

Benchmarking Message-Oriented Middleware – TIB/RV vs. SonicMQ

Michael Pang♣ and Piyush Maheshwari
School of Computer Science and Engineering

The University of New South Wales
Sydney NSW 2052, Australia

e-Mail: piyush@cse.unsw.edu.au

♣ Now working with SAP Australia. E-mail: michael.pang@sap.com

Abstract
Message-oriented middleware (MOM) has become a vital
part of the Enterprise Application Integration (EAI)
projects. This is because it can be used to pass data and
workflow in the form of messages between different
enterprise applications. The performance of EAI greatly
depends on how effectively the MOM performs. This paper
presents a benchmark comparison between two industry
well-known MOMs – Tibco Rendezvous (TIB/RV) and
Progress SonicMQ. Although the two MOMs are very
similar in certain aspects, their native implementation and
architecture are very different. We provide an unbiased
benchmark reference to the middleware selection process.
The primary objective of our work was to evaluate the
MOMs by testing their effectiveness in the delivery of
messages in publish/subscribe and point-to-point message
domains, their program stability and the system resource
utilization.

1. Introduction
1.1. What is MOM?
MOM is a specific class of middleware that supports the
exchange of general-purpose messages in a distributed
application environment (Figure 1). MOM systems ensure
message delivery by using reliable queues and by providing
directory, security, and administrative services required to
support messaging.

Figure 1: Message-Oriented Middleware

By sending the messages asynchronously, the sender of a
MOM message does not have to wait for an
acknowledgement from the receiver. It can simply send the
message and continue with other processes. Rather than
connecting directly to a remote objects, the program passes
the message via connection to the MOM which then sends
the message to the receiving application.

1.2. Two Messaging Models

1.2.1. Publish and Subscribe <pub/sub> (One-to-Many)

The sender is called the publisher and the receiver is called
the subscriber. One producer can publish a message to
many consumers through a virtual channel called a topic.
Consumers can choose to subscribe to a topic they are
interested in. Any messages addressed to a topic are
delivered to all the subscriber of that topic.

Figure 2: Publish/Subscribe Model [1]

Figure 3: Point-to-Point Model [1]

Every consumer receives a copy of the message being
published. This is called a push-based model, where
messages are automatically broadcast to consumers without
them having to request or poll the topic for new messages.
A published message is received by all interested parties,
and parties can subscribe and unsubscribe at will.
Publish/subscribe works similarly to signing up for an
email distribution list.

1.2.2. Point-to-Point <PTP> (One-to-One)

In the point-to-point arrangement, there is typically a single
sender and a single receiver. This can be done either
synchronously or asynchronously via a virtual channel
called a message queue.

In this paper, we compare industry well-known MOMs –
Tibco Rendezvous (TIB/RV) and Progress SonicMQ.
Although the two MOMs are very similar in certain aspects,
their native implementation and architecture are very
different. This paper provides an unbiased benchmark
reference to the middleware selection process. The primary
objective of our work was to evaluate the MOMs by testing
their effectiveness in the delivery of messages in
publish/subscribe and point-to-point message domains,
their program stability and the system resource utilization.

The rest of the paper is organised as follows. Section 2
discusses the two MOMs presented in the paper. Section 3
discusses the benchmarking issues and system tuning.
Section 4 gives a brief description on the tests we have
implemented for the benchmarking purpose. Finally,
Section 5 presents the results obtained from the tests and
also provides a detailed analysis.

2. Benchmarking the MOMs
This section introduces the two MOMs, TIBCO
Rendezvous and Progress SonicMQ.

2.1. TIBCO Rendezvous (TIB/RV)
TIBCO has been one of the leading providers of EAI since
its establishment 20 years ago and TIB/RV is one of the
most widely used messaging middleware in enterprises.

