
Linear/Additive Non-Parametric Estimation
10716, Spring 2020

Pradeep Ravikumar (amending notes from Larry
Wasserman)

1 Introduction

Consider the linear regression model:

Y =
d∑
j=1

βjXj + ε,

where E(ε) = 0, so that the regression function m(X) := E(Y |X) is a linear function of
X. More generally, suppose m ∈ H, so that the regression function lies in a Hilbert space
of functions. Let D be a dictionary which is any set of functions from H whose linear
span is H. The elements of D are called atoms, or simply, dictionary elements. We do not
necessarily assume that the dictionary elements are orthogonal. Though we will typically
assume that the atoms are normalized, that is, ‖ψ‖ = 1 for all ψ ∈ D. We will also assume
that D is finite or countable so we can write D = {ψj}j∈N.

In such a case, we can then write m(X) =
∑

j βjΨj(Xj), so that it is linear given the
dictionary D.

This could thus be viewed as infinite-dimensional analogue of linear regression. In the sequel,
in places, we might overload notation, and assume that X itself is infinite-dimensional,
without loss of generality.

We then wish to estimate this regression function given observationsD := {(X1, Y1), . . . , (Xn, Yn)}
where Xi = (Xi(1), . . . , Xi(d)) ∈ Rd and Yi ∈ R.

We would be interested in the conditional prediction risk

r(m̂) = E[(Y − m̂(X))2|D] =

∫
(y − m̂(x))2dP (x, y)

and the prediction risk of m̂ is

R(m̂) = E(Y − m̂(X))2 = E[r(m̂)]

where the expected value is over all random variables.

1

2 Review: Low Dimensional Linear Regression

Let us first review some classical results for finite low-dimensional linear regression.

Recall that the ordinary least squares (OLS) estimate of the best linear model

β̂ ∈ arg min
β

1

n

∑
i

(Yi −XT
i β)2

is given by
β̂ = Σ̂−1α̂

where Σ̂ = n−1
∑n

i=1 XiX
T
i and α̂ = n−1

∑n
i=1 YiXi.

Theorem 1 (Theorem 11.3 of Gyorfi, Kohler, Krzyzak and Walk, 2002) Let σ2 =
supx Var(Y |X = x) < ∞. Assume that all the random variables are bounded by L < ∞.
Then

E
∫
|β̂Tx−m(x)|2dP (x) ≤ 8 inf

β

∫
|βTx−m(x)|2dP (x) +

Cd(log(n) + 1)

n
.

The proof is straightforward but is very long. The strategy is to first bound n−1
∑

i(β̂
TXi−

m(Xi))
2 using the properties of least squares. Then, using concentration of measure one can

relate n−1
∑

i f
2(Xi) to

∫
f 2(x)dP (x).

We can further tighten the result above via the following concentration result:

Theorem 2 (Hsu, Kakade and Zhang 2014) Let m(x) = E[Y |X = x] and ε = Y −
m(X). Suppose there exists σ ≥ 0 such that

E[etε|X = x] ≤ et
2σ2/2

for all x and all t ∈ R. Let βTx be the best linear apprximation to m(x). With probability
at least 1− 3e−t,

r(β̂)− r(β) ≤ 2A

n
(1 +

√
8t)2 +

σ2(d+ 2
√
dt+ 2t)

n
+ o(1/n)

where A = E[||Σ−1/2X(m(X)− βTX)||2].

Thus, the excess prediction risk scales as d logn
n

, which clearly does not allow for high-
dimensional d, let alone infinite-dimensions.

2

2.1 Ridge Regression

An alternative classical approach is to minimize

1

n

∑
i

(Yi −XT
i β)2 + λ||β||2

where λ ≥ 0. The minimizer is
β̂ = (Σ̂ + λI)−1α̂.

