
Gateways for Accessing

Fault T olerance Domains?

P. Narasimhan, L. E. Moser, P . M. Melliar-Smith

Department of Electrical and Computer Engineering
University of California, Santa Barbara, CA 93106

priya@alpha.ece.ucsb.edu, moser@ece.ucsb.edu, pmms@ece.ucsb.edu

Abstract. Enterprise applications can be structured as domains, where
each domain contains objects that are replicated for fault tolerance, with
the replication being managed by a fault tolerance infrastructure local to
the domain. Gateways can allow unreplicated clients to bene�t from the
fault tolerance services of the replicated servers, without compromising
replica consistency within the fault tolerance domain. For CORBA-based
enterprise applications, the gateway mechanisms can be implemented
transparently to the ORB and to the application using interception; spe-
ci�c enhancements to existing ORBs make it possible for unreplicated
clients to enjoy a higher degree of reliability.

1 Introduction

Applications are increasingly spanning enterprises across the Inter-
net, with the application objects within one enterprise comm unicat-
ing with, and performing operations on, the application objects of
another enterprise. The reliability of the application as a whole de-
pends on the reliability of the objects in each of the comm unicating
enterprises, which are separated possibly by a considerable distance,
as shown in Fig 1. Each enterprise is likely to be, and indeed should
be, responsible only for the reliability of the objects under its control,
but each enterprise must nevertheless allow the objects of a di�erent
enterprise to comm unicate with its own objects without compromis-
ing the consistency of the replicated objects of either enterprise. The
domain of con trol of the fault tolerance infrastructure of each enter-
prise constitutes a fault tolerance domain; di�erent fault tolerance
domains can be connected through a gateway.
? Research supported by the Defense Advanced Research Projects Agency in conjunc-
tion with the O�ce of Naval Research and the Air Force Research Laboratory, Rome,
under Contracts N00174-95-K-0083 and F3602-97-1-0248, respectively.

J. Sventek and G. Coulson (Eds.): Middleware 2000, LNCS 1795, pp. 88-103, 2000. 
© Springer-Verlag Berlin Heidelberg 2000 

 
88


Some text in this electronic article is rendered in Type 3 or bitmapped fonts, and may display poorly on screen in Adobe Acrobat v. 4.0 and later. However, printouts of this file are unaffected by this problem. We recommend that you print the file for best legibility.



(Unreplicated object with no
support for fault tolerance)

Contain replicated objects supported
by fault tolerance infrastructures,

with communication over reliable multicast

P1

P2 P4

TCP/IP
Connection

Wide-area
Fault Tolerance Domain

New York
Fault Tolerance Domain

Los Angeles
Fault Tolerance Domain

Customer in
Santa Barbara

P5

P6

P7

gate
way gate

way
gate
way

gate
way

gate
way

Fig. 1. Gateways bridge fault tolerance domains, and allow objects in one fault toler-
ance domain to communicate with those in another. Pi represents a processor hosting
some application objects.

The concepts of fault tolerance domains and gateways are not re-
stricted to communication between enterprises. Internet-based appli-
cations such as stock trading involve customers using Web browsers
(typically unreplicated thin clients) to communicate with the servers
(typically replicated for fault tolerance) of a stock trading company.
The unreplicated Web browser should not need to be aware of the
replication of the stock trading servers, but can nevertheless bene-
�t from the fault tolerance of the servers. The unreplicated clients
(the Web browsers) can be made to communicate with the replicated
servers (the stock trading servers) through a gateway that hides the
replication of the servers. The replicated servers are managed by the
fault tolerance infrastructure of the stock trading company, and the
gateway serves as the \entry point" into the fault tolerance domain.
The gateway is a crucial element because it must \understand" the
reliability mechanisms inside the fault tolerance domain, as well as
the unreliable semantics of the external client, and must bridge these
di�erent semantics and mechanisms, without compromising the re-
liability of the objects within the fault tolerance domain.

A di�erent motivation for a fault tolerance domain is that an
application might have a large number of objects that require repli-
cation, and it might not be a scalable or feasible solution for a sin-
gle fault tolerance infrastructure to manage the replication of all of
these objects. Instead, it would be preferable to decompose the ap-
plication into smaller collections of objects, with each collection of

89



90



applications running over commercial-o�-the-shelf implementations
of CORBA. The mechanisms implemented in di�erent parts of the
Eternal system work together e�ciently to provide strong replica
consistency with low overheads, and without requiring modi�cation
of either the application or the ORB.