2.1.1. Architecture

TIB/RV is based on a distributed architecture [2]. An
installation of TIB/RV resides on each host on the network.
Hence it eliminates the bottlenecks and single points of
failures could be handled. It allows programs to send
messages in a reliable, certified and transactional manner,
depending on the requirements. Messaging can be delivered
in point-to-point or publish/subscribe, synchronously or
asynchronously, locally delivered or sent via WAN or the
Internet. Rendezvous messages are self-describing and
platform independent. Figure 4 below represents the main
architecture of TIB/RV.

Figure 4: TIB/Rendezvous Operating Environment

2.1.2. Components

TIB/RV is composed of three main components:

� RV Daemon (RVD) responsible for the delivery of
messages within a LAN.

� RV Agent (RVA)

� RV Routing Daemon (RVRD)

2.1.3. RV Daemon (RVD)

Figure 4 shows the architecture of RV in a LAN
environment. Notice how the RV Programs A, B and C,
connect to RVD through TIB/RV API, and the RVD is
connected to the network. RVD listens to the network for
every message intended for the programs.

The RV daemon arranges the details of data transport,
packet ordering, receipt acknowledgment, retransmission
requests, and dispatching information to the correct
program processes. The daemon hides all these details from
TIB/Rendezvous programs. RV programs create the
message users want to send, and passes it onto RVD, which
is then responsible for passing them to the destination(s).

RVD is a background process that sits in between the RV
program and the network. It is responsible for the delivery
and the acquisition of messages, either in point-to-point or
publish/subscribe message domain. It is the most important
component of the whole TIB/RV.

Theoretically, there is an installation of RVD on every host
on the network. However, it is possible to connect to a
remote daemon, which sacrifices performance and
transparencies.

2.1.4. How does a message get to its destination?

Publish/Subscribe (One-to-Many)

Figure 5: Reliable Multicast Message [3]

Figure 5 shows how messages are publish/subscribe in a
LAN environment with the use of RVD. The RV Sender
program passes the message and destination topic to RVD.
RVD then broadcasts this message using User Data Packet
(UDP) to the entire network. All subscribing computers
with RVDs on the network will receive this message. RVD
will filter the messages which non-subscribers will not be
notified of the message. Therefore only subscriber
programs to the particular topic will get the messages.

Point-to-Point (One-to-One)

Figure 6: Point-to-Point Messaging in TIB/RV

In TIB/RV, point-to-point messages are fairly similar to
publish/subscribe, only in a one-to-one model instead of
one-to-many. The receiver creates a unique “inbox name”
that establishes an address for receiving point-to-point
messages. To send a point-to-point message, the sending
program must know the inbox name of the destination. The
receiver makes its inbox name known by multicasting it to
potential senders using a prearranged subject name.

Once the sending program receives the recipient’s inbox
name, it will broadcast the message with inbox name as the
topic to the network using UDP. The recipient’s RVD will
be able to receive the message when it realised the topic is
it’s own unique inbox name.

2.2. Progress SonicMQ
SonicMQ is one of the newer MOMs in the market. It
claims to be the first JMS implementation, and has
outstanding performances competitive with existing MOM
technologies, such as IBM MQSeries. SonicMQ is written
in 100% pure Java, supports XML messaging, and HTTP
tunnelling to allow SonicMQ to work over the Internet.

The underlying mechanism of SonicMQ is its “broker” that
facilitates the movement of messages across the network. It
is a Java executable that requires Java Virtual Machine
(JVM) to run.

The communication protocols that can be used with
SonicMQ include TCP, HTTP and SSL. Since it uses
common Internet protocol, SonicMQ can extend its
deployment to the Internet. It also provides bridges to many
other popular MOMs that allow messages to be sent and
received between SonicMQ and other MOMs.

2.2.1. Architecture

There are three types of configurations a user can choose
from:

� Single-broker Configuration

Under this configuration, there is one broker
which is being shared across a few nodes.

� Multi-broker Clusters

� Multi-node Configurations

Figure 7: SonicMQ Single Broker Hub-Spoke Model

Figure 7 shows a single broker configuration. The broker is
the most important underlying implementation of
SonicMQ. It is responsible for delivering and acquiring of
messages within a LAN environment. It is a client-server
model, where many clients connect to a single broker. The
connection can be via TCP (for LAN), SSL (for security
encryption), or even HTTP (to connect to external entities).

