Consistency of Partitionable Object Groups in a CORBA Framework®

P. Narasimhan, L. E. Moser, P. M. Melliar-Smith
Department of Electrical and Computer Engineering
University of California, Santa Barbara, CA 93106

priya@alpha.ece.ucsb.edu, moser@ece.ucsb.edu, pmms @ece.ucsb.edu

Abstract

The Eternal system provides a novel methodology for the
consistent replication of objects in an adaptive, fault-
tolerant, CORBA-compliant distributed system that is sus-
ceptible to partitioning. Passive and active replication
schemes are supported in Eternal, and mechanisms are
provided for the interaction of objects with different repli-
cation schemes. Nested operations for both passive and
active objects are accommodated. Suppression of duplicate
operations is ensured by unique message and operation
identifiers. Continued operation is allowed in all compo-
nents of a partitioned system. State transfer mechanisms and
fulfillment operations restore the consistency of the states
of replicas within the components of a partitioned system
when communication is reestablished and the components
remerge.

1 Introduction

Distributed systems are clusters of computers that operate
autonomously and yet cooperate to perform an application
task. Among the desirable properties that such clusters
should provide are fault tolerance, reconfigurability, adapt-
ability, and high performance. A truly adaptive distributed
system should be able to reconfigure dynamically to respond
to the addition and failure of processors, to partitioning and
remerging of the network, and to modification and upgrad-
ing of the system.

An object-oriented framework is well-suited to build-
ing fault-tolerant distributed applications. Objects are dis-
tributed across the system, and interact to provide the
necessary services of the application. The Common Object
Request Broker Architecture (CORBA) standard [14, 15, 18]
provides mechanisms for the definitions of interfaces to dis-
tributed objects, and the invocation of operations on objects
via messages.

The Eternal system is CORBA-compliant middleware
supported by a standard operating system. It enhances

*Research supported in part by DARPA grant N00174-95-K-0083 and by
Sun Microsystems and Rockwell International Science Center through the
State of California Micro Program grants 96-051 and 96-052.

1060-3425/97 $10.00 © 1997 IEEE

the CORBA standard by providing a simple and reliable
framework for handling fault tolerance and adaptability,
rendering these features as transparent to the application as
possible.

To provide fault tolerance, objects are replicated across
multiple processors within a distributed system. Messages
communicate the operations that are to be performed on
the objects, as well as the updated versions of the states
of the objects after the operations have been performed. If
the messages were to be received in different orders by the
different replicas, the states of the replicas might become
inconsistent. Maintaining consistency of the replicas is
difficult in the presence of faults. The Eternal system uses
the Totem multicast group communication system (1, 8, 13]
to provide reliable totally ordered multicasting of messages,
which simplifies the task of maintaining consisténcy.

2 The Totem System

The Totem system is a suite of group communication
protocols that provide reliable totally ordered multicast-
ing of messages within clusters of processors operating in
single or multiple local-area networks interconnected by
gateways. Each multicast message has a unique message
sequence number assigned to it by the originator of the
message. These message sequence numbers are used to
deliver messages in a single system-wide total order that
respects Lamport’s causal order [7]. The Totem system
also provides membership and topology change services to
handle the addition of new and recovered processors and
processes, deletion of faulty processors and processes, and
network partitioning and remerging.

The virtual synchrony model of Isis [2] orders group
membership changes along with the regular messages. It
ensures that failures do not result in incomplete delivery of
multicast messages or holes in the causal delivery order. It
also ensures that, if two processors proceed together from
one view of the group membership to the next, then they
deliver the same messages in the first view. The extended
virtual synchrony model of Totem [12] extends the model of
virtual synchrony to systems in which clusters can partition
and remerge and in which processors can fail and recover.

120

Methed
©)
Eternal ORB Eternal ORB |
Interface) Implementation
Repasitory Repasitory
Totem Totem
y Multicast Messages
% Platform Platform %’

Figure 1: Relationship between Eternal and Totem.

Processors in different components of a partitioned network
may deliver the same messages, and yet the order in which
they deliver the messages is consistent. It is not easy to
provide this guarantee but, with care, it can be done {1, 13],
and even efficiently.