Theorem 3 (Hsu, Kakade and Zhang 2014) Suppose that ||Xi|| ≤ r. Let βTx be the
best linear apprximation to m(x). Then, with probability at least 1− 4e−t,

r(β̂)− r(β) ≤ E[(Y − β̂TX)2]− E[(Y − βTX)2] ≤

(
1 +O

(
1 + r2

λ

n

))
λ||β||2

2
+
σ2

n

tr(Σ)

2λ
.

Thus, provided the effective dimensionality for ridge regression depends on the spectrum
of the population covariance Σ, namely on tr(Σ). The analysis could be tightened, but is
nonetheless not suited for infinite-dimensional contexts in the traditional ridge regression
form.

3 Orthogonal Greedy Algorithm

Let ΣN denote all linear combinations of elements of D with at most N terms. Define the
best N -term approximation error

σN(f) = inf
|Λ|≤N

inf
g∈Span(Λ)

‖f − g‖ (1)

where Λ denotes a subset of D and Span(Λ) is the set of linear combinations of functions in
Λ.

We will assume that the regresstion function f is in the span of the dictionary. The function
may then have more than one expansion of the form f =

∑
j βjψj. We define the norm

‖f‖Lp = inf ‖β‖p

where the infimum is over all expansions of f .

We will first consider the population or noiseless variant of the regression problem, where
we are given the true function f and we aim to approximate it via a linear combination
of dictionary elements. In this population or functional setting, we present an algorithm

3

1. Input: f .

2. Initialize: r0 = f , f0 = 0, V = ∅.

3. Repeat: At step N define

gN = argmaxψ∈D|〈rN−1, ψ〉|

and set VN = VN−1 ∪ {gN}. Let fN be the projection of rN−1 onto Span(VN).
Let rN = f − fN .

Figure 1: The Orthogonal Greedy Algorithm.

called Orthogonal Greedy Algorithm (OGA), also known as Orthogonal Matching
Pursuit. The algorithm is given in Figure 1.

The algorithm produces a series of approximations fN with corresponding residuals rN . We
have the following two theorems from Barron et al (2008), the first dating back to DeVore
and Temlyakov (1996).

Theorem 4 For all f ∈ L1, the residual rN after N steps of OGA satsifies

‖rN‖ ≤
‖f‖L1√
N + 1

(2)

for all N ≥ 1.

Proof. Note that fN is the best approximation to f from Span(VN). On the other hand, the
best approximation from the set {a gN : a ∈ R} is 〈f, gN〉gN . The error of the former must be
smaller than the error of the latter. In other words, ||f−fN ||2 ≤ ||f−fN−1−〈rN−1, gN〉gN ||2.
Thus,

‖rN‖2 ≤ ‖rN−1 − 〈rN−1, gN〉gN‖2

= ‖rN−1‖2 + |〈rN−1, gN〉|2 ‖gN‖2︸ ︷︷ ︸
=1

−2|〈rN−1, gN〉|2

= ‖rN−1‖2 − |〈rN−1, gN〉|2. (3)

Now, f = fN−1 + rN−1 and 〈fN−1, rN−1〉 = 0. So,

‖rN−1‖2 = 〈rN−1, rN−1〉 = 〈rN−1, f − fN−1〉 = 〈rN−1, f〉 − 〈rN−1, fN−1〉︸ ︷︷ ︸
=0

= 〈rN−1, f〉 =
∑
j

βj〈rN−1, ψj〉 ≤ sup
ψ∈D
|〈rN−1, ψ〉|

∑
j

|βj|

= sup
ψ∈D
|〈rN−1, ψ〉| ‖f‖L1 = |〈rN−1, gN〉| ‖f‖L1 .

4

Continuing from equation (3), we have

‖rN‖2 ≤ ‖rN−1‖2 − |〈rN−1, gN〉|2 = ‖rN−1‖2

(
1− ‖rN−1‖2|〈rN−1, gN〉|2

‖rN−1‖4

)
≤ ‖rN−1‖2

(
1− ‖rN−1‖2|〈rN−1, gN〉|2

|〈rN−1, gN〉|2 ‖f‖2
L1

)
= ‖rN−1‖2

(
1− ‖rN−1‖2

‖f‖2
L1

)
.

