
Deep Density Estimation
10716, Spring 2020
Pradeep Ravikumar

1 Introduction

Consider the density estimation problem where we wish to estimate the density p of some
distribution P , and where we are given samples {Xi}ni=1 drawn iid from that distribution.
Suppose we wish to do parametric density estimation: we then start with a parametric class
of densities {pθ}θ∈Θ, and then estimate the density pθ̂, for some θ̂ ∈ Θ, with the best fit to
the data {Xi}ni=1. There are two technical facets to this: (a) how to specify a parametric
family of densities, and (b) how to determine goodness of fit of any member of the family to
data.

Let us consider the first technical component. A popular class of univariate parametric
families is the class of exponential family distributions, which include popular distributions
such as the univariate Gaussian, Bernoulli, Poisson, and exponential distributions, among
others. These have also been extended to the multivariate case [Yang et al., 2015], which
moreover have some deeper connections to probabilistic graphical models. These parametric
classes could be enriched further via mixtures of such exponential family distributions, but
nonetheless, these might not always fit data such as images, with low-level features, very
well.

Now instead of such “classical” parametric families, suppose we have a very expressive class
of parametric functions {fθ} (e.g. deep neural networks) that can approximate very complex
functions very well. How do we use these for density estimation? One caveat to directly
using these as a class of parametric densities is the contraint that the densities be non-
negative, and integrate to one. One approach to enforce that is by parameterizing the logistic
transform η(x) instead, so that pθ(x) = exp(ηθ(x))∫

x∈X exp(ηθ(x))dx
is non-negative and is normalizable

by construction, with no further constraints on η(x) (other than for identifiability such as
that

∫
x∈X η(x) = 0, or η(x0) = 0, for some x0 ∈ X). The main caveat with this approach

is the normalization constant, which involves a multi-dimensional integral. Thus, the MLE
estimate of the parameters would yield:

inf
θ

{
− 1

n

n∑
i=1

ηθ(xi) + log

∫
x∈X

exp(ηθ(x))dx

}
,

which is in general intractable due to the multi-dimensional integral. Approaches to address
this range from approximations to the normalization factor, to surrogate likelihoods. Jeon
and Lin [2006] for instance (in the context of more general non-parametric density estimation)

1

suggest the following estimator:

inf
θ

{
1

n

n∑
i=1

exp(−ηθ(xi)) +

∫
x∈X

ηθ(x)ρ(x)dx

}
,

where ρ(x) is any simpler known density with the same support as the true density p(x).
As they show, the M -estimator above is consistent, and moreover is much more tractable
than the MLE. But overall, such surrogate likelihood approaches coupled with the logistic
transform seem less popular, since their theoretical properties are less well-understood, and
perhaps empirically they have not performed as well.

Over the last decade there have been a slew of alternative approaches that sidestep the
logistic transform route, with its normalization difficulties, altogether and instead specify
the random vector X as a transformation of some other latent variables, with some known
distribution, and since these transformations in general can be relatively unconstrained,
we sidestep issues of normalizability. These transformations typically involve deep neural
network based parametric functions, and hence are loosely called deep density estimators.

2 Variational Auto-Encoders

A very natural approach [Kingma and Welling, 2013] along these lines is to have:

Z ∼ N(0, Id)

X|Z = z ∼ N(µθ(z), σ2
θ(z)I),

or alternatively:

X = µθ(Z) + σθ(Z)W

where Z,W ∼ N(0, I). Thus, X has a well-defined density even when the mean and vari-
ance functions {µθ(z), σθ(z)}θ∈Θ are relatively unconstrained, with no normalization terms.
For instance, a highly expressive parametric family of choice for these mean and variance
functions are deep neural networks. The density of X is then given as:

p(X; θ) =

∫
z∈Rd

pN(x;µθ(z), σ2
θ(z)I) pN(z; 0, I)dz,

where pN(µ,Σ) is the multivariate Gaussian density. It can be seen that the density does
not have an explicit tractable form. To fit the parameters θ to the data, we could maximize
the likelihood of the observed data:

max
θ

1

n

n∑
i=1

log p(xi; θ),

2

but this is typically difficult due to the integral over the latent Gaussians. Even if we were
interested in Bayesian inference, the posterior P (Z|X) is intractable as well. At this stage,
it is not clear if we have gained anything over the logistic transform: substituting one high-
dimensional integral for another.