Typical applications consist of processes that cooperate
or share information to perform a task. The process group
layer [8], at the top of the Totem protocol stack, exploits the
guarantees of the underlying layers to provide its own reli-
able ordered delivery guarantees and to maintain dynamic
process group memberships. A processor may host multi-
ple processes and multiple process groups, and maintains
information about the current membership of the process
groups that it supports. Processes can send messages to one
or more process groups, of which they may or may not be
members. These messages are ordered within each process
group, and across all receiving process groups.

The Eternal system exploits the message ordering and
membership services of Totem to ensure consistent and
efficient replication.

3 The Eternal System

The CORBA standard does not address issues such as
fault tolerance and adaptability. Eternal is a CORBA-
compliant ORB of a rather specialized nature, extending
CORBA to provide these services. In particular, the ORB
is extended to describe the degree and type of replication of
the objects. The Eternal system assumes responsibility for
replicating objects, distributing objects across the system,
maintaining the consistency of replicated objects, detecting
and recovering from faults, and sustaining operation in all
components when a cluster partitions.

Operations on objects are bound to stubs generated from
the Interface Definition Language (IDL) specification of
the object, as shown in Figure 1. The ORB intercepts this
call from the stub, marshals the call and its parameters
into a message, and multicasts it to the other processors
using Totem. At the site of the object whose services have
been requested, a skeleton, also constructed from the IDL
specification, invokes the operation and returns the results
via the ORB in a similar fashion. Thus, all operations on
objects are communicated in messages and are visible to
the ORB. The behavior of each object is assumed to be
deterministic.

Eternal allows objects to be built hierarchically and
compositionally from other objects, in keeping with the
spirit of an object-oriented framework. It permits the
development of a distributed application as if it were to be
run on a single processor. The issues of replication, fault
tolerance, and adaptability are transparent to the application.

The types of faults tolerated by Eternal, and the under-
lying Totem system, are communication faults, including
message loss and network partitioning, and processor, pro-
cess, and object faults. Processors, processes, and objects
can crash and recover, and a partitioned network can re-
merge. Arbitrary faults are not tolerated.

Eternal provides fault tolerance by replicating objects
at different sites within the distributed system. The total
ordering of Totem multicast messages simplifies replica
consistency and interaction in a dynamic framework of op-
eration. In case a cluster partitions, the replicas within a
component see the same membership changes at the same
points in the message sequence. This is crucial for the con-
sistent remerging of the components upon reestablishment
of communication between them.

4 From Process Groups to Object Groups

The extension of process group communication to an object-
oriented framework requires the notion of objects, rather
than processes, that communicate and cooperate to perform
a designated task. :

An object group [3, 10} is a high-level abstraction for
a collection of objects in a distributed object space. An
object group may reside entirely on a single processor or
may span several processors. Moreover, a processor may
host multiple objects and multiple object groups. Just as a
process can send messages to a process group, the object
group abstraction enables an object to invoke the services
of another object group in a transparent fashion so that the
invoker of the operation need never be aware of the exact
nature, location, membership, degree of replication, or type
of replication of the objects. An object only needs to know
the interface provided by the group, and invokes the object
group as if it were a single object. Moreover, the object
group mechanism of Eternal allows object groups to invoke

121

Object Group A
(Active Replication)

Euach seplica
is invoked

Totally-ordéred reliable mibiticast
for invocation of the operation

Object Group B
(Active Replication)

Euch replica
returns results

{, through this message.
ORB 3B learns of ORB [B's

ORB 1B respands with the résults of the operation

before it transmits

il ORB {A hears from
ORB 2A and
suppresses its response

ORBs 2B and 3B hear
from ORB 1B and
suppress their responses

fesponse
its own, ORB 3B suppresses
its rest

Figure 2: Active replication.

each other. Thus, objects in Eternal are fully replicated, i.e.,
both client and servers objects can be replicated.

In a manner similar to that for process groups, the multi-
cast messages of the Totem system are used to communicate
operations to and from object groups. This ensures the re-
liable ordering of operations within each object group and
across different object groups. The object group member-
ship is maintained by the Eternal ORB.

5 Replica Consistency without Partitioning

Fault tolerance in an object-oriented framework is provided
by replicating objects, ensuring the consistency of the states
of the replicas, and detecting and recovering from faults.
The state of an object replica is simply the current values
of its data structures. The replicas of an object form a
homogeneous object group whose purpose is to provide
highly available, reliable, and efficient service.