The downside with single broker configuration is that
scalability is limited by the capabilities of the node
machine. Also the system is dependent on the single broker
machine (node), hence leading to a bottleneck of the system
at the node. The whole system may collapse if the node
goes down. To solve this problem a multi-broker cluster
must be used.

2.2.2. SonicMQ Performance

There exist a benchmark report for SonicMQ by Progress
Software [5]. SonicMQ showed outstanding performances
compared to IBM MQSeries and Fiorano FioranoMQ, (both
are JMS implementations) under WinNT platform.

2.3. TIB/RV vs SonicMQ Functional Summary

The functional features for TIB/RV and SonicMQ are listed
in the table below for comparison:

 TIB/RV SonicMQ

Underlying Messaging
mechanism

RVD Broker

Publish/Subscribe yes yes

Point-to-Point yes yes

Subject-based
Addressing

yes no

Location Transparency yes no

Synchronous
Messaging

yes yes

Asynchronous
Messaging

yes yes

Guaranteed Messaging
Certified
Messaging

Durable
Messaging

Fault Tolerance yes yes

WAN/Internet Support RVA/RVRD
Dynamic
Routing
Architecture

Persistent Messaging
Ledger
Storage

Persistent

3. Benchmarking
In order to find out how well a distributed messaging
infrastructure performs under heavy load with a number of
concurrent connections, a benchmark test must be
undertaken. This section discusses the issues concerned
with planning and deployment of such a complex task.

3.1. Aims of this Benchmark Report
The aim of the benchmark tests performed is to determine
the following:

1. The effectiveness of the MOMs – messages per second
(MPS)

2. The time taken for a batch of messages to be delivered

3. The effects of increasing the number of publisher and
subscriber connections in a pub/sub scenario

4. The effects of increasing the number of sender and
receiver pairs in a PTP scenario

5. The effects of constant publisher/sender as opposed to a
period publisher/sender

6. The memory and CPU utilization of the MOMs

These objectives are achieved by:

� Writing some Java programs using the APIs provided by
the MOMs

� Using a Linux system utility “top” to monitor memory
and CPU utilization of different processes in the
system.

3.2. Benchmark Environment
The following is the environment utilized to perform the
benchmark:

1x Server:

Intel Pentium III 450
processor

196Mb SDRAM

13G IBM IDE Hard disk

1x Client:

AMD K6-850 Processor

256Mb SDRAM

30G IBM ATA Hard disk

3.2.1. Network Connection

Network Interface: 10BaseT NE2000 compatible
network card

Cable: Twist Pair

Length of cable: Each 1-meter.

Hub: RJ45 5 Port Hub

3.2.2. Operating System

Mandrake Linux 8.1 – 2.4.8-2 version Kernel

4. Test Description
This section describes the Java programs we have
implemented for testing the two MOMs. The programs for
TIB/RV use TIBCO’s own Java API, and the programs for
SonicMQ use JMS API developed by Sun Microsystems.
As the programs are developed with different APIs, we had
to make special effort to ensure the programs for the same
test are as similar as possible to yield comparable results.
Each test aims to evaluate different issues relating to
MOMs.

Different scenarios are constructed to evaluate the MOMs.
Tests 1 and 2 assume a constant producer of messages i.e.
the MOMs are always busy throughout the entire test
duration. We measure the pub/sub rates and PTP
send/receive rates which represent the behaviour of the
MOMs to such environment.

As discussed previously, different MOM programs have to
make different procedures to start up and connect to the
MOM. Thus, Test 3 measures the connection time of the
subscribers. Finally, Test 4 attempts to measure the
memory and CPU utilization of the two MOMs.

Each of these tests was tested with different input
parameters, e.g., changing message size, number of
message producers and consumers, etc.