As before, we could optimize a surrogate likelihood instead. In so-called variational inference,
we compute parameterized lower bounds of the likelihood and optimize this lower bound
instead. Thus, if pθ(X) ≥ gθ;γ(X), for γ ∈ Γ, then we solve for:

max
θ∈Θ,γ∈Γ

1

n

n∑
i=1

log gθ;γ(xi).

With the above latent variable model, we have the following classical variational bound, also
called the Evidence Lower Bound or ELBO:

log pθ(x) = log

∫
z

pθ(x, z)dz

= log

∫
z

qφ(z|x)pθ(x|z)p(z)/qφ(z|x)

≥
∫
z

qφ(z|x) log p(z)/qφ(z|x) +

∫
z

qφ(z|x) log pθ(x|z)

= L(θ, φ, x) := −KL(qφ(z|x)‖p(z)) + Eqφ(z|x)[log pθ(x|z)],

so that instead of the maximizing the empirical expectation of log pθ(x), we maximize the
empirical expectation of the lower bound L(θ, φ, x) instead. We can moreover show that:

log pθ(x)− L(θ, φ, x) = KL(qφ(z|x)||pθ(z|x)),

so that the ELBO bound gets tighter as the variational approximation qφ(z|x) gets closer to
the intractable true posterior pθ(z|x).

A natural flexible parameterization is simply:

qφ(z|x) = N(µφ(x), σ2
φ(x)I),

where again the mean and variance functions µφ(x), σφ(x), can again be parameterized
by flexible families such as deep neural networks. Note that when taking an expecta-
tion Eqφ(z|x)[f(z)], we can “reparameterize” z = h(x,w) := µφ(x) + σφ(x)w in terms of
w ∼ N(0, I), so that

Eqφ(z|x)[f(z)] = Ew∼N(0,I)[f(h(w, x))],

which can be approximated via Monte Carlo samples of w, and no explicit density calcula-
tions of qφ(z|x). This is called the “reparameterization trick”.

The above approach is also called the Variational Auto-encoder, since it is reminiscent of
auto-encoders that were used to learn compact representations of the input x. As an instance,

3

suppose we wish to get a representation z ∈ Rd of the input x ∈ Rp for some d < p, via the
following “encoder” model:

z = g(b+Wx),

which is then coupled with a “decoder” model:

x̂ = g(c+ V z),

for some point-wise non-linearity g(·), and some vectors b, c, and matrices W,V . We could
learn these parameters by minimizing the reconstruction error:

inf
θ

∑
i

‖x̂i − xi‖.

Here the “encoder” transformation from x to z, as well as a “decoder” transformation from
z to x are both deterministic, and hence this does not specify a density model for x. With
the variational autoencoder, both these transformations are stochastic, and moreover, there
was an explicit distribution imposed on the latent representations z, which thus specified a
distribution over the inputs x.

While in the original variational auto-encoder, qφ(z|x) was set to be a Gaussian with param-
eterized mean and variance, one could also use other flexible parameterizations, including
the invertible neural networks or normalizing flows to be discussed in the next section.

One could also use a stacked set of latent Gaussians as:

zL ∼ N(0, I)

zl|zl+1 ∼ N(µl(zl+1), σ2
l (zl+1)I)

x|z1 ∼ N(µ0(z1), σ2
0(z1)I)

in what are called Deep Latent Gaussian Models [Rezende et al., 2014], though these seem
less popular, perhaps due to the added complexity.

3 Normalizing Flows

Suppose as before, we have a latent representation Z ∼ N(0, I). But now, suppose we have
a deterministic transformation from Z to X as:

X = gθ(Z),

for some flexible parametric function gθ. Suppose gθ is invertible (which is a big if). Then
by the change of variables formula:

pX;θ(x) = pZ(g−1
θ (x))|detJg−1(x)|,

4

where [Jh(x)]ij = ∂hi(x)/∂xj, so that the density has a nice closed form expression. Thus,
given samples {xi}ni=1, we could thus directly solve for the MLE:

inf
θ

n∑
i=1

− log pX;θ(xi).

Note that these can be stacked, so that we could obtain a stacked transformation ZK =
gK ◦ . . . ◦ g1(Z0), which in turn will have the log-density:

log pK(zK) = log p0(z0)−
K∑
k=1

log |detJgk(zk)|.