In the Eternal system, the client and server objects of the CORBA
application are replicated, and the replicas are distributed across
the system. Active replication and passive replication of both client
and server objects are supported. To facilitate replica consistency,
the Eternal system conveys the Internet Inter-ORB Protocol (IIOP)
messages of the CORBA application using an underlying reliable to-
tally ordered multicast group communication system, such as Totem
[4].

The structure of the Eternal system is shown in Figure 2. The
Eternal Replication Manager replicates each application object, ac-
cording to user-speci�ed fault tolerance properties (including the
choice of replication style { stateless, cold passive, warm passive, ac-
tive, active with voting) and distributes the replicas across the sys-
tem. The Eternal Resource Manager monitors the system resources,
and maintains the initial and minimum number of replicas.

The Eternal Interceptor captures the IIOP messages (containing
the client's requests and the server's replies), which are intended
for TCP/IP, and diverts them instead to the Eternal Replication
Mechanisms for multicasting via Totem. The Eternal Replication
Mechanisms, along with the Eternal Logging-Recovery Mechanisms,
maintain the consistency of the replicas, detect and provide recovery
from faults. The Replication Mechanisms and the Totem protocols
run on every processor within a fault tolerance domain.

The Eternal Evolution Manager exploits object replication to sup-
port upgrades to the CORBA application objects. The Replication
Manager, the Resource Manager and the Evolution Manager are
themselves implemented as collections of CORBA objects and, thus,
can themselves be replicated and thereby bene�t from Eternal's fault
tolerance capabilities. They need not be present on every processor;
their replicas can run on any processor within the fault tolerance
domain.

91



The technology of Eternal formed the basis of our response [2]
to the Object Management Group's Request for Proposals [8] on
fault-tolerant CORBA. With our close involvement in the ongoing
OMG standardization process, it appears likely that the technology
of Eternal will form the basis of the forthcoming OMG standard for
fault tolerance for CORBA.

2.1 Transparency via Interception

The Eternal Interceptor [7] is a non-ORB-level, non-application-level
component that transparently \attaches" itself to every executing
CORBA object, without the object's or the ORB's knowledge, and is
capable of modifying the object's behavior as desired. Because of its
location underneath the ORB, Eternal's Interceptor is transparent
to the ORB and to the application, and can be implemented in an
ORB-independent manner.

Current operating systems provide \hooks", such as library in-
terpositioning, that can be exploited to develop interceptors. Us-
ing library interpositioning, the Eternal Interceptor can transpar-
ently override the default de�nitions for the symbols in any dynam-
ically linked library, without requiring modi�cation of the ORB, the
CORBA application or the operating system.

The library routines that an interceptor is made to rede�ne in
a library-interpositioning implementation, depends on the extent of
the information that the interceptor must extract (from the ORB
or the CORBA application) to enhance the application with new
features. The interceptor may capture all, or a particular subset, of
the library routines used by the CORBA application, depending on
the feature being added. The library interpositioning approach used
by Eternal's Interceptor has no overheads in the path of message
transmission, and can be deployed with various ORBs.

2.2 Strong Replica Consistency

The Replication Mechanisms, operating in concert with the Logging-
Recovery Mechanisms, provide for strongly consistent replication of
the CORBA application objects. Eternal provides support for the
detection and suppression of duplicate invocations and duplicate re-
sponses, and for state transfer to new and recovering replicas for

92



Eternal ORB

Reliable totally ordered
multicast messages

TCP/IP connection
(IIOP messages)

Gateway converts
TCP/IP messages
into multicasts
and suppresses
duplicate responses

Standard ORB 
unsupported by
Eternal’s 
infrastructure

Gateway

Fault Tolerance
Domain

Unreplicated client object A
invoking operation on object B

Duplicate responses suppressed

Actively Replicated Server Object B

Fig. 3. Eternal's gateways allow unreplicated clients to communicate with replicated
objects.

both actively and passively replicated objects. Most commercial ap-
plications and/or ORBs use multithreading, a signi�cant source of
non-determinism. To ensure strong replica consistency even for mul-
tithreaded CORBA objects that are replicated, Eternal employs spe-
cial Interceptor-level mechanisms to enforce determinism for multi-
threaded CORBA applications, without requiring them to be modi-
�ed.

While the fault tolerance infrastructure ensures strong replica
consistency within the fault tolerance domain, it is the responsibility
of the gateway to ensure that unreplicated clients wishing to con-
tact replicated objects within the fault tolerance domain (through
the gateway) do not compromise the replica consistency of those
replicated objects.