4.1. Test 1 – Publish/Subscribe Fixed and Test 2 –
Point-to-Point Fixed

Tests 1 and 2 aim to measure the publish/subscribe and the
point to point messaging rate of the MOMs.

Message Domain: Publish/Subscribe and Point to Point

Description: The sender and receiver programs measure
the rate to publish and subscribe a fixed number of

messages, with specified message size, number of
publishers and subscribers. The programs print the average
rate after sending all the messages.

Program Flow:

Input Variables: The programs are configurable using a
properties file (configuration file) by changing:

1) Number of publishers/senders

2) Number of subscribers/receivers

3) Number of messages to publish/send

4) Size of the message being publish/sent.

5) Broker/service group, and daemon the programs
connect to.

4.2. Test 3 – Publish/Subscribe – Connection
Time

Test 3 aims to find out how quickly a subscriber can start
the RVD/Sonic broker and start receiving messages.

Message Domain: Publish/Subscribe

Details: The publisher keeps on publishing messages to the
topic "Publish". The subscriber records the starting time,
and records the time of the first message being received.

Before the subscriber starts, the publisher is already
publishing. Hence we can ensure our measurement will not
be affected by the late arrival of the messages.

Program Flow:

Input Variables: The total amount of messages to publish
must be inputted as an argument to run the publisher.

4.3. Test 4 – Memory and CPU Utilization
Test 4 aims to measure the memory and CPU utilization of
each MOM.

“Top” is a Linux system utility that monitors the CPU and
Memory consumption of different active processes. Since
the utilization changes every few second, we can only

compare by finding the average of the data. As such we
wrote a Unix shell script that captures the data from the
output of the “top” utility every second for the duration of
the program.

5. Test Results and Analysis
This section presents all test results achieved from the tests
described in the previous section. A detailed analysis is
provided to evaluate the results.

5.1. Part 1 – Results

5.1.1. Test 1 – Publish/Subscribe Fixed

Test 1-A: Varying the number of subscribers
Fixing number of publishers, varying number of
subscribers.

Number of publisher(s) = 1
Number of subscribers varies from 1 to 9
Message size = 10 kilobytes
Number of messages sent = 2000
Total data published by each publisher= 20Mb

Total data subscribed = Number of Publishers x Total
data published (20Mb)

Average publish rate is the rate of the messages that can be
passed from the publisher program to the MOM. Avg
Subscribe Rate = total messages received by all subscribers
/ total time to receive all messages.

Total Duration is the time taken for all the messages to
travel from the publisher program to the subscriber
program. It is measured from time when the first message
was published up to time when the connection is closed on
the publisher side.

Publisher Transfer Rate = Total Messages / Total Duration

Test A - Ave.Pub Rate v. No. of Sub

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9No. of Subscribers

A
ve

. P
ub

 R
at

e
(M

P
S

)

RV

SonicMQ

Figure 8: Average Publish Rate v/s Number of
 Subscribers

T est A - Ave. Sub Rate v. No. of Sub

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9

No. of Subscr iber s

RV

SonicMQ

Figure 9: Average Subscribe Rate v/s Number
 of Subscribers

Test A- Total Duration v. No. of Sub

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8 9No.of Subscribers

T
ot

al
 D

ur
at

io
n

(s
ec

s)

RV

SonicMQ

Figure 10: Total Duration v/s Number

 of Subscribers

Test A - Pub Transfer Rate v. No. of Sub

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9
No. of Subscribers

P
ub

 T
ra

ns
er

 R
at

e
(M

P
S

)

RV

SonicMQ

Figure 11: Publish Transfer Rate v/s Number
 of Subscribers

Test 1-B: Varying the number of publishers
Fixing number of subscribers, varying number of
publishers.