Operations on replicas must maintain the consistency of
the states of the replicas. Two approaches for achieving this
are active replication and passive replication. The Eternal
system provides mechanisms for nested operations under
both replication schemes.

5.1 Active Replication

In active teplication, as shown in Figure 2, all of the
replicas of an object are considered to be participants in the
operation. Here ORB 1A (associated with replica 1 of object
group A) and ORB 2A (associated with replica 2 of object
group- A) communicate their invocations to ORBs 1B, 2B
and 3B. Every replica of an object is required to execute the
same operations in the same sequence, maintaining replica
consistency:.

The underlying totally ordered multicast mechanisms
guarantee that all of the replicas of an object receive the

same messages in the same order, and perform the operations
in the same order. This ensures that the states of the replicas
are consistent at the end of an operation.

For every operation invoked on a homogenéous object
group, a multicast message is required to initiate the opera-
tion at each replica. Moreover, the same operation must be
performed at each of the sites where the replicas are located.
This can lead to increased usage of network bandwidth
since each replica may generate further multicast messages.
Eternal possesses mechanisms, based on message and oper-
ation identifiers, as described in Section 6.1, that detect and
suppress duplicate invocations and responses, preventing
inconsistencies that might otherwise arise.

Active replication also incurs the increased computa-
tional cost of performing the same operation at each of
the replicas. The cost of using active replication is also
dictated by application-dependent issues, such as the degree
of replication and the depth of the nesting of operations.
Clearly, active replication is favored if the cost of multicast
messages and the cost of replicated operations is lower than
the cost of transmitting the object’s state to every replica at
the end of the operation.

5.2 Passive Replication

In passive replication, as shown in Figure 3, each object is
replicated but only a single replica, designated the primary
replica, performs all of the operations requested. Here ORB
2A communicates its invocations to ORBs.1B, 2B and 3B.

‘Only ORB 1B invokes its replica of object B; the other

two ORBs for object B retain the message for use in the
event of the failure of the primary replica. Once the primary

- replica completes the operation, it transfers its updated state

to the secondary replicas. During the operation, the states of
the secondary replicas may differ from that of the primary

122

Object Group A Object Grou
f Lt p B
(Passive Replication) (Passive Replication)
lica2 = ica 2
e (qup N ’ &3 §§cpgndary)
1 . &
) \ Method N
. ©
B (P -
ORB2B ORB 3B
Totally-ordered reliable multicast vy i A A
for invocation of the operation : H
ORB 1B responds with the results of the operation ._ : Stte Updates

Figure 3: Passive replication.

replica; however, the update operations maintain replica
consistency at the end of the operation.

A disadvantage of passive replication is that if the state
of the object is large, transfer of the state from the primary
replica to the secondary replicas can be quite expensive.
An advantage is that it does not require the operation to
be performed on each of the replicas. If the operation is
computationally expensive, the cost of passive replication
can be lower than that of active replication. Moreover, since
only the primary replica responds with the results of the
operation, passive replication may require fewer multicast
messages.

5.3 State Transfer Mechanisms

State transfer mechanisms are required for both active and
passive replication when a new replica is installed. They
are also required in passive replication to update the states
of the secondary replicas.

The simplest mechanism for the transfer of large states
between replicas of an object is to suspend operations on
the object, transfer the state, and then resume operations on
the object. This solution is appropriate when the state is
not too large and can be transferred quickly. A drawback
of this scheme is the need to stop all operations on the
object until the state transfer is accomplished. More refined,
though more complex, schemes [11] allow operations to
be performed on the object while a large state is being
transferred. Such a scheme is described below.

For active replication, one of the replicas is designated to
perform the transfer. This replica does not stop processing
further operations while transferring the state. Rather, it
logs a preimage (the values of the updated parts of the state
before the update) of each update that it performs. First

_the existing state is transferred, and then the preimages are
transferred. The state transferred to the new replica may be

inconsistent, since it may have been partially updated, but
the new replica can reconstruct the state by applying the
preimages. During the transfer, the new replica performs
no operations, but rather logs all of the operations. Once
the state transfer is completed, the new replica processes
the operations it has logged in order to bring its state into
consistency with that of the other replicas.