If a0 ≥ a1 ≥ a2 ≥ · · · are nonnegative numbers such that a0 ≤ M and aN ≤ aN−1(1 −
aN−1/M) then it follows from induction that aN ≤M/(N + 1). The result follows by setting
aN = ‖rN‖2 and M = ‖f‖2

L1 . �

If f is not in L1, it is still possible to bound the error as follows.

Theorem 5 For all f ∈ H and h ∈ L1,

‖rN‖2 ≤ ‖f − h‖2 +
4‖h‖2

L1
N

. (4)

Proof. Choose any h ∈ L1 and write h =
∑

j βjψj where ‖h‖L1 =
∑

j |βj|. Write f =

fN−1 +f −fN−1 = fN−1 +rN−1 and note that rN−1 is orthogonal to fN−1. Hence, ‖rN−1‖2 =
〈rN−1, f〉 and so

‖rN−1‖2 = 〈rN−1, f〉 = 〈rN−1, h+ f − h〉 = 〈rN−1, h〉+ 〈rN−1, f − h〉
≤ 〈rN−1, h〉+ ‖rN−1‖ ‖f − h‖
=

∑
j

βj〈rN−1, ψj〉+ ‖rN−1‖ ‖f − h‖

≤
∑
j

|βj| |〈rN−1, ψj〉|+ ‖rN−1‖ ‖f − h‖

≤ max
j
|〈rN−1, ψj〉|

∑
j

|βj|+ ‖rN−1‖ ‖f − h‖

= |〈rN−1, gk〉| ‖h‖L1 + ‖rN−1‖ ‖f − h‖

≤ |〈rN−1, gk〉| ‖h‖L1 +
1

2
(‖rN−1‖2 + ‖f − h‖2).

Hence,

|〈rN−1, gk〉|2 ≥
(‖rN−1‖2 − ‖f − h‖2)2

4‖h‖2
L1

.

Thus,

aN ≤ aN−1

(
1− aN−1

4‖h‖2
L1

)
where aN = ‖rN‖2 − ‖f − h‖2. By induction, the last displayed inequality implies that
aN ≤ 4‖h‖2

L1/k and the result follows. �

5

1. Input: Y ∈ Rn.

2. Initialize: r0 = Y , f̂0 = 0, V = ∅.

3. Repeat: At step N define

gN = argmaxψ∈D|〈rN−1, ψ〉n|

where 〈a, b〉n = n−1
∑n

i=1 aibi. Set VN = VN−1 ∪{gN}. Let fN be the projection
of rN−1 onto Span(VN). Let rN = Y − fN .

Figure 2: Orthogonal Greedy (Forward Stepwise) Regression (Dictionary Version)

Corollary 6 For each N ,

‖rN‖2 ≤ σ2
N +

4θ2
N

N

where θN is the L1 norm of the best N-atom approximation.

In Figure 2, we present the noisy variant of the algorithm, where we are provided noisy
samples Y = (Y1, . . . , Yn)T of the regression function at inputs X = (X1, . . . , Xn). The
corresponding algorithm is also called forward stepwise regression. We will also use the
empirical norm defined by

‖h‖n =

√√√√ 1

n

n∑
i=1

h2(Xi).

We assume that the dictionary is normalized in this empirical norm.

By combining the previous results with concentration of measure arguments we get the
following result, due to Barron, Cohen, Dahmen and DeVore (2008).

Theorem 7 Let hn = argminh∈FN‖f0 − h‖2. Suppose that lim supn→∞ ‖hn‖L1,n < ∞. Let
N ∼

√
n. Then, for every γ > 0, there exist C > 0 such that

‖f − f̂N‖2 ≤ 4σ2
N +

C log n

n1/2

except on a set of probability n−γ.