Number of Subscriber(s) = 1 while Number of
Publishers varies from 1 to 9

Message size = 10 kilobytes

Number of messages sent = 2000

Total data published by each publisher= 20Mb

Test B - Ave.Pub Rate v. No.of Pub

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9No. of Publishers

A
ve

.
P

ub
 R

at
e

(M
P

S
)

RV

SonicMQ

Figure 12: Average Publish Rate v/s Number
 of Publishers

Test B - Ave. Sub Rate v. No. of Pub

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9
No. of Publishers

A
ve

. S
ub

sc
rib

er
 R

at
e(

M
P

S
)

RV

SonicMQ

Figure 13: Average Subscribe Rate v/s Number
 of Publishers

Test B - Total Duration v. No. of Pub

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9

No. of Publishers

T
ot

al
 D

ur
at

io
n

(s
ec

s)

RV

SonicMQ

 Figure 14: Total Duration v/s Number of Publishers

Test B - Pub Transfer Rate v. No. of Pub

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9
No. of Publishers

P
ub

lis
he

r
T

ra
ns

fe
r

R
at

e
(M

P
S

)

RV

SonicMQ

Figure 15: Publish Transfer Rate v/s Number
 of Publishers
5.1.2. Test 2 – Point-to-Point Fixed

Fixed number of messages

Number of sender/receiver pairs varies from 1 to 5

Message size = 10 kilobytes

Number of messages sent = 2000

Total data sent by each sender = 20Mb

PTP - Ave. Sending Rate v. No. of Sender/Receiver Pairs

0

10

20

30

40

50

60

1 2 3 4 5
No. of Sender/Receiver Pairs

A
ve

. S
en

di
ng

 R
at

e
(M

P
S

)

RV

SonicMQ

Figure 16: Average Sending Rate vs No of
 Sender/Receiver Pairs

PTP - Ave. Receive Rate v. No. of Sender/Receiver Pairs

0

10

20

30

40

50

1 2 3 4 5No. of Sender/Receiver Pairs

A
ve

. R
ec

ei
ve

 R
at

e
(M

P
S

)

RV

SonicMQ

Figure 17: Average Receive Rate vs No. of
 Sender/Receiver Pairs

PTP - Total Duration v. No. of Sender/Receiver Pairs

0

50

100

150

200

250

300

1 2 3 4 5

No. of Sender/Receiver Pairs

T
ot

al
 D

ur
at

io
n

(s
ec

s)

RV

SonicMQ

Figure 18: Total Duration vs No of
 Sender/Receiver Pairs

P T P - S ending T ransfer Rate v. No. S ender/Receiver Pair s

0

10

20

30

40

50

60

1 2 3 4 5

No. of Sender / R ecei ver P ai r s

RV

SonicMQ

Figure 19: Sending Transfer Rate vs No. of
 Sender/Receiver Pairs
Average sending rate is the rate of the messages that can be
passed from the sender program to the MOM. Average
receive rate is the rate of the messages that can be passed
from the MOM to the subscriber program.

Total Duration is the time taken for all the messages to
travel from the sender program to the receiver program. It is
measured from time when the first message was sent up to
time when the connection is closed on the sender side. The
sender will not be able to close the connection until all the
messages reach the receiver.

Sending Transfer Rate is the rate that messages are
transferred from the sender program to the receiver
program. Sending Transfer Rate = Total Messages / Total
Duration

5.1.3. Test 3 – Publish/Subscribe – Connection Time:

Table 1: Connection Time Comparison

TIB/RV 0.56 secs

SonicMQ 2.55 secs

5.1.4. Test 4 – Memory, CPU Utilization:

Table 2: Memory and CPU Utilization Comparison
 TIB/RV SonicMQ

Memory

Utilization
(MB)

CPU
Utilization

Memory
Utilization

(MB)

CPU
Utilization

RVD/Broker
Start up

2% 10-20% 60.0 60-85%

Pub/Sub –
Publisher

55% 60% 50-70% 70-80%

Pub/Sub -
Subscriber

8% 5% 25% 20%

PTP – Sender 50% 60% 50-70% 75%

PTP – Receiver 5% 5% 20% 15%

5.2. Part 2 – Results Analysis
The following section analyzes the previous results.

5.2.1. Publish/Subscribe (Test 1)
It was obvious that TIB/RV performed well in all the tests.
It shows an impressively stable publish/subscribe rates. On
the other hand, SonicMQ suffers a scalability issue,
showing decreasing performance as the number of
publishers or number of subscribers increase.