For passive replication, the procedure is similar, except
that postimages (the values of the updated parts of the
state after the update) are logged and transferred, instead
of preimages, and the new or secondary replicas do not log
and process operations.

The advantages of this more complex scheme is that a
replica does not have to stop processing its messages while
transferring its state. However, extra load is imposed on
the replica since it continues processing and transfers state
simultaneously.

6 Interactions between Object Groups

Object groups serve as a useful abstraction for replica-
tion of distributed objects. The replicas within an object
group might implement either active or passive replication,
though this is transparent from outside the group. Group
transparency implies that actively replicated objects and
passively replicated objects must be invoked from outside
the group in exactly the same manner, although these invo-
cations are handled differently within the group in each case.

The most interesting intergroup interaction occurs be-
tween an actively replicated object and a passively repli-
cated object, as shown in Figure 4. Here the replicas in
object group A are only aware of addressing object group B
as a whole, and never the individual replicas in object group
B. Similarly, the replicas in object group B are only aware
of responding to object group A as a single entity, and never
the individual replicas in object group A. The Eternal ORB

123

Object Group A
(Active Replication)

Invocation Phase

-
T - -

Each replica in object group A

Object Group B
(Passive Replication)

— -

Replica2
{Sccondary) 1

“ Replica 1
{Primuary)

invokes operation ga object groop B ORBs 1B and 2B recognize the passive aplication
A 4 scheme and only the pamary replica is invoked
ORB 1A ORB 1B U ORB 2B
L, Invocation of ORBs 1B and 2B
/ Y ohicigroms Y o e 40
£, through this messape, ORB 1A R st R :
jeamns of ORB 2A’s invocation ORBs IB and 28
hefore it transmits its own, ORB 1A
will suppress its i i
Object Group A Object Group B

(Active Replication)

Response Phase

©

ORBs 1A and 2A recognize the
active replication scheme and
all of the replicas ase given
the response

ORB 2A

(Passive Replication)

ORB 1B manslates the fesponse (o
whjest group A into individual
wsponses 10 ORBs 1A and 2A

Snxunmnm
to ORB 28 associaied with
replica

Figure 4: Interactions between object groups with different replication schemes.

translates object group invocations into individual replica
invocations.

6.1 Operation Identifiers

In addition to the information that CORBA packages with
an invocation, Eternal supplies unique operation identifiers
that simplify the detection and suppression of duplicate
invocations and responses. Consider, for example, an
operation 1 on one object that invokes an operation 2 on
another object. Operation 1 is invoked by a multicast
message that is given a unique sequence number by Totem.
Operation 1 may invoke a sequence of operations, one of
which is operation 2; each such operation is given a unique
sequence number by the ORB.

Figure S shows the invecation identifier for operation 1
invoking operation 2. The first field of the invocation

Invocation Identifier >

«————— Operation Identifief —mee ——yp
(Identical for every replica in the sane object group)

A

Message sequence

Message sequence Scqguence number
number of number of assigned by the ORB
operation 2 operation 1 10 operation 2

Figure 5: Identifier for operation 1 invoking operation 2.

identifier contains the sequence number of the message
that invokes operation 2. This field may be different for
redundant invocations. The second and third fields of
the invocation identifier constitute the operation identifier,
which is identical for duplicate invocations and is unique
to the operation. The second field contains the sequence
number of the message that invoked operation 1. The third
field contains the sequence number assigned to operation 2
by the ORB.

The résponse identifier for operation 2 is tagged with the
same operation identifier contained in the second and third
fields as the invocation identifier, but the first field now
contains the séquence number of the message containing
the results of operation 2. Several examples are shown in
Figure 6. ‘

6.2 Suppression of Duplicate Operations

Duplicate invocations of .an object are suppressed when
active replicas of the object invoke an operation, as shown
in Figure 4. This is done by ORBs 1A and 2A multicasting
their invocationsto each other, as well as to object group B.
If either of the sender ORBs 1A or 2A receives the other’s
invocation before transmitting its own, that sender ORB
suppresses its invocation. Here, ORB 1A’s invocation is
suppressed by the message from ORB 2A.

124

-

08
@ feshoola | & fizshool4]

-

Object Group A
(Passive Replication)

i Object Group B
, (Active Replication)

N Object Group C
" (Passive Replication)

2
l ORB3B
a0 fe3Ts]s |

] £

1137 mo|4|

State Updacex

Figure 6: Nested operations with mixed replication schemes.

