Nonparametric Classification
10716, Spring 2020
Pradeep Ravikumar (amending notes from Larry
Wasserman)

1 Introduction

Let h : X — {0,1} to denote a classifier where X" is the domain of X. In parametric classi-
fication we assumed that h took a very constrained form, typically linear. In nonparametric
classification we aim to relax this assumption.

Let us recall a few definitions and facts. The classification risk, or error rate, of h is

R(h) =P(Y # h(X)) (1)
and the empirical error rate or training error rate based on training data (X1, Y1), ..., (Xn, Ya)
is

~ 1 <&
Ro(h) == I(h(X;) #Y5). (2)
i=1

R(h) is minimized by the Bayes’ rule

_ ceopi(@) o (1=m)
= { L itm@) >y [> ®)
0 otherwise 0 otherwise.

where m(z) =P(Y =1|X =), pj(x) =p(z|Y =j) and 7 = P(Y = 1). The excess risk of
a classifier h is R(h) — R(h*).

In the multiclass case, Y € {1,...,k}, the Bayes’ rule is
h*(x) = argmax, ;< p;j(x) = argmax, <, m;(z)

where m;(z) =P(Y = j|X =2), m; = P(Y = j) and p;(x) = p(z]Y = j). Proof. We have

R() = 1-P(h(X)=Y) (4)
— 1—ip(h(X):k,Y:k) (5)
— 1- _1E[I(h(X) = B)P(Y = k| X) (6)

b
Il

0

It’s clear that h*(X) = argmax, P (Y = k|X) achieves the minimized classification error
1 — E[max, P (Y = k|X)]. O

2 Classification Error for Parametric Models

We will consider the convergence rates for the ERM classifier h
~ ~ 1 <&
h i = — I(Y; # h(X;)).
eargIhré_l}Rn(ﬁ) n; (Yi # h(X;))

Suppose H has finite VC dimension d,.. For instance, if H = {sign(57-) : B € R?} is the set
of linear classifiers, then its VC dimension d,. = d + 1. Due to standard uniform law based
analysis, we obtain that with probability at least 1 — §:

RE) - A(h) s | felogn [losl/0)

n n

The result can be improved if the distribution is well-behaved, and there are not too many
data points near the decision boundary. We'll state a result due to Koltchinski and Panchenko
(2002) that involves the margin.(See also Kakade, Sridharan and Tewari 2009). Let us take
Y; € {—1,+1} so we can write h(x) = sign(87x). Suppose that |X(j)| < A < oo for each j.
We also restrict ourselved to the set of linear classifiers h(z) = sign(87z) with |3(j)| < A.
Define the margin-sensitive loss

1 if u<0
o~ (u) = -2 if0<u<y
0 if u>.

Then, for any such classifier h, with probability at least 1 — 4,

3/2
14%% (8 .\ 1) log(4/9)

yn ; 2n

P(Y £ h(X)) < =37 6,(Vih(X)) +

This means that, if there are few observations near the boundary, then, by taking v large,
we can make the loss small. However, the restriction to bounded covariates and bounded
classifiers is non-trivial.

In summary, classification error for simpler classes of parameteric models scales with the
dimensionality of the features, perhaps additionally scaled by the margin. Let us see how
the classification error behaves with more complex i.e. non-parametric hypothesis classes.

3 Classifiers based on Non-parametric Regression

One approach to nonparametric classification is to estimate the key unknown quantity:
m(z) = P(Y = 1|1X) = E(Y|X) in the Bayes’ rule (3) and simply plug the estimate in.

2

Thus using any nonparametric regression estimator m, we obtain the corresponding classi-

fier: £ (o) .
~ - 1 if m(x) > B}
h(z) = { 0 otherwise. (7)

For example, we could use the kernel regresson estimator

s 1YK(IIw X||)
S ()

Howeve, the bandwidth should be optimized for classification error as described in Section
11.

mp(x) =

We have the following theorem.