3 Gateways to Fault Tolerance Domains

Eternal must allow the CORBA applications that it supports to
communicate with unreplicated objects that are outside the fault
tolerance domain, i.e., Eternal's domain of control. Some of these
unreplicated objects (e.g., a Web browser on a personal computer
that provides no fault tolerance) may not be supported by, or have

93



access to, Eternal's fault tolerance infrastructure, and may run over
standard IIOP-enabled ORBs.

Eternal ensures that these unreplicated objects outside the fault
tolerance domain can nevertheless communicate with the replicated
objects that are under Eternal's control inside the fault tolerance
domain. Eternal makes this communication possible without the un-
replicated object ever being aware of the existence of a fault tolerance
domain, of the replication of the objects within the fault tolerance
domain, or of Eternal itself. Thus, Eternal extends the replication
transparency that it provides to the application objects within the
fault tolerance domain equally to unreplicated objects outside Eter-
nal's control.

The gateways that the Eternal system provides serve as the \en-
try point" for unreplicated clients into the fault tolerance domain,
and allow unreplicated external objects to invoke replicated Eternal-
managed objects.

Within a fault tolerance domain:

{ All objects are replicated, with the replication managed by Eter-
nal's fault tolerance infrastructure. Each replicated object is as-
signed a unique object group identi�er.

{ Communication between replicated objects occurs through a reli-
able totally-ordered multicast protocol, thereby facilitating replica
consistency, as described in Section 2.2. The Replication Mech-
anisms hosting the replicas of an object are addressed by multi-
casting messages to the object's group identi�er.

{ Replicated clients do not use the TCP/IP fhost, portg infor-
mation within the Interoperable Object Reference (IOR) of any
of the server replicas to contact the replicated server. Instead,
the Eternal Interceptor transparently diverts the socket estab-
lishment routines at every client replica to form a connection to
the local Eternal Replication Mechanisms, which then multicast
the noti�cation of the connection establishment to the Replica-
tion Mechanisms hosting the server replicas.

Outside a fault tolerance domain:

{ Objects are unreplicated, and are unaware of the internal mech-
anisms of, and the replication within, the fault tolerance domain

94



{ Communication occurs through CORBA's TCP/IP-based Inter-
net Inter-ORB Protocol (IIOP)

{ Clients use the TCP/IP fhost, portg information within the In-
teroperable Object Reference (IOR) of the target server to estab-
lish a connection with the server.

Unreplicated objects outside the fault tolerance domain must
never be allowed to access the replicated objects within the fault
tolerance domain directly. Such direct communication, if permitted,
would violate replica consistency. The reason is that the unreplicated
client can communicate only through TCP/IP, thereby implying that
it would contact only one of the server replicas, and invoke an oper-
ation on that replica alone.

If the server is actively replicated, and only the single invoked
server replica performs the operation, it may have a di�erent state
from that of the other replicas of the server object, resulting in in-
consistent replication. If the server is passively replicated, and the
single primary replica is invoked, the primary replica might itself
invoke nested operations as a result of the original invocation. If the
primary fails before it receives the results of the nested invocations,
a new primary server replica will be elected. However, because the
new primary (formerly a backup replica) did not receive the original
invocation, it will not be able to handle the returned responses from
the nested invocations and to return a response to the original invo-
cation. Thus, to ensure replica consistency, the replicas of an object
are contacted through a reliable totally-ordered multicast, and not
individually through TCP/IP.

Additional mechanisms are provided by Eternal so that an IOR
published by a replicated object within the fault tolerance domain
\point" the external clients in the direction of the IIOP-enabled gate-
way, rather than the target replicated object. However, the external
client that uses this IOR is unaware of this. When using the infor-
mation in the IOR for connection establishment, the client implicitly
assumes that the endpoint is the real server and, thus, sends IIOP
invocations (destined for the server) to the gateway.

Note that the gateway is not a CORBA object, but constitutes
part of the mechanisms provided by the fault tolerance infrastructure
of Eternal. However, by receiving the unreplicated client's IIOP in-

95



vocations without returning exceptions, and by forwarding the repli-
cated server's IIOP responses to the unreplicated clients, the gateway
appears to the client to be a remote CORBA server object.