The path formed by the random variables Zk is called a “flow,” and the path formed by the
distributions Pk is called a “normalizing flow” [Rezende and Mohamed, 2015].

Note that by the so-called reparameterization trick introduced earlier EpK [h(X)] = Ep0 [h(gK◦
. . . ◦ g1(z0))] which does not involve Jacobian calculations.

3.1 Invertible Maps

The key caveats with normalizing flows are two-fold: (a) the transformation gθ has to be
invertible, and (b) the density involves the Jacobian of the transformation, which could be
expensive for general invertible maps.

Some simple classes of invertible transformations (which as noted above can be stacked to
get “deep” flow tranforms) include:

g(z) = z + uh(wT z + b),

which are invertible for specific settings of (h, u, w) e.g. h = tanh(·) and wTu >= −1 [Rezende
and Mohamed, 2015].

An alternative approach, called NICE [Dinh et al., 2014], is to split X = (X1, X2) as well as
Z = (Z1, Z2) into two blocks of variables with the blocked transform:

X1 = Z1

X2 = Z2 +m(Z1),

for an arbitrary, potentially non-invertible function m(·). It can be seen that the transfor-
mation from Z to X is trivially invertible:

Z1 = X1

Z2 = X2 −m(X1).

5

Moreover, the Jacobian of the transformation is triangular, so that its determinant is simply
the product of diagonal entries, and hence easy to compute. A related triangular Jacobian
transformation [Dinh et al., 2016] is given by:

X1 = Z1

X2 = Z2 � exp(m1(Z1)) +m2(Z1),

which can again be trivially inverted for arbitrary m1(·),m2(·), via:

Z1 = X1

Z2 = (X2 −m2(X1))� exp(−m1(X1)).

4 Autoregressive Flows

The simple triangular Jacobian examples had an implicit auto-regressive character: we could
specify the joint distribution via the marginal distribution of a subset of variables X1, and
the conditional distribution of the remaining subset X2 conditioned on X1. Autoregressive
flows generalize this to allow for more general auto-regressive transformations.

In a so-called Masked Autoregressive Flow (MAF) [Papamakarios et al., 2017], this is given
as:

Xi = µi + Zi exp(αi),

where Zi ∼ N(0, 1), and µi = gµi(X<i), and αi = gσi(X<i), so that X is a transformation
of the standard Gaussian vector Z, and where the transformation is specified in an auto-
regressive manner. It can be seen that the inverse is easily computed:

Zi = (Xi − µi) exp(−αi),

so that Z can be recovered given X, and that moreover the determinant of the Jacobian of
the transformation X = g(Z) is easily computed as |detJg−1(x)| = exp(−

∑
i αi). MAF can

transform X to Z in one (parallelized) iteration, but requires p iterations to transform Z to
X.

A variant of MAF is Inverse Autoregressive Flow (IAF) [Kingma et al., 2016], where we
have:

Xi = µi + Zi exp(αi),

where µi = gµi(Z<i), and αi = gαi(Z<i). Its inverse is again given as:

Zi = (Xi − µi) exp(−αi),

but note that in this case, IAF can transform Z to X in one vectorized iteration, but requires
p iterations to transform X to Z. Thus the slight difference in choices between IAF and MAF

6

can result in vastly different computational times for specific tasks. Note that transform X
to Z is required for calculating the density of a point X, while transforming Z to X is
required to generate new samples.

Stacking such auto-regressive transformations X = gK◦. . .◦g1(Z) is called an “autoregressive
flow”, as a special instance of normalizing flows.

4.1 General Auto-regressive Distributions

Classically, auto-regressive models were used to directly parameterize joint distributions
(rather than simply transformations) via parameterizing conditional distributions specified
by the standard chain rule

pθ(x) =

p∏
i=1

pθ(xi|x<i).

A classical approach to model pθ(xi|x<i) is to make a Markov assumption that pθ(xi|x<i) =
pθ(xi|xi−1, . . . , xi−k) so that the conditional distribution of Xi conditioned on all previous
variables only depends on the k most recent variables before Xi. Another approach is to use
sequence model based recurrences, such as:

hi = fθh(hi−1)

xi = fθx(xi−1, hi),

for some parametric functions fθ;h(·), and fθ;x(·, ·). Such recurrence based sequence models,
such as recurrent neural networks (RNNs), are by now the parametric models of choice for
sequence based data where the sequence order is very naturally specified, for instance, via
time. But they are far less popular when there is no such natural sequence order, in large
part because the performance of such models is very sensitive to such ordering. This can be
seen even in the two variable case in the following example where an auto-regressive model
with the ordering (x1, x2) is able to model the data, but an auto-regressive model with
the ordering (x2, x1) is not able to. [Figure 1 from Masked Autoregressive flow for density
estimation].