Theorem 1 Let h be the plug-in classifier based on m. Then,

R(R) — R(h*) < 2 /|m 2)dP(z) < 2\//|m DdP(z). (8)

Proof. Now,

P(Y #h(X)|X =2)=1-P(Y = h(X)|X =2)
(IP(Y =1,h(X) =1|X = z) + P(Y = 0,h(X) = 0|X = :1:))
= 1= (h@PY =1|X =)+ (1= h(2))P(Y = 0]X =)
(n@ym(a) + (1= h@)) (1 = m(@)).
Hence,
P(Y # h(X)|X = z) —P(Y # h*(X)|X = z)
= (@) + (=W @) (1= m(@)) = (h@m(a) + (1= b)) (1 - m()))
_ (2m(:l:) 1) (0 () — b)) =2 <m(a:) - %) (h*(x) — h(x))
= |2m(x) — 1[I (h*(x) # h(z)) = 2|m(z) — 1/2|1(h*(z) # h(z)).

~

Now, when h*(z) # /f;(x), there are two possible cases: (i) h(x) = 1 and h*(z) = 0; (ii)
h(z) = 0 and h*(z) = 1. In both cases, we have that |m(z) — m*(z)| >

Therefore,
P(h(X) #Y) —P(h*(X) #Y) = 2/]@(@ —1/2|1(h*(z) # h(z))dPx(x)
z/ym(x) (@)|T(1*(x) # h(x))dPx ()

x) |dPX(a7) (9)

< \/ [(ta) = me () dPx (). (10)

The last inequality follows from the fact that E|Z| < VEZ? for any Z. O

IN

IA
[\
—
3
s

An immediate consequence of this theorem is that any result about nonparametric re-

gression can be turned into a result about nonparametric classification. For example, if
[|m(z) — m(2)|?dP(z) = Op(n=2/2+d) then R(h) — R(h*) = Op(n=P/25+d) " How-
ever, (8) is an upper bound and it is possible that R(h) — R(h*) is strictly smaller than

VI () = m(w)pdP(a).

When Y € {1,...,k} the plugin rule has the form

/f;(x) = argmax;;(z)

where m;(z) is an estimate of P(Y = j|X = z).

4 Is Classification easier than Regression; Minimax Results

The previous result showed that classification is easier than regression, in that if R(m) — 0,
then R(h) — R(h.) — 0. But can it be strictly easier?

To study this formally, consider the minimax classification risk over a set of joint distributions
P is
R.(P) = inf sup (ER(h) - R;;) (11)
h PeP
where R(/f;) =PY # /f;(X)), R is the Bayes error and the infimum is over all classifiers
constructed from the data (X1,Y7),...,(X,,Y,). Recall our previous result that

R(R) — R(W") < 2\//\m)[2dP(x)

Class Rate Condition

E(w) n-o/Gatd) > 1/2

BV n~/3

MI logn/n

L(a, q) n=e/Cet) o s (1/q—1/2)4
B3, n=o/Gatd) o /d > 1/q—1/2

1 1+(1/d)
Neural nets (%) 4+ (2/d)
Table 1: Minimax Rates of Convergence for Classification.

Thus R,(P) < 21/ R.(P) where R,(P) is the minimax risk for estimating the regression
function m. Since this is just an inequality, it leaves open the following question: can the

classification error R, (P) be substantially smaller than 24/ R,,(P)?

4.1 P is substantially rich

In cases where P is substantially rich, Yang (1999) proved that the answer is no, and that
for some rate r,, depending on the class,

inf sup R(h) = r2 and inf sup [R(h) — R(h,)] =< 1y

M meM h meM
which says that the minimax classification rate is the square root of the regression rate. As
a byproduct, he showed that we can achieve minimax classification rates using the plugin
regression method above.

We provide a brief elaboration of Yang’s results under the richness assumption. This as-
sumption is simply that if m is in the class, then a small hypercube containing m is also in
the class. Yang’s results are summarized in Table 1. The classes in Table 1 are the following:
E(w) is th Sobolev space of order a, BV is the class of functions of bounded variation, MI is
all monotone functions, L(a, q) are a-Lipschitz (in g-norm), and By, are Besov spaces.

For neural nets, it appears that, as d — oo, we get the dimension independent rate (logn/n)/4.
However, this result requires some caution since due to the richness assumptions in the paper,
the class of distributions implicitly gets smaller as d increases.