Tests 1A and 1B give an in-depth comparison between the
two MOMs.

Test 1A – Varying the Number of Subscribers
In this test, there is only one publisher, and the number of
subscribers gradually increases from 1 to 9. (The more
subscribers, more messages will be subscribed).

For Figure 8, SonicMQ beats TIB/RV in the average
publishing rate. However, it shows the rate for TIB/RV is
much stable and consistent compared to that of SonicMQ.
All tests results obtained were done 3-5 times to minimize
the error that might have been involved. Should SonicMQ

be more consistent, all the bars in this graph should be of
same height.

TIB/RV has an average publishing rate of 141.26MPS,
where SonicMQ has an average 184.42MPS. Hence
SonicMQ is approximately 30% faster than TIB/RV for the
rate to pass the messages from the publisher program to the
MOM.

Figure 9 shows the relationship between the average
subscribing rate and the number of subscribers. SonicMQ
shows a constant average receiving rate of 108.4MPS,
regardless of changes in the number of subscribers. TIB/RV
on the other hand, shows a direct relationship to the
increase of number of subscribers. The more subscribers
results in the higher receiver rate.

One of the reasons is because the total duration for the same
amount of messages published does not change regardless
of the number of subscribers for TIB/RV (Figure 10).

The RVD in the publisher just broadcasts the message out
to everyone inside the network using the UDP protocol.
Hence regardless of the number of subscribers, the total
duration does not change. The SonicMQ broker requires a
separate TCP connection to each of the subscriber. Hence
the more subscribers there are, the longer it takes for
SonicMQ to deliver the same amount of messages.

Figure 11 illustrates the changes in the average publishing
rate relative to the number of subscribers. TIB/RV shows a
constant publishing rate, unaffected by the changes in the
number of subscribers. As explained above the total
duration for SonicMQ increases as the number of
subscribers, hence according to the formula provided in
how the publish rate is calculated, it explains why the
publish rate decreases as more subscribers are introduced.

Test 1B – Varying the Number of Publishers
This test demonstrates the effect of the changes in number
of publishers with a single subscriber.

In Figure 12, the average publishing rate illustrates the rate
the messages passed from the publishers to the MOM.
When the number of publishers is less than 6, SonicMQ is a
lot faster. However, when the number of publishers gets
higher, SonicMQ’s performance drops rapidly. As it can be
seen, the average publishing rate for SonicMQ is very
inconsistent. However 3-5 repeats of each test was
performed to minimize the error of the results. The constant
average publishing rate of TIB/RV is 116 MPS.

Figure 13 shows the relationship between the average
subscribing rate to the number of publishers. As there are
more publishers, TIB/RV subscriber has no effect to
changes. However for SonicMQ, it shows a gradual decline,
as there are more publishers and more messages being sent.

Figure 14 shows the total duration to publish/subscribe all
the messages specified. This is measured from the moment
the messages leave the publisher program in the server,
until the time the connection is closed. The connection will
not close until the subscriber program in the client receives
all the messages. The figure shows that the more messages

to be published, the longer it takes, as there are more
processing time involved. It also shows that for the same
amount of messages and publishers, SonicMQ takes longer
to complete than TIB/RV. The difference increases as there
are more publishers and messages to send. This is
accounted for due to the difference in the underneath
architecture and implementations.

TIB/RV shows a more consistent performance in all rates,
not showing much effect of the changes in the number of
publishers. SonicMQ shows a gradual decline in all the
rates when there are more messages and publishers.

Test 3 – Connection Time
We are to measure how quickly the subscriber program
starts up and receive the first message. There is a constant
publisher that is publishing messages before the subscriber
is available so that the subscribers do not have to wait for
messages to arrive. It measures the time from the program
starts up until the time the first message is received.