Even if these duplicate invocations are not suppressed
at the sender ORBs, duplicate invocations at the receiving
ORBs 1B and 2B are suppressed because their operation
identifiers are equal. Thus, no operation is ever performed
more than once, ensuring that the states of the objects are
never corrupted by duplicate invocations.

Similarly, duplicate responses are suppressed when ac-
tive replicas of an object respond to an operation invoked
on them. Several examples are shown in Figure 6.

6.3 Nested Operations

Eternal also addresses the issue of nested operations. By a
nested operation, we mean an operation that results in the
invocation of yet another operation or, in the terminology
of Eternal, the invocation of one object group leading to the
invocation of another object group. Challenging problems
arise when the chain of invocations involves replicas with
different replication schemes, as shown in Figure 6.

For the active replicas, the figure indicates the suppres-
sion of duplicate invocations and duplicate responses. For
the passive replicas, the figure indicates the state update

operations that must be performed on the secondary replicas
within the object group before the primary responds to the
next object group in the chain.

The difficulties in performing a nested operation are that
duplicate invocations and responses must be suppressed and
that the states of all of the replicas of an object must be
consistent after the entire operation, even in the presence of
faults.

6.3.1 Failure of an Active Replica. For an actively repli-
cated object, fault recovery is relatively simple. Totem’s
reliable multicast mechanisms ensure that a requested oper-
ation is known either to all of the remaining replicas of the
object or to none of them. Consequently, the operation will
be performed on all of the remaining replicas or on none of
them.

If an active replica fails while performing the operation,
the remaining active replicas in its object group continue
to perform the operation and return the result. The failure
is thereby rendered transparent to the other object groups
involved in the nested operation. This replication scheme
yields substantially more rapid recovery from faults.

125

6.3.2 Failure of a Passive Replica. For a passively repli-
cated object, the effect of the failure of a replica depends
on whether the failed replica is a primary or a secondary.
If a secondary teplica fails, it is simply removed from the
group by the object group membership mechanism while
the operation continues to be performed. Thus, the failure of
a secondary replica is transparent to the other object groups
in the nested operation.

Consider object group A in Figure 6. Before the oper-
ation is invoked on the primary replica via ORB 1A, both
ORBs 2A and 3A receive the operation, but do not invoke
it since they are associated with the secondary replicas.
If the primary fails after invoking a nested operation on
object group B, the object group membership mechanism is
invoked and a new primary is determined. The new primary
reinvokes the nested operation. The reinvocation carries the
same operation identifier in the second and third fields, but
a different message sequence number in the first field. Con-
sequently, if the ORBs associated with object group B have
already received this invocation, they will disregard it, but
will transmit the response, even if it has already been sent.

Responses may be generated by both the original and
new primary replicas. Such duplicate responses will be
suppressed, since their operation identifiers are equal.

7 Replica Consistency with Partitioning

A distributed system of processors may partition into a
finite number of components. The objects within any
component can communicate with each other, while objects
in different components are unable do so. In Eternal, all of
the components of a partitioned system remain operational,
and objects in all of the components continue to perform
operations.

The underlying Totem system guarantees that all of the
objects see a consistent global total order of operations,
even if those objects are in different components; however,
some of the operations may not be visible to some of the
objects. The real problem arises when different components
of a partitioned system merge to form a larger component.
Each component may contain a subset of the replicas of an
object, and different operations may be performed on the
replicas in different components, leading to inconsistencies
that must be resolved when the components remerge.

In Eternal, for each replicated object, at mostone primary
component is identified when an object group membership
change occurs. - Each of the other components is then a
secondary component for that object. A component may
be the primary component for one replicated object and a
secondary component for a different replicated object.

Eternal supports state iransfer mechanisms and fulfill-
ment operations to restore consistency of replicas following
remerging of the partitioned system.. The state transfer
mechanism transfers the state of the replicas in the primary

component to those in the secondary components, while
the fulfillment operations permit operations performed in a
secondary component also to be performed in the merged
component. ’

7.1 State Transfer Mechanisms

When the components of a partitioned system remerge, the
replicas in the primary component must communicate their
states to the replicas in the secondary. The mechanisms
for the transfer of state between components are similar to
those outlined in Section 5.3. Depending on whether the
replicas involved- are active or passive, the state transfer
mechanisms .use preimages or postimages, respectively.
This ensures that all of the replicas of an object have
consistent states; however, the operations performed in the
secondary components are not yet reflected in that state.