One approach to address this to use different orderings, and use an ensemble or mixture of
the resulting distributions. Another approach is to use different orderings in each layer of
an “autoregressive flow” X = gK ◦ . . . ◦ g1(Z), where we use a different ordering for each
auto-regressive transformation gi, for i = 1, . . . , K. This provides another rationale for the
use of auto-regressive flows, rather than sequence based auto-regressive recurrence models,
in addition to other benefits of normalizing flows, such as the ease of computing the density,
and sampling.

7

5 Generative Adversarial Networks (GANs)

Suppose we have a parametric transformation X = gθ(Z) of some base distribution z. Pro-
vided the transformation gθ is invertible as with normalizing flows, we can compute the
density pθ(x) of the random vector x, and consequently use MLE:

θ̂ ∈ arg inf
θ

1

n

n∑
i=1

log pθ(xi),

to estimate the parameters θ̂ given samples {xi}ni=1. There are two caveats here. The first is
that this is not feasible when gθ is not invertible, which would be the case for instance, for
most modern architectures of deep neural networks. The second caveat is more subtle, and is
due to the very nature of the MLE as minimizing the empirical variant of the KL divergence
between the true data distribution P and the implicit distribution Pθ over X with density
pθ:

inf
θ

KL(P, Pθ).

Note that KL(P,Q) =
∫
p(x) log p(x)/q(x)dx, so that this would be large if there are P -likely

regions where q(x) is small and p(x) is large: which encourages q(x) to have support in the
P -likely regions of the input space. But this does not ensure that q(x) be small where p(x) is
small: such a property would ne required to ensure that samples from Q be P -realistic (i.e.
do not have small density with respect to true data distribution P). How do we encourage
the latter property? By simply minimizing KL(Q,P) =

∫
q(x) log q(x)/p(x)dx, which would

be large if there are Q-likely regions where p(x) is small and q(x) is large. A caveat with
KL(Qθ, P) on the other hand is practical: it is not decomposable, so that it is not clear how
to optimize this given just samples {xi}ni=1 from P . Combining both these asymmetric KL
divergences yields the Jensen-Shannon divergence:

JSD(P,Q) = KL

(
P ,

P +Q

2

)
+ KL

(
Q ,

P +Q

2

)
,

which has the additional advantage of being symmetric in its arguments. This loss again
is not decomposable, so that it is not clear how to optimize this given just samples {xi}ni=1

from P . In a seminal paper, Goodfellow et al. [2014] showed that one can indeed mini-
mize the Jensen-Shannon divergence given samples by considering a variational form using
“generators” and “discriminators”.

Suppose D : X 7→ [0, 1] be a classifier (ideally probabilistic, but more generally with an
output of classifier scores between 0 and 1). Given the parameterized density qθ, and the
density of the true data distribution p, consider the following variational form:

V (p, qθ, D) = Ex∼p[logD(x)] + Ex∼qθ [log(1−D(x))].

Goodfellow et al. [2014] then showed the following useful result:

max
D

V (p, qθ, D) = − log(4) + 2JSD(p, qθ),

8

so that
arg min

θ
max
D

V (p, qθ, D) = arg min
θ

JSD(p, qθ).

The interesting facet of V (p, qθ, D) is that it is decomposable, so that it can be approximated
well via samples (from both p as well as qθ), thus facilitating learning the parameters of the
density qθ by minimizing the Jensen-Shannon divergence itself with respect to the true data
distribution.

The variational objective V (p, qθ, D) can also be motivated as specifying a min-max adversar-
ial game between the “generative” density qθ, and a discriminatorD that aims to discriminate
between samples from Qθ and P , while the generator Qθ aims to fool the discriminator D.
Specifically, consider the following classification task, where Y = 1 indicates the true data
distribution and Y = 0 indicates Qθ, so that X|(Y = 1) ∼ P , and X|(Y = 0) ∼ Qθ. The
expected cross-entropy loss of a probabilistic discriminator D : X 7→ [0, 1] is then given by

E [Y logD(X) + (1− Y) log(1−D(X))]

= E[logD(X)|Y = 1]P (Y = 1) + E[log(1−D(X))|Y = 0]P (Y = 0)

= 0.5 ∗ EX∼P [logD(X)] + 0.5 ∗ EX∼Qθ [log(1−D(X))]

= 0.5 ∗ V (p, qθ, D)

using P (Y = 1) = P (Y = 0) = 1/2.