TIB/RV starts in 0.5 seconds, which is much faster than
SonicMQ in 2.55 seconds.

5.2.2. Pub/Sub Test Summary

In the publish/subscribe model, TIB/RV shows a much
better performance over SonicMQ. For Test 1, the results
show the effect of the performance subject to the changes in
the number of publishers and subscribers. TIB/RV was not
affected much as a result of the changes, however SonicMQ
shows a scalability problem that when more messages are
being published and subscribed, the rates are greatly
affected.

Finally, TIB/RV takes less effort to start up the subscriber
program, resulting in a shorter connection time.

5.2.3. Point-to-Point (Test 2)

Test 2 – Varying the Number of Sender/Receiver Pairs
These tests measure how quickly a MOM can deliver 2000
messages with 10kb sizes, produced in a PTP model. The
number of sender/receiver pairs gradually increases to
observe the changes. It appears that the sending/receiving
rates are much more stable in the TIB/RV than SonicMQ.
Again, SonicMQ suffers a scalability problem.

Tests on SonicMQ for sender/receiver pairs with total data
size (number of senders x total data by each sender) being
too high (greater than 300Mb) crashed with an error with
JVM heap size is not big enough. TIB/RV managed to
survive the tests without further problems. In order to
compare the results, we had to tune down message size and
the total messages sent.

Also, more times the tests are repeated, the slower the rates
for SonicMQ becomes. This is to do with the lack of RAM
in the server. It shows how memory hungry SonicMQ could
be.

Figure 16 shows the relationship between the average
sending rates to the number of sender/receiver pairs. This is
the time it takes to pass the messages from the sender

program to the MOM. It shows gradual decline in the rates
for both MOMs. However, SonicMQ appears to decrease
faster than TIB/RV.

Figure 17 shows the average receiving rate for both MOMs
are being quite constant with the changes in the number of
publishers. TIB/RV can receive at an average of
approximately 40 MPS, where Sonic receives at 31 MPS.
Hence TIB/RV is approximately 33% faster.

Figure 18 shows the total duration of both MOMs for the
tests. It appears both MOMs take approximately the same
time to send the messages, however TIB/RV takes slightly
less time than SonicMQ.

Figure 19 shows the sending rate of both MOMs. It is the
time that takes for the messages to travel from the sender
program to the receiver program. For 1-2 sender/receiver
pairs, SonicMQ is faster than TIB/RV, however, as more
sender/receiver pairs are introduced, the rates decreased.
This again shows a scalability issue on SonicMQ.

5.2.4. PTP Test Summary

From the test results, TIB/RV still shows better
performances. It is much more stable, and not subject to
changes in the number of sender/receiver pairs. SonicMQ
on the other hand suffers decrease in performance as the
increase in the number of sender/receivers. SonicMQ also
crashed when the total data sent was too big.

The results from SonicMQ were very inconsistent,
sometimes fast, and sometimes slow. We had to repeat the
tests a number of times to minimize the error involved. It
appears its performance depends greatly on the state of the
system (i.e. the amount of free memory available).

Finally, TIB/RV shows outstanding results in handling the
overloading of the queues in the PTP Ping Test. Due to the
nature of PTP, it is impossible to measure the connection
time, as it requires the receiver to be started before a
message could be sent.

5.2.5. Test 4 – Memory and CPU Utilization

According to the results obtained, it appears in average that
SonicMQ consumes more memory and CPU time than
TIB/RV in most tests. This is obvious even without
measuring, as throughout the duration of most benchmark
tests, the computer becomes significantly slower while
SonicMQ is in operation.

This has to do with the native implementation of the
MOMs. TIB/RV is implemented in C, and SonicMQ is
100% Java implemented. As discussed earlier, JVM
consumes a lot of memory that introduces a lot of overhead
to the system. Generally, C is supposed to run a lot faster
than Java. More memory and CPU time would be
consumed if running multi-cluster configuration in
SonicMQ, as it requires another instance of JVM in
operation.