7.2 Fulfillment Operations

If the operations in different components of a partitioned
system are not disjoint, additional mechanisms are required
to reconcile the states of the objects once communication is
restored. These mechanisms must address the case in which
both the primary and secondary components have performed
operations-on different replicas of the same object without
being able to communicate with each other.

In Eternal, the replicas in a secondary component can
continue to perform state updates while the system is par-
titioned, substantially as they would during normal unpar-
titioned operation. As the updates are performed on the
replicas in the secondary component, they generate fulfill-
ment operations. A queue of fulfillment operations is formed
in the secondary component for each object whose replicas
(in the secondary component) perform updates while the
system is partitioned. ‘

Once the state transfer phase is completed, the states of all
of the replicas in the system are identical. The updates that
were recorded as fulfillment operations by the previously
disconnected secondary component are now applied to all
of the replicas in the larger merged component. Normal
operations continue to'be applied in the merged compo-
nent during the state transfer and during the application of
fulfillment operations. The fulfillment operations ensure
that the operations performed in a secondary component
are performed in the merged component and that problems

" requiring manual resolution are reported. The fulfillment
“operations are, of course, application-specific but they are

just-operations; they require no special programming skills
and they are applied only to the state of the replicas in the
merged component.

Consider now a partitioned system consisting of two
components, as shown in Figure 7. Some of the replicas of
an object may no longer be able to communicate with the
other replicas. Nevertheless, all of the replicas of an object,

126

Component1

Component 2

Partitioned
Components

Phase

Fulfillment
Operations
Phase

Prinwary for
Objct B

Normal
Unpartitioned
Operation

Time

Figure 7; Partitioning and remerging of object groups.

both in the primary and secondary components, continue
to perform operations and to have operations performed on
them. Component 1 is the primary for object A and the
secondary for object B, while component 2 is the primary
for object B and the secondary for object A.

When communication between the components is re-
stored, state transfers from the primaries for object A and
object B to their respective secondaries ensure a consistent
state of the objects after merging. However, if both the
secondaries for object A and object B have updated their
replicas while the system is partitioned, the effects of these
updates are not reflected in the consistent state. Fortunately,
such updates of object A and object B in the secondary
components have generated fulfillment operations, which
can now be applied to the consistent state of all the replicas
of the respective objects in the merged component.

8 Example

Consider, for example, a system that coordinates the sale
and manufacture of automobiles, as illustrated in Figure 8.
An automobile sales showroom that sells an automobile
updates the inventory object by decrementing the total
number of automobiles that are available. This operation
results in a shipping order being sent to the factory, and
in subsequent shipment of the automobile to the customer.
The automobile factory, for each new automobile that it
manufactures, updates the inventory object by incrementing
the total number of automobiles available.

The replicas in this system are the copies of the inventory
object located at the factory and the two showrooms. Under
normal unpartitioned operation, these contain identical in-
formation about the total number of automobiles available
for purchase by customers. Every sale at the showroom, and
every new automobile manufactured, results in an update
operation on each of the three active replicas of the inventory
object. Moreover, the factory and the showrooms update
the inventory objects transparently, without being aware of
the actual membership of the object group (consisting of the
three replicas) or the location of all the replicas.

If one of the sales showrooms loses communication with
the factory and the other showroom, the system becomes
partitioned. The sales at the disconnected showroom, which
forms the secondary component, will continue to update
the replica at the showroom. The manufacture of cars at
the factory and the sales at the showroom connected to the
factory will update the replicas in that component, which
forms the primary component.

The algorithm for performing updates in the two compo-
nents is shown in Figure 8. The operations on the replica
in the disconnected showroom are queued up as fulfillment
operations which await reestablishment of communication
with the other component of the partitioned system. The
replica in the disconnected showroom component now has
a state that differs from those of the two replicas in the
primary component.