To perform the invocation (response) forwarding into (out of) the
fault tolerance domain, the gateway must be able to interpret the
IIOP messages sent over TCP/IP connections from outside the fault
tolerance domain, as well as the reliable totally-ordered multicast
protocol messages within the fault tolerance domain, and must pro-
vide the necessary translation between them. This functionality of
the gateway is shown in Figure 3.

Another aspect of the gateway is that it must \hide" the replica-
tion of the servers from the external client. This involves detecting
duplicate responses returned by the replicas of the server, and �l-
tering out only a single distinct response to the external client. In
addition, the gateway must itself be reliable so that it does not con-
stitute a single point of failure.

3.1 Connection Establishment

When a gateway is used, every unreplicated external client must
continue to \believe" that the remote endpoint to which it connects
(using the information in the server IOR) is the server when, in fact,
the remote endpoint is the gateway. This can be done by ensuring
that the addressing information in the IOR is the fgateway host,
gateway portg and that the gateway always returns the expected
IIOP responses to the client's IIOP invocations so that the client
never suspects otherwise.

Eternal replaces the fserver host, server portg in the IOR of each
server replica with the fgateway host, gateway portg through the
use of its Interceptor. The intent of the Interceptor is to interpose at
the point that the server-side ORB queries the operating system for
the host and the port information, prior to publishing the IOR. By
modifying the getsockname() call and/or the sysinfo() call (with the
SI HOSTNAME command) to return the gateway host and the gate-
way port instead of the server host and the server port, respectively,
the IOR that the server-side ORB publishes automatically contains
the fgateway host, gateway portg. This eliminates the e�ort of hav-
ing to parse the IOR string to do the replacement, and also results

96



TCP
Client

Id

Source
Group

Id

Target
Group

Id

Operation
Identifier

CORBA
Service Context

(a)

(b)

(c)

Message
Time-
stamp

Gateway
Group Id

Filled in by the
Replication Mechanisms

at the receiving end

TCP
Client

Id

Source
Group

Id

Reliable Multicast
Header

Fault Tolerance Infrastructure
and Gateway Header

IIOP Request or Reply Message

Target
Group

Id

Operation
Identifier

Message
Time-
stamp

Some
Unused
Value

Contains TCP Client Id
for enhanced Client ORBs

Contains TCP Client Id
for enhanced Client ORBs

Fig. 4. Messages sent (a) between an unreplicated client and the gateway, (b) from
the gateway to a replicated object within the fault tolerance domain, and (c) between
replicated objects within the fault tolerance domain.

in fewer undesirable interceptions. The gateway host and the gate-
way port are dedicated choices that are supplied to the interceptor
at system con�guration time.

When an unreplicated client uses this IOR, the client-side ORB,
implicitly assuming that the host and port in the IOR refer to the
server object, connects the client to the gateway. The gateway now
becomes the recipient of every IIOP message sent by the unreplicated
client, which continues to \believe" that the gateway is indeed the
target server object. By extracting the server's object key (which the
client-side ORB inserts into IIOP invocations to identify the target
server), the gateway identi�es the target server, multicasts the client
invocation to the server object group. The gateway inserts su�cient
information into the multicast messages to enable it to associate the
server's response with the client's invocation.

The gateway process must be continuously listening for connec-
tions from unreplicated clients on its dedicated fgateway host, gate-
way portg. For each new client that contacts the gateway, the gate-
way spawns a new TCP/IP socket to communicate solely with that
client, and uses the original socket to listen for further clients. The

97



additional spawned sockets are destroyed when the connection be-
tween the unreplicated client and the gateway terminates.

Note that the replacement of the fserver host, server portg in
the IOR does not a�ect connection establishment or communication
within the fault tolerance domain. Replicated clients wishing to com-
municate with replicated servers within the fault tolerance domain
never use this TCP/IP-speci�c addressing information, but use in-
stead the server's object group identi�er to contact the replicated
server through the fault tolerance infrastructure.

3.2 Encapsulation of IIOP into Multicast Messages

A gateway must encapsulate the IIOP invocations from the exter-
nal unreplicated clients into multicast messages for transmission to
the target replicated server object within the fault tolerance do-
main. Similarly, the IIOP responses, encapsulated within the mul-
ticast messages returned by the replicated server object, must be
extracted by the gateway and returned to the unreplicated clients.

