algorithm executed by the operation
scheduler each time it is activated. The operation
scheduler is associated with a MT-domain D, whose
logical thread-of-control TD executes the operation
ID with scheduling identi�er sD.

� A thread pool Qthr of pre-spawned threads to
avoid the overhead of thread creation with every
new dispatch of an operation to a thread. This
thread pool is used purely for e�ciency, rather
than for correctness.

The operation scheduler at every replica of a MT-
domain executes the deterministic algorithm, shown in
Figure 5, to schedule operations within the replica that
it controls. The execution of this algorithm is triggered
by the occurrence of any of the following events:

� The release of the MT-domain's thread-of-control
when the current operation completes, allowing
the next operation to be dispatched

� The suspension of all threads within the MT-
domain, in anticipation of receiving a response,
allowing the delivery of a received response, or a
new reentrant descendant invocation

� The delivery of a totally ordered invocation or re-
sponse message to the operation scheduler, requir-
ing the scheduler to decide if the message should
be enqueued, scheduled or dispatched.

The scheduling algorithm, as well as the enforce-
ment of the thread-of-control, are independent of
the speci�c concurrency model (thread-per-request,
thread-per-object, etc) adopted by the ORB that hosts
the MT-domain.

5 Implementation in Eternal

As shown in Figure 6, the Eternal system transpar-
ently replicates the objects, and the MT-domains, of
the application. For every replica of a MT-domain
or an object, the Interceptor transparently captures
its IIOP invocation and response messages, which
were originally destined for TCP/IP, and diverts them
instead to the Replication Manager. The Replica-
tion Manager performs the encapsulation (retrieval)
of IIOP messages to (from) the messages of the under-
lying reliable totally ordered multicast group commu-
nication system. In addition, the Replication Manager
implementsmechanisms for the detection and suppres-
sion of duplicate invocations and duplicate responses,
and for state transfer and recovery.

The Eternal system provides an operation sched-

uler within the address space of each replica of a MT-
domain. Although each replica has its own scheduler,
all of the schedulers for the replicas of a MT-domain
reach identical scheduling decisions. This determinis-
tic behavior of the schedulers ensures replica consis-
tency for every MT-domain within the application.
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Figure 6: Implementation of the MT-domain operation scheduler in the Eternal system, using the Interceptor
which is transparently co-located with the replica of the MT-domain.

The operation scheduler must operate at a level that
allows it to govern the concurrency within each object
of the MT-domain, irrespective of the ORB's multi-
threading policies. The operation scheduler must re-
ceive all of the totally ordered operations, and decide
on their delivery to the application. In the Eternal
system, the operation scheduler is implemented at the
level of the Interceptor, as shown in Figure 6.

The Interceptor of the Eternal system exploits
\hooks" [8] provided by standard operating systems
to allow for the runtime modi�cation of process behav-
ior. A library interpositioning-based implementation
allows the Interceptor to be mapped transparently into
the address space of a MT-domain at runtime, which
allows the Interceptor easy access to the sockets and
threads that the MT-domain creates.

The transparency of the Interceptor has the added
advantage that the operation scheduler can perform its
function without modi�cation of the ORB or the appli-
cation. The interception mechanisms also enable the
scheduler to overide any dispatching or threading per-
formed by the ORB or the application, without either
of them being aware of the scheduler's existence. The
operation scheduler exploits a number of interposers
within the Interceptor, with each interposer overriding
some speci�c behavior of the ORB or the application.

� Socket-level interposers \replace" the socket
library routines that CORBA objects use to con-
nect and communicate over TCP/IP. To ensure
that the inter-MT-domain communication occurs
over a reliable totally ordered multicast proto-
col (instead of over TCP/IP), the communicating
MT-domains must establish a path of communi-
cation through the Replication Manager. The In-
terceptor's socket-level interposer serves to redi-
rect all TCP/IP communication to the Replica-
tion Manager. The Replication Manager then
conveys them over the underlying multicast proto-
col. By exploiting the socket-level interposer, the
operation scheduler can receive, transparently, all
of the operations destined for the replica of the
MT-domain.

� Thread-level interposers \replace" the thread
library routines that multithreaded ORBs and
CORBA objects use to create and control threads.
The thread library interposer does not need to re-
place all of the symbol de�nitions, for instance,
within the Solaris thread library, libthread.so,
or the POSIX thread library, libpthread.so [6]
but to interpose only on the symbols of interest.
The operation scheduler employs a thread-level



interposer to provide alternative implementations
of some of the thread library routines in order
to enable the MT-domain's operaton scheduler to
determine the status of the MT-domain's thread-
of-control, as well as to control the creation, dis-
patch and destruction of threads spawned within
the MT-domain.

Of course, not all of the threads that the MT-
domain or the ORB creates need to be controlled.
The listening thread that an MT-domain server
�rst spawns must not be prevented from running
because, otherwise, the MT-domain would not be
able to function in its role as a server. However,
the additional threads that are dispatched to han-
dle client invocations must be controlled because
they may modify the state of the MT-domain.