4.2 P is smaller

To motivate why classification could be much simpler than regression, note that it is possible
for m to be far from m*(z) and still lead to a good classifier. As long as m(z) and m*(x)

5

Bayes decision boundary Bayes decision boundary

: regression function m(x)
ﬁction m(x)
0 ’; 0

x=0 X x=0 X

\
\/

Figure 1: The Bayes rule is A*(x) = I(z > 0) in both plots, which show the regression
function m(z) = E(Y|x) for two problems. The left plot shows an easy problem; there is
little ambiguity around the decision boundary. The right plot shows a hard problem; it is
hard to know from the data if you are to the left or right of the decision boundary.

are on the same side of 1/2 they yield the same classifier.

Example 2 Figure 1 shows two one-dimensional regression functions. In both cases, the
Bayes rule is h*(z) = I(x > 0) and the decision boundary is D = {x = 0}. The left plot
tllustrates an easy problem; there is little ambiguity around the decision boundary. Even a
poor estimate of m(x) will recover the correct decision boundary. The right plot illustrates a
hard problem; it is hard to know from the data if you are to the left or right of the decision
boundary.

In general, with smaller classes that invoke extra assumptions, such as the Tsybakov low-noise
condition, the classification error can be dramatically lower. We briefly review classification
error results for small (finite dimensional) classes.

5 Classifiers Based on Density Estimation

We can apply nonparametric density estimation for each class to estimate po = P(X|Y = 0)
and p; = P(X]Y = 1) via estimators py and p;. We then define

- 1 if B 5 09
h(l’) _ { Po(x) ™ (12)

0 otherwise

where 7 = n~!'>." | Y;. Hence, any nonparametric density estimation method yields a
nonparametric classifier.

A simplification occurs if we assume that the covariate has independent coordinates, con-
ditioned on the class variable Y. Thus, if X; = (Xj,...,X;q)T has dimension d and if
we assume conditional independence, then the density factors as p;(z) = HZ:1 pie(xg). In
this case we can estimate the one-dimensional marginals p;,(z,) separately and then define
pi(z) = H?Zl pje(z¢). This has the advantage that we never have to do more than a one-
dimensional density estimate. This approach is called naive Bayes. The resulting classifier
can sometimes be very accurate even if the independence assumption is false.

It is easy to extend density based methods for multiclass problems. If Y € {1,... k} then
we estimate the &k densities p;(x) = p(z]Y = j) and the classifier is

/f;(as) = argmax; 7; p;(z)

where 7; =n~ >0 I(Y; =).

6 Nearest Neighbors

The k-nearest neighbor classifier is

M@:{1§j1wmum=n>23umwun=m 1)

0 otherwise

where w;(x) = 1 if X; is one of the k nearest neighbors of x, w;(z) = 0, otherwise. “Nearest”
depends on how you define the distance. Often we use Euclidean distance [|X; — X,||. In
that case you should standardize the variables first.

The k-nearest neighbor classifier can be recast as a plugin rule. Define the regression estsi-
mator

XY (X o] < dif)
S (X — ol < dufa)

where dj () is the distance between z and its k*-nearest neighbor. Then ?L(.T) = I(m(x) >

1/2).

It is interesting to consider the classification error when n is large. First suppose that k =1
and consider a fixed x. Then h(z) is 1 if the closest X; has label Y =1 and h(x) is 0 if the
closest X; has label Y = 0. As n gets large, the closest X; in turn approaches x, and the
probability of an error in turn

m(z)

m(X;)(1—m(x))+(1—m(X;))m(z) = m(z)(1—m(z))+(1—m(x))m(x) = 2m(z)(1—m(z)).

Define R
Lo =P(Y #R(X)| D)

where D, = {(X1,Y1),...,(X,,Y,)}. Then we have that
lim E(L,) = E2m(X)(1 —m(X))) = Rq). (14)
n—oo

The Bayes risk can be written as R, = E(A) where A = min{m(X),1 —m(X)}. Note that
A <2m(X)(1 —m(X)). Note also that m(x)(1 — m(x)) = A(x)[1 — A(x)]. Next we claim
that E[A(X)(1 — A(X))] < E[A(X)]E[1 — A(X)]. This follows since

[ola)t - a@)ir() - / o))t - ale))dP(a) = [/ (ale) — a(y))(1 - a(x))dP()dP(y)
= [| @)~y ~atwnip@ape)+ [[(o) - at) - atw)ipap)
= [| e~ atwp ~aair / | (00) o)1 ~a)apapy
= [| 6@ ~aw)iat) ~awpapmare) = - [/ y ()dP(@)dP(y) < 0.