Thus, the variational objective V (p, qθ, D) is simply twice the expected cross entropy loss of
the discriminator D(·) in the classification task of discriminating between the true distribu-
tion P and the generative model Qθ.

6 Destructive Distribution Learning

So far we have considered a largely “constructive” learning approach where we learn a trans-
formation gθ(Z) of a random vector Z with known simple distribution (such as independent
Gaussian) and fit the parameters so that the transformed distribution Pgθ(Z) is as close to the
true data distribution PX as possible, for instance by solving for the following (population)
objective:

inf
θ
KL(PX , Pgθ(Z)).

An alternative approach is to consider a “destructive” learning approach where we learn
a transformation hθ(X) of the data random vector X, and fit the parameters so that the
transformed distribution Phθ(X) is as close to a random vector Z with known simple distri-
bution (such as independent Gaussian). Such a transformation is called destructive learning
since we aim to “destroy” the structure in X, reducing it to say an independent Gaussian
distribution.

9

But while (imperfectly) transforming Z to X seems useful from a density estimation per-
spective, why would we want to (imperfectly) transform X to Z? There are two reasons to
do so. The first is that of representation learning, as we discuss further below. The second
is that we could also use it as density estimation procedure.

6.1 Representation Learning

Tranforming X to Z with known or simple distribution could be cast as “encoding” the
data X into a representation that is “simple”. A variant of this is Independent Component
Analysis (ICA), where we (typically) only assume that Z is independent. This is not however
sufficient to make the transformation identifiable. For instance, if Z1 and Z2 are independent,
then so are component-wise transformations f1(Z1) and f2(Z2). Even if we restrict the
distribution of the independent vector Z, the indeterminacy remains. Suppose we have a
transformation h : X 7→ [0, 1]d that maps X to a uniform random vector Z ∈ [0, 1]d. Then,
given any measure-preserving automorphism g : [0, 1]d 7→ [0, 1]d, it is clear that g ◦ h will be
another solution to the ICA problem of transforming X to a uniform random vector.

So, such a destructive mapping, if it exists, is not unique. But what about existence of such
a mapping? One can show this via the following constructive mapping.

Suppose we set Z1 ∼ Unif[0, 1]. And for j = 2, . . . , d, denote Fj(x; z1, ..., zj) = P (X ≤ x|Z1 =
z1, . . . , Zj = zj) as the conditional CDF of X conditioned on j uniform random variables
{Z`}j`=1. Then set Zj+1 = Fj(X; z1, . . . , zj). It can be seen that (Z1, ..., Zd) ∼ Unif[0, 1]d.
This is simply the multivariate extension of the classical univariate CDF transformation
result that FV (V) Unif[0, 1], where V ∈ R is some real-valued random variable, and FV is its
CDF. Thus, stitching these conditional CDF transformations together, we get the mapping:
Z = h(X). The main caveat with this constructive mapping is that such conditional CDFs
are difficult to estimate for multivariate data.

6.2 Density Estimation

The other reason we might want to learn an imperfect mapping hθ(·) from X to Z is that in
the limit where we are able to truly convert X to Z with known distribution, then we can
recover the density of X by the change of variable formula applied to the transformation
h−1
θ (Z), so that

ph−1
θ (Z)(x) = pZ(hθ(x))|detJhθ(x)|,

as with normalizing flows. Since hθ is an imperfect transformation of X to Z, similarly,
h−1
θ will be an imperfect transformation from Z to X, which is the case with constructive

approaches such as normalizing flows as well. A more critical concern with the destructive
learning approach is computational/practical.

10

Consider the objective:

inf
θ

KL(Phθ(X), PZ)

= inf
θ

∫
z

phθ(X)(z) log phθ(X)(z)/pZ(z)dz.