When an IIOP-encapsulating message is multicast by the gate-
way into the fault tolerance domain, the message contains the gate-
way group id as the sender group, and the server group id (deter-
mined by the gateway from the server's object key embedded in the
client's IIOP invocation) as the destination group. The message is re-
ceived in total order by the Replication Mechanisms hosting each of
the server replicas. The replicated server performs the operation, and
the fault tolerance infrastructure multicasts the results to the gate-
way. The replicated server assumes that the gateway that sent the
IIOP invocation is a CORBA client object. Eternal's transparency
through interception e�ectively ensures that neither the unreplicated
client, nor any of the server replicas, is ever aware of communicating
through the fault tolerance infrastructure using reliable multicast.
The gateway (and, of course, the fault tolerance infrastructure it-
self) is the only party in the chain of communication that is aware
of the reliable multicast and the fault tolerance infrastructure.

When the replicated server returns the response to the gateway,
the IIOP response from each server replica is encapsulated by the
Replication Mechanisms hosting that replica into a multicast mes-
sage. The message contains the server group id as the sender group,

98



and the gateway group id as the destination group. This informa-
tion is insu�cient for the gateway to route the IIOP response to the
client replica that invoked the operation because multiple unrepli-
cated TCP/IP-based clients may have invoked the same replicated
server through the gateway. The gateway has no way of discriminat-
ing between these clients.

Thus, every multicast message must contain additional informa-
tion, inserted by the gateway to identify each TCP/IP client that
contacts the gateway. The resulting multicast messages have the
structure shown in Figure 4. For every multicast message exchanged
between replicated objects within the fault tolerance domain, the
TCP/IP client identi�cation is set to some unused value. The gate-
way (as well as the fault tolerance infrastructure) uses the destina-
tion group identi�er, the source group identi�er and the TCP/IP
client identi�er collectively to route every message to its intended
destination.

Ideally, the client identi�cation information ought to be supplied
by the client-side ORB, as discussed in Section 3.5. Because this
is not the case with current ORBs, the gateway maintains a sim-
ple counter, one for each destination server group. For each incom-
ing TCP/IP client, the gateway �rst determines the server group id
from the �rst IIOP message received from the client. The gateway
then uses the value of the counter corresponding to that server group
as the TCP/IP client identi�er. The counter is then incremented, to
serve as the identi�er for the next TCP/IP client for the same repli-
cated server. The disadvantage of the gateway-assigned client iden-
ti�ers, over identi�ers supplied by the client-side ORB, is discussed
in Section 3.4.

Figure 5 shows the sequence of steps that the gateway executes
for incoming IIOP messages from outside the fault tolerance domain,
and incoming multicast messages from within the fault tolerance
domain.

3.3 Duplicate Detection and Suppression

To ensure replica consistency, duplicate detection and suppression
mechanisms are used by Eternal throughout the fault tolerance do-
main; the gateways also employ these mechanisms for �ltering du-

99



for (every received IIOP message)
f
Obtain TCP client identi�er
Map socket to client identi�er
Generate operation identi�er
Generate header containing:
{ TCP client identi�er
{ Gateway group identi�er
{ Server group identi�er
{ Operation identi�er

Convey header and IIOP message
via a multicast message

Send multicast message into the
fault tolerance domain

g

for (every received multicast message)
f

Extract operation identi�er
Examine if message is a duplicate
if (non-duplicate message)
f
Extract TCP client identi�er
Find corresponding socket
Extract IIOP message
Send IIOP message to the
client over the socket

g
else

Discard duplicate message
g

(a) (b)

Fig. 5. Actions of the gateway for incoming messages from (a) external unreplicated
clients outside the fault tolerance domain, and (b) replicated objects within the fault
tolerance domain.

plicate responses from the replicated server objects within the fault
tolerance domain. The gateway returns only a distinct copy of each
response to the invoking external client. The duplicate copies of each
response, if not suppressed, would be delivered to the client object,
and may cause the client object's state to be corrupted.

To detect duplicate copies of each response, both the fault toler-
ance infrastructure and the gateway prepend an operation identi�er
to each message that is multicast within the fault tolerance domain,
as shown in Figure 4. The operation identi�er takes the form of
either an invocation identi�er for all multicast messages that encap-
sulate IIOP invocations, or a response identi�er for all messages that
encapsulate IIOP responses.