R, < Ruy = 2E[m(X)(1-m(X))] = 2E[A(X)(1-A(X))] < E[A(X)]E[1-A(X)] = 2R.(1-R.) < 2R..

This result is due to Cover and Hart (1967). Thus, for any problem with small Bayes error,
k = 1 nearest neighbors should have small error. This is a remarkable result. It says that,
in some cases, we can do very well without any regularization!

More generally, for any odd k, (Devroye et al 1996) showed the following result:

Theorem 3 (Devroye et al 1996) For all odd k,

1
R, <Ry <R, +—. 15
(k) \/E ()

While the previous result was asymptotic, showing that nearest neighbors has good perfor-
mance as the number of samples approaches infinity, we can also analyze its non asymptotic
convergence rates.

If the distribution of X has a density function then we have the following.

Theorem 4 (Devroye and Gyorfi 1985) Suppose that the distribution of X has a den-
sity and that k — oo and k/n — 0. For every e > 0 the following is true. For all large n,
with probability at least 1 — 9,

S 6vEu/log(1)8)
R(h)— R, < NG :

where ﬁn 1s the k-nearest neighbor classifier estimated on a sample of size n, and where 4
depends on the dimension d of X.

Recently, Chaudhuri and Dasgupta (2014) have obtained some very general results about
k-nn classifiers. We state one of their key results here.

Theorem 5 (Chaudhuri and Dasgupta 2014) Suppose that the distribution satisfies the
following margin condition:

P({z: [m(z) - (1/2)] < t}) < C¥°

for some B > 0 and some C' > 0. Also, suppose that m satisfies the following smoothness
condition: for all x and r > 0

[m(B) —m(x)| < LP(B%)"

where B = {u : ||[z—u|| <r}, B ={u: [[z—u|| <r} and m(B) = (P(B))™" [, m(u)dP(z).
Fix any 0 < § < 1. Let h, be the Bayes rule. If k =< nzi then

a(B+1)

ER(h) — R(h,) < n~ 2at1 |

These results thus show that nearest neighbor classification has good convergence rates,
provided that we have a suitable metric over our feature space. This is of course easier said
than done, but modern feature representation learning methods, such as via deep neural
networks, do provide us with embeddings and corresponding metrics that might well satisfy
these regularity conditions. Nearest neighbor approaches have thus had a recent resurgence
in popularity, particularly in ultra-low-sampling regimes (e.g. “k shot learning”).

6.1 Partitions and Trees

As with nonparametric regression, simple and interpretable classifiers can be derived by
partitioning the range of X. Let II, = {4;,..., Ay} be a partition of X'. Let A; be the

partition element that contains x. Then ﬁ(:p) = 1if ZXieAj Y, > ineAj(l —Y;) and

E(x) = 0 otherwise. This is nothing other than the plugin classifier based on the partition
regression estimator

m(z) = Z?j I(z € A))

where Y; = n; ' 3" Y;I(X; € A;) is the average of the Yi’s in A; and n; = #{X; € A;}.
(We define Y to be 0 if n; = 0.)

Recall from the results on regression that if

mEM:{m: im(z) — m(z)| < Lljz — z||, x,z,ERd} (16)

9

< 50 > 50
Blood Pressure 1
< 100 > 100
0 1

Figure 2: A simple classification tree.

and the binwidth b satsifies b < n~(@+2) then

c

N 2
Ellm —ml[p < —

(17)
From (8), we conclude that ER(h) — R(h,) = O(n~/@+2) However, this binwidth was
based on the bias-variance tradeoff of the regression problem. For classification, b should be
chosen as described in Section 11.