It can be seen that it is not clear how to optimize this objective given just samples {xi}ni=1

drawn from PX , since without access to the true density pX , we might not be able to evaluate
the transformed density phθ(X)(z) (note that in the case of normalizing flows, we had access to
the base density pZ , and so could evaluate the density of transformations of this base density).
But the following simple identity essentially notes reduces it to constructive learning:

Theorem 1 (Destructive-Constructive Identity)

KL(Phθ(X), PZ) = KL(PX , Ph−1
θ (Z)).

This theorem has (re-)appeared in many recent generative model papers; see for instance
[Ballé et al., 2015, Papamakarios et al., 2017]. The proof just follows from some applications
of the change of variables formula:

KL(Phθ(X), PZ) =

∫
z

phθ(X)(z)
(
log phθ(X)(z)− log pZ(z)

)
dz

=

∫
x

pX(x)

∣∣∣∣det
∂x

∂z

∣∣∣∣ (log pX(x)

∣∣∣∣det
∂x

∂z

∣∣∣∣− log pZ(hθ(x))

) ∣∣∣∣det
∂z

∂x

∣∣∣∣ dx
=

∫
x

pX(x)

(
log pX(x)− log pZ(hθ(x))

∣∣∣∣det
∂z

∂x

∣∣∣∣) dx
=

∫
x

pX(x)
(

log pX(x)− log ph−1
θ (Z)(x)

)
dx

= KL(PX , Ph−1
θ (Z)),

where ∂x
∂z

= Jh−1
θ (hθ(x)), and ∂z

∂x
= Jhθ(x), and where we used the property of Jacobians

that ∂x
∂z

= (∂z
∂x

)−1, and the property of determinants that det(A−1) = 1/det(A).

Thus, destructive learning is equivalent to constructive learning with invertible transforma-
tions, so that it is not clear why we should not simply use constructive learning approaches
if we care about density estimation. One methodological advantage could be that we could
use insights from other fields to obtain invertible “destructive” transformations. For instance
[Ballé et al., 2015] suggest the following “divisive normal” transformation from X to Z:

U = H X

Zi =
Ui

(βi +
∑d

j=1 γij|Uj|αij)εi
,

11

for some parameter matrices H,α, γ ∈ Rd×d, and parameter vectors β, ε ∈ Rd which they
motivate from neuroscience considerations.

There are also particular classes of transformations where the solution of the destructive
learning problem is easier. Consider the class of transformations of the following form:

H = {h : X ⊆ Rd 7→ Rd |h(x) = (Ψ1(A1x), . . . ,Ψd(Adx)},

where A ∈ Rd×d, and Aj is the j-th row of A, for j ∈ [d], and {Ψj}dj=1 are pointwise
invertible univariate transformations. We will denote Ψ(u) = (Ψ1(u1), . . . ,Ψd(ud)), so that
the transformations h = Ψ(Ax) consist of a linear transformation, followed by coordinatewise
transformations.

We then wish to solve for:
inf
Ψ,A

KL(PhΨ,A(X), PZ).

The solution (Ψ∗, A∗) to this can be characterized simply:

A∗ = arg inf
A
I(AX),Ψ∗j = Φ−1FA∗jX(A∗jX),

where I(·) is the mutual information of a random vector, and Φ(·) is the standard Gaussian
CDF. Minimizing I(AX) over matrices A is essentially the linear ICA problem, which aims to
find a linear transformation of X that reduces dependence among the transformed variables
as much as possible. While Ψ∗j is simply a univariate Gaussianization transform, which is a
composition of the univariate CDF of the linear transformed variable, and an inverse of the
standard Gaussian CDF. Both of these have practical if approximate implementations.

To see why the solution has such a nice closed form, let us first define the marginal KL
divergence: marginal-KL(PU , PV) :=

∑d
j=1 KL(PUj , PVj), as the sum of the KL divergences

between the corresponding d marginal distributions. From some algebraic calculations, we
can then write

KL(PΨ◦AX , PZ) = marginal-KL(PΨ◦AX , PZ) + I(Ψ ◦ AX).

But for invertible Ψ, I(Ψ ◦ AX) = I(AX), so that Ψ can be obtained by minimizing just
the first term, which yields that it is the pointwise Gaussianization of the optimal linear
transformation ofX. Given this optimal Ψ∗, the first term becomes zero, so that the objective
then reduces to the second term which is precises the linear ICA objective I(AX). One can
also use the decomposition above to suggest a linear ICA algorithm. Note that if we restrict
A to be orthogonal, we then have that:

KL(PX , PZ) = KL(PAX , PZ) = marginal-KL(PAX , PZ) + I(AX).