Operation Identi�ers For each outgoing IIOP invocation received
by the gateway from an unreplicated client, the gateway generates
the invocation identi�er as shown in Figure 6. The gateway then
inserts the invocation identi�er into the Eternal-speci�c header of
the message that it multicasts into the fault tolerance domain. The
timestamp of this multicast message, which forms a part of the in-

100



Invocation (msg seq number = 120)

Parent Invocation
(msg seq number = 100)

Response (msg seq number = 171)

1st child
operation

2nd child
operation 3rd child

operation

Replica in
Group A

Replica in
Group B

Invocation Identifier

Operation
Identifier

Response Identifier

120 100 3A B

171 100 3B A

Invocation

Response

Source
Group

Target
Group IIOP Message

This
Message’s
Sequence
Number

Parent
Message’s
Sequence
Number

Child
Operation
Sequence
Number

Fig. 6. Assignment of invocation, response and operation identi�ers.

vocation identi�er, is �lled in by the fault tolerance infrastructure
at the receiving end, when the message is delivered. The timestamp
information is derived from the totally-ordered message sequence
numbers assigned by the multicast group communication system.

For each outgoing IIOP response sent by a server replica, Eternal
\remembers" and reuses a portion of the invocation identi�er that
was sent with the corresponding invocation. The portion of the invo-
cation identi�er that is reused in its counterpart response identi�er is
the operation identi�er, which completely and uniquely identi�es the
operation consisting of the invocation-response pair. Both the invo-
cation and the response identi�ers have the same operation identi�er
�elds. Furthermore, the operation identi�er is identically determined
at every server replica.

The gateway, on receipt of multiple copies (one copy for each
server replica that returns a response) of a response to an IIOP
invocation that it multicasts into the domain, can deliver the �rst
copy that it receives, and discard all subsequently received copies by
simply comparing the response identi�er �elds of the Eternal-speci�c
header.

An invocation identi�er has the form (TBinv
; (TAinv

; SAinv
)), where

TAinv
is the timestamp of the message containing the invocation of

101



group A, TBinv
is the timestamp of the message containing the in-

vocation of the group B, and SAinv
is the sequence number of the

invocation of B in the sequence of invocations by group A. Similarly,
a response identi�er has the form (TBres

; (TAinv
; SAinv

)), where TBres

is the timestamp of the message containing the response by group B
to group A and the other two �elds are the same as for the invocation
identi�er. These invocation and response identi�ers are contained in
the multicast messages.

Note that the timestamps TAinv
, TBinv

and TBres
are derived from

the totally-ordered message sequence numbers assigned by the Totem
multicast group communication system. The system-wide uniqueness
of these timestamps (as a result of the total ordering) contributes to
the uniqueness of the operation identi�ers, and thus, to the detection
of duplicate messages.

In the example of Figure 6, TAinv
corresponds to 100, SAinv

corre-
sponds to 3, TBinv

corresponds to 120 and TBres
corresponds to 171.

In the case of the gateway, A represents the gateway group and B

represents the target replicated server that the unreplicated client
(that connects to the gateway) wishes to contact.

3.4 Using Existing ORBs

Existing ORBs do not have the capability to traverse a list of pro-
�les, and select the next pro�le if the �rst one fails on connection.
The disadvantage of this is that redundant gateways are not pos-
sible. Clients may experience disconnection if the processor host-
ing the gateway fails, and does not recover. The processor hosting
the gateway is a single point of failure. If the client ORB has the
capability to understand only the �rst IIOP pro�le (the standard
TAG INTERNET IOP pro�le), and if the gateway to which it con-
nects using the �rst pro�le fails, the client has no alternative but
to abandon the request. Furthermore, the client does not know the
status of any invocations that it has already sent, for which it is still
awaiting responses.

An alternative to using multiple gateways might be to have a cold
passively replicated gateway. In this case, the gateway's state should
be checkpointed often enough to allow it to be recovered. However,
clients will still be disconnected from the gateway if it fails, and must

102



have mechanisms to allow them to reconnect to the gateway, when
it recovers.

In the case of redundant gateways, the new gateway to which
the client connects (on failure of the �rst gateway) has no way of
\knowing" that this is the same client. The simple counter mecha-
nism, described in Section 3.2, is insu�cient in this case to identify
the client. This means that, even if the new gateway receives the re-
sponse for an outstanding invocation sent by the client through the
�rst gateway, the new gateway does not know which of its connected
clients should receive this response. Secondly, if the client were now
to re-issue all of the pending invocations to the new gateway, the
new gateway may, in turn, re-issue these invocations to the repli-
cated objects within the fault tolerance domain, thereby corrupting
their state.