Like regression trees, classification trees are partition classifiers where the partition is built
recursively. For illustration, suppose there are two covariates, X; = age and Xy = blood
pressure. Figure 2 shows a classification tree using these variables.

The tree is used in the following way. If a subject has Age > 50 then we classify him as
Y = 1. If asubject has Age < 50 then we check his blood pressure. If systolic blood pressure
is < 100 then we classify him as Y = 1, otherwise we classify him as Y = 0. Figure 3 shows
the same classifier as a partition of the covariate space.

Here is how a tree is constructed. First, suppose that y € Y = {0,1} and that there is

only a single covariate X. We choose a split point ¢ that divides the real line into two sets

Ay = (—oo,t] and Ay = (t,00). Let r5(j) be the proportion of observations in A, such that
Y, =7

r (]) _ Z?:l [(Yz :ja Xi S As)

’ Z?:l [<Xi < AS) ’

and w, be the proportion of observations in A,:

(18)

We = iI(Xl c As),
=1

10

110

Blood Pressure

Figure 3: Partition representation of classification tree.

for s = 1,2 and j = 0, 1. The impurity of the split ¢ is defined to be I(t) = 23:1 wyys where

1
Vs = 1- ZTS(j)Q' (19>
=0

This particular measure of impurity is known as the Gini index. If a partition element Aj
contains all 0’s or all 1’s, then v, = 0. Otherwise, v, > 0. We choose the split point ¢ to
minimize the impurity. Other indices of impurity besides the Gini index can be used, such
as entropy. The reason for using impurity rather than classification error is because impurity

is a smooth function and hence is easy to minimize.

When there are several covariates, we choose whichever covariate and split that leads to the
lowest impurity. This process is continued until some stopping criterion is met. For example,
we might stop when every partition element has fewer than ny data points, where ng is some
fixed number. The bottom nodes of the tree are called the leaves. Each leaf is assigned a 0
or 1 depending on whether there are more data points with Y = 0 or Y = 1 in that partition
element.

This procedure is easily generalized to the case where Y € {1, ..., K'}. We define the impurity

by
k

Yo =1-=>Y i) (20)

J=1

where 7;(j) is the proportion of observations in the partition element for which ¥ = j.

7 RKHS Classification

When we discussed RKHS regression, we also briefly discussed how we could use it for
losses other than squared error, such as Hinge losses, as well as logistic log-likelihood losses.

11

Alternatively, these could be viewed as applying the kernel trick to linear approaches to
classification.

Logistic Regression. Let
ol (@)

We can estimate m by minimizing
—loglikelihood + A|| f||%-

Then f: > K(zj,z) and o may be found by numerical optimization; see the chapter. In
this case, smoothing kernels are much easier.

Support Vector Machines. Suppose Y; € {—1,+41}. Recall the the linear SVM minimizes
the penalized hinge loss:

A
J = Z[l — Yi(Bo + 87 X))y + 5“5“%
The RKHS version is to minimize
A
J =D N =Yif (X)) + Sl

The dual is the same except that (X, X;) is replaced with K (X;, X;).

8 Boosting

Recall the discussion of linear/additive non-parametric approaches to regression. As dis-
cussed there, boosting is essentially a non-parametric additive approach for classification.

9 Sparse Nonparametric Logistic Regression

For high dimensional problems we can use sparsity-based methods. The nonparametric
additive logistic model is

exp (i fj(Xj)>

PY =1|X)=p(X;f) =
e (S 1K)

(21)

12

where Y € {0, 1}, and the population log-likelihood is
((f) =E[Y f(X) —log (1 + exp f(X))] (22)
where f(X) = ijlp fi(X;).

A sparsity penality can be incorporated, just as for sparse additive models (SpAM) for
regression. The Lagrangian is given by

L(f,\)=E[log (1+e/™) =Y f(X)] + A (Z VEFA(X;) — L> (23)

To fit this model, one can first compute a quadratic approximation of the loss (or equivalently,
linearize the gradient), and then run the backfitting procedure. Let

~

p(Xi; f)(1 = p(Xi; f))

-~ o~

and weights w(X;) = p(X;; f)(1 — p(Xi; f).

We would then be carrying out a weighted backfitting of (Z, X) with weights w.