Since the LHS does not depend on A, we then get that:

inf
A
I(AX) = sup

A
marginal-KL(PAX , PZ),

12

so that we aim to find a linear transformation A that makes the coordinates of AX be as
non-Gaussian as possible. The overall optimal solution then seems very intuitive: A aims to
find the directions under which the projection of X is most non-Gaussian. Ψ then marginally
Gaussianizes these transformed variables.

Both the destructive transforms above might not seem that flexible. But one advantage of
destructive transformations such as the above is that we can iterate over these, destroying
a bit of X in every iteration. So, starting with X1 = X, in iteration t = 1, . . ., we find ht =
arg infh∈HKL(Ph(Xt), PZ), and then destroy Xt as Xt+1 = ht(Xt). A consistency property
that would be good to have is that KL(PXt , PZ)→ 0. This was shown to indeed be the case
with the Gaussianization transformation above [Chen and Gopinath, 2001].

One could also view the iterates above as greedily learnt stacked destructors: Xt+1 = ht ◦
. . . ◦ h1(X). Given the equivalence in the beginning of the section, Inouye and Ravikumar
[2018] thus suggested the following general algorithm for destructive learning:

gt = arg inf
g∈G

KL(PXt , Pg(Z)),

for some simple class of invertible functions G, and then use Xt+1 = g−1
t (Xt). This thus gen-

eralizes the Gaussianization transforms above to a much larger class of generative models,
that simply fit a generative model over the current data iterate Xt, and then use this gen-
erative model to extract a destructive transform to further transform the data and iterate.
Note that such a destructive iterative algorithm is much more computationally feasible than
a constructive iterative algorithm that would aim to solve:

gt = arg inf
g∈G

KL(PX , Pg(Zt)),

where Zt = gt−1 ◦ . . . ◦ g1(Z), where the main computational concern is the computation of
the densities of Zt.

Inouye and Ravikumar [2018] also show that even if we simply solve for simple or shallow
density estimation via:

Qt = arg inf
Q∈Q

KL(PXt , PQ),

one can in most cases extract a destructive transform h(·) from PQ such that PQ = Ph(Z).
This further increases the ease of each destructive iteration: one performs shallow density
estimation using their method of choice, extract the corresponding destructive transform,
and use this to further transform the data, and iterate. So by a series of shallow density
estimation procedures, we are able to fit a “deep” density destructively.

One simple approach to extract the invertible destructor h(·), for a given Q (so that Ph(Z) ≡
PQ) is to use the conditional univariate CDF transformations discussed earlier. But in
most cases such destructive transforms can be obtained even more simply. See [Inouye and
Ravikumar, 2018] for examples with many common used shallow densities.

13

References

Eunho Yang, Pradeep Ravikumar, Genevera I Allen, and Zhandong Liu. Graphical models
via univariate exponential family distributions. The Journal of Machine Learning Re-
search, 16(1):3813–3847, 2015.

Yongho Jeon and Yi Lin. An effective method for high-dimensional log-density anova es-
timation, with application to nonparametric graphical model building. Statistica Sinica,
pages 353–374, 2006.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation
and variational inference in deep latent gaussian models. In International Conference on
Machine Learning, volume 2, 2014.

Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows.
arXiv preprint arXiv:1505.05770, 2015.

Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent compo-
nents estimation. arXiv preprint arXiv:1410.8516, 2014.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp.
arXiv preprint arXiv:1605.08803, 2016.

George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow for
density estimation. In Advances in Neural Information Processing Systems, pages 2338–
2347, 2017.

Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling.
Improved variational inference with inverse autoregressive flow. In Advances in neural
information processing systems, pages 4743–4751, 2016.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in
neural information processing systems, pages 2672–2680, 2014.

Johannes Ballé, Valero Laparra, and Eero P Simoncelli. Density modeling of images using a
generalized normalization transformation. arXiv preprint arXiv:1511.06281, 2015.

Scott Saobing Chen and Ramesh A Gopinath. Gaussianization. In Advances in neural
information processing systems, pages 423–429, 2001.

David Inouye and Pradeep Ravikumar. Deep density destructors. In International Confer-
ence on Machine Learning, pages 2167–2175, 2018.

14