If communication is restored, the replicas in the primary
component first transfer state to those in the secondary
component. At the end of this phase, all of the replicas have
the updated inventory of the replicas in the primary com-
ponent. However, this is not sufficient since the operations
performed on the replica in the secondary component are
not reflected in the state. The fulfillment operations must
thus be performed on the updated state of the replicas.

The fulfillment operations may need to handle special
application-specific conditions. For example, if the show-
room in the secondary component has sold a car that has
also been sold by the showroom in the primary component,.
it will be necessary to generate a back order notification
and a special rush manufacturing order to the factory to
accelerate production.

127

Inventory Update Operation

If in Primary. Component
Decrément stock; Issue shipping order
1f in Secondary Component
Queue Fulfiliment Operation

If stock >0
Decrement stock; Issue shipping order

Issue back order: Accelerate production

Antomobile Sales

E Update /7
Reguests for Operations
Shi f
xpmcn} Of free .)

F Op
Wiiting for Conncction

e D@
Showroom -l tnventory !

Replica of N
Inventory. = N Showroom
\ Primary
\ Component
\
Secondary \
i Replica of
 Component i [m?emory

Factory

Figure 8: Partitioning of one automobile sales showroom from the other automobile sales showroom and the automobile factory.

9 Related Work

The Common Object Request Broker Architecture
(CORBA) [14, 15, 18] standard established by the Object
Management Group (OMG) is essential to our work, though
the Eternal system goes beyond CORBA. CORBA pro-
vides support for location transparency, separation between
implementation and specification, and the interworking of
heterogeneous computer systems, all of which are essential
to Eternal.

In [16] Sturman and ‘Agha provide a reflective architec-

ture for CORBA that, like Eternal, supports fault tolerance.
The mechanisms underlying the Actor model are integrated
with the CORBA model to yield a methodology for cus-
tomizing fault tolerance without modification of the object
request broker.
. The Electra Toolkit [10] defines the concept of ob-
ject groups in a CORBA-compliant ORB. The Electra
ORB is built over the Horus system [17] and provides
for fault tolerance, replication, and group communication
in an object-oriented framework. Electra.is restricted to a
non-hierarchical object system and provides no mechanisms
for dealing with partitionable systems since it is based on
virtual synchrony instead of extended virtual synchrony.

Unlike the above systems, which are based on CORBA,

. several other distributed object systems have been built that
do not utilize the facilities. of CORBA. The Phoenix sys-
tem [3] supports-an object-oriented interface that provides
group communication, group management, and thread man-

agement based on the concept of view synchrony to provide
a toolkit for the development of large-scale fault-tolerant
distributed systems. o

The GARF system [4] is an object-oriented platform that
supports the programming of fault~tolerant distributed ap-
plications. The Dependable Object Toolkit of GARF, built

- on top of Isis [2], provides object group management, with

Smalltalk as the application programmer interface. Like
Eternal, GARF allows nested operations when both client
and server objects are replicated, and provides extensive
support for active replication.

The Arjuna system [9] provides paradigms for the repli-
cation and management of object replicas and uses an atomic
transaction strategy to provide fault tolerance. Support is
provided for active replication, coordinator-cohort passive
replication, and single copy passive replication. Strategies
stmilar to checkpointing are used for state updates in passive
replication.

The work of Higaki and Soneoka [5] provides insightinto
the problems associated with active and passive replication,
and addresses the reduction of multicast overhead in active
replication schemes.

To the best of our knowledge, none of the prior work

deals with the issues of nested operations and intergroup

interactions under different replication schemes. More-
over, the other systems have not addressed the challenging
problems of sustaining operation in all components of a
partitioned system and of recovery when the components of
the system remerge.

128

10 Conclusion

The Eternal system is currently under construction, using
the CORBA-compliant Inter-Language Unification (ILU)
[6] from Xerox Palo Alto Research Center. Our focus in
this paper has been on object replication, but many other
aspects of CORBA systems, such as concurrency, remain
to be addressed. We will be better able to assess the
effectiveness and performance of our approach to object
replication when our implementation is completed.

We are also currently investigating the use of replicated
objects to achieve more than just fault tolerance. The
ability to mask the failure of an object or processor can
also be used to mask the deliberate removal of an object
or processor and its replacement by an upgraded object
or processor. For a processor, the replacement can be a
different type of processor. It is also possible, in several
steps, to replace an object by another object with a different
interface specification, without stopping the system and
without requiring great system programming skill from
the application developer. Over time, both hardware and
software components of the system can be replaced and
upgraded without interrupting the service provided by the
system. Thus, our objective is a system that can run forever,
a system that is Eternal.