To see this, note that the linearized stationary condition is given by: E [w(X)(f(X) — Z) | X;|+

Avj = 0, where v; is an element of the subgradient 9, /E(f7).

When E(f7) # 0, this yields the backfitting step:

E(wR; | X;)
fi(X5) = — - (25)
E(w|X;)+ A)
(Bl + g
In the finite sample case, in terms of the smoothing matrix S;, this becomes
S,
f=— (26

_ wR;) -
Siw+X [\ JE(3)

If |S;(wR;)|| < A, then f; = 0. Otherwise, this implicit, nonlinear equation for f; cannot be
solved explicitly, so one simply iterates until convergence:

Si(wR;)

5 S AT

(27)

Example 6 (SpAM for Spam) Here we consider an email spam classification problem,
using the logistic SpAM backfitting algorithm above. This dataset has been studied Hastie et

13

al (2001) using a set of 3,065 emails as a training set, and conducting hypothesis tests to
choose significant variables; there are a total of 4,601 observations with p = 57 attributes, all
numeric. The attributes measure the percentage of specific words or characters in the email,
the average and maximum run lengths of upper case letters, and the total number of such
letters.

A(x1073) ERROR # ZEROS SELECTED VARIABLES
5.5 0.2009 55 { 8,54}
5.0 0.1725 51 {8,9,27, 53, 54, 57}
4.5 0.1354 46 {7, 8,9, 17, 18, 27, 53, 54, 57, 58}
4.0 0.1083 (v/) 20 {4, 6-10, 14-22, 26, 27, 38, 53-58}
3.5 0.1117 0 ALL
3.0 0.1174 0 ALL
2.5 0.1251 0 ALL
2.0 0.1259 0 ALL
|
o
S
TS|
[
o
5 g |
8 o
o
o <
S 2+
g
o 3|
o

T T T
20 25 30 35 40 45 50 55
penalization parameter

Figure 4: (Email spam) Classification accuracies and variable selection for logistic SpAM.

The results of a typical run of logistic SpAM are summarized in Figure 4, using plug-in
bandwidths. A held-out set is used to tune the regqularization parameter \.

14

10 Bagging and Random Forests

Suppose we draw B bootstrap samples and each time we construct a classifier. This gives
classifiers hy, ..., hg. We now classify by combining them:

h(z) = {1 if %Zj hj(x) > %

0 otherwise.

This is called bagging which stands for bootstrap aggregration. The basline classifiers are
usually trees.

A variation is to choose a random subset of the predictors to split on at each stage. The
resulting classifier is called a random forests. Random forests often perform very well. Their
theoretical performance is not well understood. Some good references are:

Biau, Devroye and Lugosi. (2008). Consistency of Random Forests and Other Average
Classifiers. JMLR.

Biau, G. (2012). Analysis of a Random Forests Model. arXiv:1005.0208.

Lin and Jeon. Random Forests and Adaptive Nearest Neighbors. Journal of the American
Statistical Association, 101, p 578.

Wager, S. (2014). Asymptotic Theory for Random Forests. arXiv:1405.0352.

Wager, S. (2015). Uniform convergence of random forests via adaptive concentration. arXiv:1503.06388.

11 Choosing Tuning Parameters

All the nonparametric methods involve tuning parameters, for example, the number of neigh-
bors k in nearest neighbors. As with density estimation and regression, these parameters
can be chosen by a variety of cross-validation methods. Here we describe the data splitting
version of cross-validation. Suppose the data are (Xi,Y),..., (X2, Y2,). Now randomly
split the data into two halves that we denote by

n’ n

D:{()?l,ﬁ),...,(f(’n,?n)}, and g:{(x;,yl*),...,(x* Y*)}.

Construct classifiers H = {hy, ..., hx} from D corresponding to different values of the tuning
parameter. Define the risk estimator

D 1 . * *
R(h;) = ;Z[(Yi # hi(X7)).
i=1
Let 7 = argmin,, ., R(h).