The rate n−1/2 is in fact optimal. A fascinating facet of the bound above is the rate is
independent of the dimension.

6

4 Weak Greedy Algorithm

We will next present an algorithm, known as the weak greedy algorithm, which is as
follows. We will again first consider the population or functional setting, where we aim to
approximate the given regression function as a linear combination of dictionary elements.
Let R0(f) = f , F0 = 0. At step k, find gk ∈ D so that

|〈Rk−1(f), gk〉| ≥ tk sup
h∈D
|〈Rk−1(f), h〉|

for some 0 < tk ≤ 1. In the weak greedy algorithm we take Fk = Fk−1+〈f, gk〉gk. In the weak
orthogonal greedy algorithm we take Fk to be the projection of Rk−1(f) onto {g1, . . . , gk}.
Finally set Rk(f) = f − Fk.

Theorem 8 (Temlyakov 2000) Let f(x) =
∑

j βjgj(x) where gj ∈ D and
∑∞

j=1 |βj| ≤
B <∞. Then, for the weak orthogonal greedy algorithm

‖Rk(f)‖ ≤ B(
1 +

∑k
j=1 t

2
j

)1/2
(5)

and for the weak greedy algorithm

‖Rk(f)‖ ≤ B(
1 +

∑k
j=1 t

2
j

)tk/(2(2+tk))
. (6)

The noisy sample variants of the above algorithms simply replace 〈f,Xj〉 with 〈Y,Xj〉n =
n−1

∑
i YiXij.

We already covered the sample counterparts of orthogonal greedy or matching pursuit. The
weak version translates similarly. The sample counterpart of (weak) greedy is also called
matching pursuit. In slight variant, called L2 boosting, at step k, find gk ∈ D as

arg min
h∈D

min
α∈R
‖Rk−1(f)− αh‖2

2.

Theorem 9 The sample variant of the matching pursuit estimator is linear. In particular,

Ŷ (k) = BkY (7)

where Ŷ (k) = (m̂(k)(X1), . . . , m̂(k)(Xn))T ,

Bk = I − (I −Hk)(I −Hk−1) · · · (I −H1), (8)

and

Hj =
Ψ̄jΨ̄

T
j

‖Xj‖2
, (9)

where Ψ̄j = (Ψj(X1), . . . ,Ψj(Xn)).

7

Theorem 10 (Bühlmann 2005) Let mn(x) =
∑dn

j=1 βj,nψj(x) be the best linear approxi-
mation based on dn terms. Suppose that:

(A1 Growth) dn ≤ C0e
C1n1−ξ

for some C0, C1 > 0 and some 0 < ξ ≤ 1.

(A2 Sparsity) supn
∑dn

j=1 |βj,n| <∞.

(A3 Bounded Covariates) supn max1≤j≤dn maxi |Ψj(Xi| <∞ with probability 1.

(A4 Moments) E|ε|s <∞ for some s > 4/ξ.

Then there exists kn →∞ such that

EX |m̂n(X)−mn(x)|2 → 0 (10)

as n→ 0.

As a sketch of the proof, recall that the noisy sample variant of L2 boosting replaces 〈f,Xj〉
with 〈Y,Xj〉n = n−1

∑
i YiXij.

Note that 〈Y,Xj〉n has mean 〈f,Xj〉. The main burden of the proof is to show that 〈Y,Xj〉n
is close to 〈f,Xj〉 with high probability and then apply Temlyakov’s result. For this we use
Bernstein’s inequality. Recall that if |Zj| are bounded by M and Zj has variance σ2 then

P(|Z − E(Zj)| > ε) ≤ 2 exp

{
−1

2

nε2

σ2 +Mε/3

}
. (11)

Hence, the probability that any empirical inner products differ from their functional coun-
terparts is no more than

d2
n exp

{
−1

2

nε2

σ2 +Mε/3

}
→ 0 (12)

because of the growth condition.