Thus, due to lack of client-side identi�cation provided by the
ORB, the gateway cannot prevent duplication of client requests if

{ The unreplicated client fails, recovers and resends its request (this
is outside the fault tolerance domain's and the gateway's control,
and cannot be handled without extending some of the fault tol-
erance mechanisms to the unreplicated client)

{ The gateway process fails, and then recovers, and the client re-
connects to the gateway

{ Redundant gateways are used, and the original gateway fails, and
the client switches to the next operational gateway

3.5 Enhancements to Existing ORBs

If only a single gateway is provided for a fault tolerance domain,
it is insu�cient to guarantee the level of reliability that customers
of Internet-based applications have come to expect. For instance,
if a customer uses an unreplicated Web browser to connect to a
replicated stock trading server through a gateway, the failure of the
gateway could leave the customer wondering about the status of any
outstanding invocations issued on the stock trading server. Because
the gateway constitutes a single point of failure, the bene�ts of the
server replication are lost to the customer.

The use of redundant gateways requires additional intelligence on
the part of the client-side ORB to exploit the multiple gateways.

103



Unfortunately, the required mechanisms are not part of the current
CORBA standard. In the absence of the required support in current
ORBs, we have implemented a thin client-side interception layer that
mimics the support that an enhanced client-side ORB would provide
to allow unreplicated CORBA clients to bene�t from fault tolerance.
As discussed in Section 3.5, we envisage that the functionality of this
interception layer will eventually incorporated into the client-side
ORB itself.

According to the current CORBA standard, a pro�le contains
addressing information within an IOR. An object's IOR can contain
multiple pro�les, with each pro�le designating an alternative address
for contacting the object. To allow the addressing information for the
multiple gateways to be made available to unreplicated clients, the
Eternal Interceptor \stitches"' together the addressing information
for each gateway into a single multi-pro�le IOR.

On the client side, the thin interception layer has the capability
of traversing the pro�les within the multi-pro�le IOR, should this be
required. The interception layer connects the client object to the �rst
gateway listed in the multi-pro�le IOR, and inserts a unique TCP/IP
client identi�er into the service context �eld (a part of the IIOP
request and reply messages), where the user may insert information;
if a receiving ORB cannot interpret this information, it will ignore
it) of each IIOP message sent out by the client. The advantage of
using the service context �eld is that it can be safely ignored (as is
the case here) by a server ORB that does not understand it. It is
intended purely for the consumption of the gateway.

For each IIOP request message that a gateway receives from a
client, the gateway �rst multicasts the message to the group of gate-
ways. This is done so that every gateway in the group has a record of
the invocation in case the �rst connected gateway fails. The gateway
group then multicasts the message into the fault tolerance domain,
and the gateway group (and not the connected gateway alone) re-
ceives the response.

If the �rst gateway fails to respond, the client-side interception
layer transparently skips to the next pro�le in the multi-pro�le IOR,
and connects the client to the next operational gateway, and reissues
any pending invocations. If the client object sent an invocation for

104



which a response was expected from the �rst gateway, the client-side
interception layer obtains it from the next operational gateway. This
is possible because the client-side interception layer supplies the same
unique client identi�er for each of its requests, along with a unique
request identi�er, which would make it possible for the new gateway
to detect reinvocations due to reconnection of the client-side inter-
ception layer to a di�erent gateway. The reason for the reinvocations
is two-fold: �rstly, it allows the client-side interception layer to com-
municate the client's unique identi�er to the gateway, and secondly,
the client-side interception layer has no way of knowing if the �rst
invocation ever reached the original failed gateway. Each gateway
also contains the intelligence to inform all of the other gateways in
the event that the client fails. In this case, the gateways can delete
any state that they may have stored on behalf of the client.

Eternal's duplicate detection and suppression mechanisms de-
scribed in Section 3.3, along with the unique client identi�er, and
CORBA's existing request identi�er mechanisms, enable the gate-
way to preserve the replica consistency within the fault tolerance
domain, as well as to protect the unreplicated client outside the fault
tolerance domain from having its state corrupted. Furthermore, the
redundant gateways scheme enables the unreplicated client to bene�t
from the fault tolerance of the server.

4 Related Work

Other systems have addressed issues related to consistent object
replication and fault tolerance for CORBA applications. The Ob-
ject Group Service [3] provides replication for CORBA applications
through a set of CORBA services. Replica consistency is ensured
through group communication based on a consensus algorithm im-
plemented through CORBA service objects. Mechanisms have been
provided for duplicate detection and suppression, and for state trans-
fer of application state.