15

Theorem 7 Let h, € H minimize R(h) = P(Y # h(X)). Then, with probability at least
1—90:

Proof. By Hoeffding’s inequality,]P’(|ﬁ(h) — R(h)| > €) < 2e72¢ for each h € H. By the
union bound,

D _ < —2ne? —
P(max|R(h) = R(h)| >) < 2Ne 5

where € = % log (%) Hence, except on a set of probability at most 9,

o~

R(h) < R(h) + ¢ < R(h.) + ¢ < R(h.) + 2.
O

Note that the difference between R(ﬁ) and R(h.) is O(y/log N/n) but in regression it was
O(log N/n) which is an interesting difference between the two settings. Under low noise
conditions, the error can be improved.

A popular modification of data-splitting is K-fold cross-validation. The data are divided
into K blocks; typicaly K = 10. One block is held out as test data to estimate risk. The
process is then repeated K times, leaving out a different block each time, and the results are
averaged over the K repetitions.

12 Example

The following data are from simulated images of gamma ray events for the Major Atmo-
spheric Gamma-ray Imaging Cherenkov Telescope (MAGIC) in the Canary Islands. The
data are from archive.ics.uci.edu/ml/datasets/ MAGIC+Gamma+Telescope. The telescope
studies gamma ray bursts, active galactic nuclei and supernovae remnants. The goal is to
predict if an event is real or is background (hadronic shower). There are 11 predictors that
are numerical summaries of the images. We randomly selected 400 training points (200 pos-
itive and 200 negative) and 1000 test cases (500 positive and 500 negative). The results of
various methods are in Table 2. See Figures 5, 6, 7, 8.

16

Method Test Error

Logistic regression 0.23
SVM (Gaussian Kernel) 0.20
Kernel Regression 0.24
Additive Model 0.20
Reduced Additive Model 0.20
11-NN 0.25
Trees 0.20

Table 2: Various methods on the MAGIC data. The reduced additive model is based on
using the three most significant variables from the additive model.

@
° 8 |
< s
- S
o | s ©
° ° 8 4
s
o &
5 < IS
) 3 g |
2 s
T - T
g o g
s S g
34
o N T
T] o
3 i 2
o T
5 &
@ T y
, I
S 7 « E |
T 1 T T T T T T 1 T T T 1 I T T T Cl, T 1 1 1 1 !
10 1 2 3 4 5 0 2 4 6 1 0 1 2 3 4 2 1 0 1 2 -2 -1 0 1 2
3 ©
- o
s 3 3 4
o & 5
o < s °
= = 8
s S 5
o bl o
v = o o
S - ° “ s
5 s
8 3
S 2 ©
8 ° IS
e o 8 |
S o S
0 ? S -
8 | s
S < T B
I (=}
9 o
S o o Q4
< 8 ? S T
S A ™ e
T T 1 T I T 1 1 I T T T 1 T T T T 1 T 1 1 I T
-4 -2 0 2 -4 -2 0 2 -6 -2 0 2 4 6 -1.0 0.0 1.0 2.0 -2 -1 0 1 2

Figure 5: Estimated functions for additive model.

17

Q
o
&
o
E o
]
3
e
&
o
&q
o
T T T T
0 10 30 40 50
k
Figure 6: Test error versus k for nearest neighbor estimator.
xtrain.V9 <,-0.189962
T
xtrain.V1 k 1.21831 xtrain.V1 <}-0.536394
xtrain.V4 4 0.411748 xtrain.V4 <]-0.769513 xtrain.V10 4 —0.369401 xtrain.V2 4 0.3431
xtrain.V8 <]-0.912288 xtrain.V3 <]-0.463854 xtrain.V3 4 —1.14519 xtrain.V7 4 0.015902
0 0 0 0
rain.V6 <]-0.274359 xtrain.V1q < 0.4797 xtrain.V2 <]-0.607802 xtrain.V8 <]-0.199142
0 1 0
xtrain.V5 k 1.41292 train.V3 4 —0@GIT4/4 k 1.95513
1 1 0 0 0
xtrain.V1 <]-0.7871
1 0 1 1

Figure 7: Full tree.

18

xtrain V9 <. —0 189962

xtrai - 1 xtrain V1 <1—0 536394

xtrar_sﬂ_os_—o..?ﬁj)401 0

Figure 8: Classification tree. The size of the tree was chosen by cross-validation.

19