As both MOMs vendors did not provide enough
information about their underlying implementation, it is
difficult to analyse the results for this test further. Perhaps a

high-end multiprocessor server with lots of memory will
overcome this problem, however it still requires testings
before this can be concluded.

5.3. Summary
TIB/RV is the clear winner in the course of the benchmark
tests. The results of Tests 1 and 2 show that TIB/RV is
faster in both publish/subscribe and point-to-point
messaging models. Despite the average publishing rate of
SonicMQ is faster, it appears it takes a lot longer to deliver
the messages across to the message consumer(s).

SonicMQ consumes more CPU time and memory than
TIB/RV. This is because of the difference in their native
implementation.

6. Conclusion
The objective of this work was to benchmark two selected
MOMs – TIB/RV and SonicMQ by testing their
effectiveness in the delivery of messages in
publish/subscribe and point-to-point message domains,
their program stability and the system resource utilization.

TIB/RV has been in the middleware industry for many
years. It is one of the most widely used messaging
middleware in the world. It is intended to provide a tool for
building and deploying scalable distributed applications
faster and easier. The underlying architecture of TIB/RV is
the TIB RV Daemon (RVD), which is responsible for the
delivery of messages using UDP broadcast.

On the other hand, SonicMQ is a relatively new competitor
in the MOM market that is implemented 100% in Java.
Being a JMS implementation, it makes it possible for the
programs to be portable to other JMS implementations by
different vendors without much modification. SonicMQ
relies on the broker for message delivery. Applications
connect to the SonicMQ broker using TCP, HTTP, and SSL
communication protocols.

The results of our benchmark show that TIB/RV has
exceptional performance compared to SonicMQ. In
summary, they are as follows:

� High publish/subscribe and point-to-point send/receive
rates

� High scalability:
�

Publishing rate not affected by introducing more
receivers;

�
Subscriber rate increases as more subscribers are
introduced.

� Low memory and CPU consumption

The only major downside of TIB/RV is that when there are
very few receivers in the network, it could flood the
network with many unnecessary UDP packets, introducing
congestions.

Benchmark reports provided by Progress quoted
SonicMQ’s good performance over IBM MQSeries and
FioranoMQ on WinNT platform, SonicMQ did not perform
as well under the benchmark tests performed in this paper

when using a Linux platform. It was discovered that
SonicMQ has the following drawbacks:

� Poor scalability:
�

Performance dampened when more senders and
receivers are introduced. This is because the
computers are connected in a client-server model,
that the server becomes a bottleneck when the
system is on stress.

�
Furthermore, the use of TCP connection to connect
the applications to the broker enforced a
congestion control, limiting the transfer speed.

�
When the total data sent was too high (greater than
300Mb), the system crashed with error:
insufficient Java Heap size. However the system is
already tuned with largest heap size possible.

� High memory and CPU utilization:
�

SonicMQ is implemented in Java that runs on top
of Java Virtual Machine (JVM). JVM was incurs a
lot of overheads and resources. As a result, the
system’s performance was greatly dragged down.

Therefore, TIB/RV is the clear winner over SonicMQ in the
benchmark with its outstanding performance, effective
speed, high stability and low resource requirement. MOMs
with JMS-implementation typically rely on JVM and thus
suffer from high overhead, leading to trade off in
performance. As JMS is still rather new, it appears there are
still quite a few areas that can be improved.

7. References
1. Sun Java Message Service Tutorial,

http://java.sun.com/products/jms/tutorial/1_3-
fcs/doc/basics.html

2. TIB/Rendezvous Concepts – Product Overview,
TIB/Rendezvous Manual

3. TIB/Rendezvous Concepts – Fundamentals,
TIB/Rendezvous Manual

4. SonicMQ Deployment Guide, Sonic Software, Page 122,
http://www.sonicsoftware.com/products/documentation/
deploy.pdf

5. A Benchmark Comparison of Progress SonicMQ and
IBM MQSeries, Produced by Point Solutions,
http://www.sonicsoftware.com/white_papers/performanc
e.pdf