Thus, the operation scheduler must examine every
IIOP message, that it receives through the totally or-
dered messages from the Replication Manager, to de-
termine if it contains a method invocation or response.
The combination of the socket-level and the thread-
level interposers ensures that the dispatch of threads
that execute operations within a MT-domain is dic-
tated solely by the operation scheduler, rather than
by the MT-domain or by the ORB.

Operation scheduling does not signi�cantly increase
the overheads in our implementation. All of the
mechanisms of Eternal, including not only operation
scheduling but also interception, replication, duplicate
detection, message ordering and multicasting, increase
the response time by about 10% over an unreplicated
multithreaded application.

6 Related Work

Considerable research e�orts have been expended in
designing and implementing practical systems that
employ strategies to enforce replica determinism, or
to circumvent speci�c sources of nondeterminism.

The use of replication for fault tolerance requires
replica determinism to ensure that no undesirable or
unforeseen side-e�ects cause the states of the repli-
cas of an object to become inconsistent. The Delta-4
project [12] employs a primary-backup, or passive,
replication approach to overcome the problems associ-
ated with nondeterministic replicas. The restrictions
required are rather severe.

For systems that must meet real-time requirements
in addition to fault tolerance, the replicated data must
be both consistent and timely. The fault-tolerant
real-time MARS system [11] requires deterministic be-
havior in highly responsive applications, such as au-
tomotive applications, which exhibit nondeterminism

due to time-triggered event activation and preemptive
scheduling. Replica determinism is enforced using a
combination of timed messages and a communication
protocol for agreement on external events.

In the SCEPTRE 2 real-time system [1], nondeter-
ministic behavior of the replicas also arises from pre-
emptive scheduling. The developers of SCEPTRE 2
acknowledge the limitations of both active and pas-
sive replication of nondeterministic \capsules" for the
purposes of ensuring replica consistency. Semi-active
replication is used, with deterministic behavior en-
forced through the transmission of messages from a
coordination entity to the multiple backup replicas for
every nondeterministic decision taken by a designated
primary replica. The messages force the backup repli-
cas to override their own decisions.

Considerable research e�orts have been directed to-
wards building systems that augment CORBA with
fault tolerance. While most of these systems exploit
group communication to ensure replica consistency, to
the best of our knowledge, none of them addresses the
support that is required to ensure consistent object
replication in the presence of nondeterminism such as
multithreading in the ORB or the application.

The AQuA architecture [3] is a CORBA-based
framework that provides fault tolerance to CORBA
applications through object replication. The AQuA
architecture exploits the group communication facil-
ities and the ordering guarantees of the underlying
Ensemble and Maestro toolkits [15] to ensure replica
consistency for the application. The AQuA gateway
translates CORBA object invocations into messages
that are transmitted via Ensemble, and detects and
�lters duplicate invocations (responses).

The Object Group Service (OGS) [4] and GARF [5]
provide fault tolerance, the former for CORBA appli-
cations. Replica consistency is enforced to some extent
through the use of a consensus algorithm, which oper-
ates on the TCP/IP-based IIOP messages, to provide
ordered message delivery to the application. However,
the consensus algorithm controls the concurrency only
within the protocol stack and the underlying layers;
concurrency within the ORB and the application are
not controlled.

Some of the issues surrounding replica consistency
and multithreading have been addressed for fault-
tolerant systems that are not based on CORBA. In
[14], a technique is employed to track and record the
nondeterminism due to asynchronous events and mul-
tithreading. While the nondeterminism is not elim-
inated, the nondeterministic executions are recorded
so that they can be replayed to restore replica consis-
tency in the event of rollback.



The Transparent Fault Tolerance (TFT) system [2]
enforces deterministic computation on replicas at the
level of the operating system interface. TFT sanitizes
nondeterministic system calls by interposing a soft-
ware layer between the application and the operating
system. The object code of the application binaries is
edited to insert code that redirects all nondeterminis-
tic system calls to a layer that returns identical results
at all replicas of an object.

7 Conclusion
The Eternal system provides consistent object repli-
cation for multithreaded CORBA applications and
ORBs. The basic unit of replication is an object
or a MT-domain which is a CORBA client or server
that can support concurrent ORB- or application-level
threads. An Interceptor, implemented using thread-
and socket-level interposers, allows the Eternal system
to schedule and dispatch threads and operations onto
replicas of MT-domains transparently, thereby over-
riding the scheduling of operations by the ORB.

Each replica of a MT-domain is equipped with an
operation scheduler, which enforces a single logical
thread-of-control within the replica. The operation
scheduler dispatches operations onto the thread-of-
control, and enqueues operations not related to the
thread-of-control for later dispatch. Replica consis-
tency is maintained as a result of the deterministic
behavior across the replicas of a MT-domain through
the totally ordered messages that they receive, as well
as the deterministic behavior within each replica of the
MT-domain through the identical scheduling of oper-
ations onto a single thread-of-control.

The Eternal system maintains replica consistency,
irrespective of the multithreading model (thread-per-
request, thread-per-object, etc) adopted by the ORB.
The transparency of the operation scheduling and
the replica consistency mechanisms enables Eternal to
provide fault tolerance to unmodi�ed multithreaded
CORBA applications, without requiring the modi�ca-
tion of either the ORB or its concurrency model.
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