The Maestro toolkit [12] includes an IIOP-conformant ORB with
an open architecture that supports multiple execution styles and
request processing policies. The replicated updates execution style
can be used to add reliability and high availability properties to
client/server CORBA applications in settings where it is not feasible

105



to makemodi�cations at the client side, as in the case of unreplicated
clients contacting replicated server objects. The Maestro toolkit ad-
dresses some of the issues in the implementation of gateways.

The AQuA architecture [1, 10] is a CORBA-based dependabil-
ity framework that provides object replication and fault tolerance.
AQuA exploits the group communication facilities and the order-
ing guarantees of the underlying Ensemble and Maestro toolkits to
ensure replica consistency for the application. The AQuA gateway
translates CORBA object invocations into messages that are trans-
mitted via Ensemble. Duplicate invocations and duplicate responses
are detected and �ltered by the gateway.

The Distributed Object-Oriented Reliable Service (DOORS) [11]
provides fault tolerance through a CORBA-compliant service ap-
proach. DOORS consists of CORBA objects that detect, and recover
from, replica and processor faults. The system provides support for
management of resource and reliability requirements based on the
needs of the CORBA application. DOORS employs libraries for the
transparent checkpointing of applications; however, duplicate detec-
tion and suppression are not addressed.

5 Conclusion

The Eternal system allows applications to span multiple enterprises
over the Internet, with the application being decomposed into fault
tolerance domains, with the mechanisms of Eternal providing strong
replica consistency within each fault tolerance domain. In addition,
Eternal provides gateways to allow unreplicated clients and other
fault tolerance domains to communicate with the replicated server
objects within a fault tolerance domain, without compromising the
replica consistency within any fault tolerance domain. Through the
use of interception, Eternal provides this fault tolerance transpar-
ently to the CORBA application and to the ORB. The gateway
mechanisms are crucial to today's applications, where clients are un-
replicated, but nevertheless wish to bene�t from the fault tolerance
provided for the servers.

106



References

1. M. Cukier, J. Ren, C. Sabnis, W. H. Sanders, D. E. Bakken, M. E. Berman, D. A.
Karr, and R. Schantz. AQuA: An adaptive architecture that provides depend-
able distributed objects. In Proceedings of the IEEE 17th Symposium on Reliable

Distributed Systems, pages 245{253, West Lafayette, IN, October 1998.
2. Eternal Systems and Sun Microsystems. Fault tolerant CORBA using entity redun-

dancy: Initial joint submission. OMG Technical Committee Document orbos/98-
04-08, October 1998.

3. P. Felber, R. Guerraoui, and A. Schiper. The implementation of a CORBA object
group service. Theory and Practice of Object Systems, 4(2):93{105, 1998.

4. L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R. K. Budhia, and C. A. Lingley-
Papadopoulos. Totem: A fault-tolerant multicast group communication system.
Communications of the ACM, 39(4):54{63, April 1996.

5. L. E. Moser, P. M. Melliar-Smith, and P. Narasimhan. Consistent object replication
in the Eternal system. Theory and Practice of Object Systems, 4(2):81{92, 1998.

6. P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith. Replica consistency of
CORBA objects in partitionable distributed systems. Distributed Systems Engi-

neering, 4(3):139{150, 1997.
7. P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith. Using interceptors to en-

hance CORBA. IEEE Computer, pages 62{68, July 1999.
8. Object Management Group. Fault tolerant CORBA using entity redundancy: Re-

quest for proposals. OMG Technical Committee Document orbos/98-04-01, April
1998.

9. Object Management Group. The Common Object Request Broker: Architecture
and speci�cation, 2.3 edition. OMG Technical Committee Document formal/98-
12-01, June 1999.

10. R. Schantz, J. Zinky, D. A. Karr, D. Bakken, J. Megquier, and J. Loyall. An object-
level gateway supporting integrated-property quality of service. In Proceedings of

the IEEE 2nd International Symposium on Object-Oriented Real-Time Distributed

Computing, pages 223{234, Saint Malo, France, May 1999.
11. J. Schonwalder, S. Garg, Y. Huang, A. P. A. van Moorsel, and S. Yajnik. A man-

agement interface for distributed fault tolerance CORBA services. In Proceedings

of the IEEE 3rd International Workshop on Systems Management, pages 98{107,
Newport, RI, Apr. 1998.

12. A. Vaysburd and K. Birman. The Maestro approach to building reliable interoper-
able distributed applications with multiple execution styles. Theory and Practice

of Object Systems, 4(2):73{80, 1998.

107