Acknowledgment

We wish to thank the anonymous referees for their construc-
tive comments, which have greatly improved this paper.

References

[1] D. A. Agarwal, Totem: A Reliable Ordered Deliv-
ery Protocol for Interconnected Local-Area Networks,
Ph.D. Dissertation, Department of Electrical and Com-
puter Engineering, University of California, Santa
Barbara (August 1994).

[2] K.P.Birmanand R. van Renesse, Reliable Distributed
Computing with the Isis Toolkit, IEEE Computer So-
ciety Press, Los Alamitos, CA (1994).

[3] P. Felber and R. Guerraoui, ‘‘Programming with ob-
ject groups in PHOENIX,”” Broadcast Technical Re-
port 93, Esprit Basic Research Project 6360, Ecole
Polytechnique Federale de Lausanne, 1995.

[4] B. Garbinato, R. Guerraoui and K. R. Mazouni, ‘‘Im-
plementation of the GARF replicated objects plat-
form,’’ Distributed Systems Engineering Journal 2, 1
(March 1995), pp. 14-27.

[5) H. Higaki and T. Soneoka, ‘‘Fault-tolerant object
by group-to-group communications in distributed sys-
tems,”” Proceedings of the Second International Work-
shop on Responsive Computer Systems, Saitama, Japan
(October 1992), pp. 62-71.

[6] B. Janssen, D. Severson, and M. Spreitzer, ILU 1.8
Reference Manual, Xerox Corporation (May 1995),
ftp://ftp.parc.xerox.com/pub/ilw/ilu.html.

{71 L. Lamport, ‘“Time, clocks, and the ordering of events
in a distributed system,”” Communications of the ACM
21, 7 (July 1978), pp. 558-565.

[8] C. A. Lingley-Papadopoulos, The Totem Process
Group Membership and Interface, M.S. Thesis, De-
partment of Electrical and Computer Engineering,
University of California, Santa Barbara (August 1994).

[9] M. C. Little and S. K. Shrivastava, ‘‘Object replica-
tionin Arjuna,”” Broadcast Technical Report 93, Esprit
Basic Research Project 6360, University of Newcastle
Upon Tyne, 1994.

[10] S. Maffeis, ‘‘Adding group communication and fault
tolerance to CORBA,”’ Proceedings of the 1995
USENIX Conference on Object-Oriented Technolo-
gies, Monterey, CA (June 1995), pp. 135-146.

[11] P. M. Melliar-Smith and L. E. Moser *‘‘Simplifying
the development of fault-tolerant distributed appli-
cations,”” Proceedings of the Workshop on Paral-
lel/Distributed Platforms in Industrial Products, 7th
IEEE Symposium on Parallel and Distributed Pro-
cessing, San Antonio, TX (October 1995).

[12] L. E. Moser, Y. Amir, P. M. Melliar-Smith and D.
A. Agarwal, “‘Extended virtual synchrony,”’ Proceed-
ings of the 14th IEEE International Conference on
Distributed Computing Systems, Poznan, Poland (June
1994), pp. 56-65.

[13] L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R.
K. Budhiaand C. A. Lingley-Papadopoulos, ‘*Totem:
A fault-tolerant multicast group communication sys-
tem,”” Communications of the ACM 39, 4 (April 1996),
pp- 54-63.

[14] Object Management Group, The Common Object Re-
quest Broker: Architecture and Specification (1995),
Revision 2.0

[15] R. M. Soley, Object Management Architecture Guide,
Object Management Group, OMG Document 92-11-1.

[16] D. C. Sturman and G. Agha, ‘‘Extending CORBA
to customize fault tolerance,”” Technical Report, De-
partment of Computer Science, University of Illinois
(1996).

[17] R.van Renesse, K. P. Birman and S. Maffeis, ‘ ‘Horus:
A flexible group communication system,”” Communi-
cations of the ACM 39, 4 (April 1996), pp. 76-83.

[18) S. Vinoski, ‘‘Distributed object computing with
CORBA,”” C++ Report 5, 6 (July/August 1993), pp.
32-38.

129