5 Additive Models for Classification: Boosting

One could use such greedy estimation of additive models for general losses, beyond just the
squared loss.

Boosting (at least originally in the context of machine learning) refers to a class of methods
that build classifiers in a greedy, iterative way. The original boosting algorithm is called
AdaBoost and is due to Freund and Schapire (1996). See Figure 3.

The algorithm seems mysterious and there is still room to understand why (and when) it
works. Perhaps the most compelling explanation is due to Friedman, Hastie and Tibshirani

8

1. Input: (X1, Y1), . . . , (Xn, Yn) where Yi ∈ {−1,+1}.

2. Set wi = 1/n for i = 1, . . . , n.

3. Repeat for m = 1, . . . ,M .

(a) Compute the weighted error ε(h) =
∑n

i=1wiI(Yi 6= h(Xi) and find hm to
minimize ε(h).

(b) Let αm = (1/2) log((1− ε)/ε).
(c) Update the weights:

wi ←
wie

−αmYihm(Xi)

Z

where Z is chosen so that the weights sum to 1.

4. The final classifier is

h(x) = sign

(
M∑
m=1

αmhm(x)

)
.

Figure 3: AdaBoost

(2000), which essentially derives boosting as greedy function approximation, along the lines
of previous sections.

In this section, we assume that Yi ∈ {−1,+1}. Many classifiers then have the form

h(x) = sign(H(x))

for some function H(x). For example, a linear classifier corresponds to H(x) = βTx. The
risk can then be written as

R(h) = P(Y 6= h(X)) = P(Y H(X) < 0) = E(L(A))

where A = Y H(X) and L(a) = I(a < 0). As a function of a, the loss L(a) is discontinuous
which makes it difficult to work with. Friedman, Hastie and Tibshirani (2000) show that
AdaBoost corresponds to using a surrogate loss, namely, L(a) = e−a = e−yH(x). Consider
finding a classifier of the form

∑
m αmhm(x) by minimizing the exponential loss

∑
i e
−YiH(Xi).

If we do this iteratively, adding one function at a time, this leads precisely to AdaBoost.
Typically, the classifiers hj in the sum

∑
m αmhm(x) are taken to be very simple classifiers

such as small classification trees.

The argument in Friedman, Hastie and Tibshirani (2000) is as follows. Consider minimizing
the expected loss J(F) = E(e−Y F (X)). Suppose our current estimate is F and consider

9

updating to an improved estimate F (x) + cf(x).

J(F + cf) = E(e−Y (F (X)+cf(X))) ≈ E(e−Y F (X)(1− cY f(X) + c2Y 2f 2(X)/2))

= E(e−Y F (X)(1− cY f(X) + c2/2))

since Y 2 = f 2(X) = 1. Now consider minimizing the latter expression a fixed X = x.
If we minimize over f(x) ∈ {−1,+1} we get f(x) = 1 if Ew(y|x) > 0 and f(x) = −1 if
Ew(y|x) < 0 where Ew(y|x) = E(w(x, y)y|x)/E(w(x, y)|x) and w(x, y) = e−yF (x). In other
words, the optimal f is simply the Bayes classifier with respect to the weights. This is exactly
the first step in AdaBoost. If we fix now fix f(x) and minimize over c we get

c =
1

2
log

(
1− ε
ε

)
where ε = Ew(I(Y 6= f(x))). Thus the updated F (x) is

F (x)← F (x) + cf(x)

as in AdaBoost. When we update F this way, we change the weights to

w(x, y)← w(x, y)e−cf(x)y = w(x, y) exp

(
log

(
1− ε
ε

)
I(Y 6= f(x))

)
which again is the same as AdaBoost.

Seen in this light, boosting is really greedy function approximation, given a surrogate to the
zero-one loss (namely, the exponential loss).

10

