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1 Introduction

Now we focus on the following problem: Given a sample (X1, Y1), . . ., (Xn, Yn), where
Xi ∈ Rd and Yi ∈ R, estimate the regression function

m(x) = E(Y |X = x) (1)

without making parametric assumptions (such as linearity) about the regression function
m(x). Estimating m is called nonparametric regression or smoothing (Härdle et al. 2012,
Wasserman 2006). We can write

Y = m(X) + ε

where E(ε) = 0. This follows since, ε = Y − m(X) and E(ε) = E(E(ε|X)) = E(m(X) −
m(X)) = 0

A related problem is nonparametric prediction. Given a pair (X, Y ), we want to predict Y
from X. The optimal predictor (under squared error loss) is the regression function m(X).
Hence, estimating m is of interest for its own sake and for the purposes of prediction.

Example 1 Figure 1 shows data on bone mineral density. The plots show the relative change
in bone density over two consecutive visits, for men and women. The smooth estimates of
the regression functions suggest that a growth spurt occurs two years earlier for females. In
this example, Y is change in bone mineral density and X is age.

Example 2 Figure 2 shows an analysis of some diabetes data from Efron, Hastie, Johnstone
and Tibshirani (2004). The outcome Y is a measure of disease progression after one year. We
consider four covariates (ignoring for now, six other variables): age, bmi (body mass index),
and two variables representing blood serum measurements. A nonparametric regression model
in this case takes the form

Y = m(x1, x2, x3, x4) + ε. (2)

A simpler, but less general model, is the additive model

Y = m1(x1) +m2(x2) +m3(x3) +m4(x4) + ε. (3)

Figure 2 shows the four estimated functions m̂1, m̂2, m̂3 and m̂4.
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Figure 1: Bone Mineral Density Data

Notation. We use m(x) to denote the regression function. Often we assume that Xi has a
density denoted by p(x). The support of the distribution of Xi is denoted by X . We assume
that X is a compact subset of Rd. Recall that the trace of a square matrix A is denoted by
tr(A) and is defined to be the sum of the diagonal elements of A.

2 Function Spaces

A distinguishing characteristic of “non-parametric” methods is that what we are estimating
is not in a finite-dimensional parametric space. Typically, it is in some infinite-dimensional
function space. We briefly review some classical function spaces.

The class of Lipschitz functions H(1, L) on T ⊂ R is the set of functions g such that

|g(y)− g(x)| ≤ L|x− y| for all x, y ∈ T.

A differentiable function is Lipschitz if and only if it has bounded derivatives. Conversely a
Lipschitz function is differentiable almost everywhere.
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Figure 2: Diabetes Data

Let T ⊂ R and let β be an integer. The Holder space H(β, L) is the set of functions g
mapping T to R such that g is ` = β − 1 times differentiable and satisfies

|g(`)(y)− g(`)(x)| ≤ L|x− y| for all x, y ∈ T.
If g ∈ H(β, L) and ` = β − 1, then we can define the Taylor approximation of g at x by

g̃(y) = g(y) + (y − x)g′(x) + · · ·+ (y − x)`

`!
g(`)(x)

and then |g(y)− g̃(y)| ≤ |y − x|β.

The definition for higher dimensions is similar. Let X be a compact subset of Rd. Given a
vector s = (s1, . . . , sd), define

Ds =
∂s1+···+sd

∂xs11 · · · ∂xsdd
.

Let β and L be positive integers. We will also use the shorthand |s| = s1 + · · · + sd,
s! = s1! · · · sd!, xs = xs11 · · · xsdd . Define the Hölder class

Hd(β, L) =

{
g : |Dsg(x)−Dsg(y)| ≤ L‖x−y‖, for all s such that |s| = β−1, and all x, y

}
.

(4)
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For example, if d = 1 and β = 2 this means that

|g′(x)− g′(y)| ≤ L |x− y|, for all x, y.

The most common case is β = 2; roughly speaking, this means that the functions have
bounded second derivatives.

Again, if g ∈ Hd(β, L) then g(x) is close to its Taylor series approximation:

|g(u)− gx,β(u)| ≤ L‖u− x‖β (5)

where

gx,β(u) =
∑

|s|<β

(u− x)s

s!
Dsg(x). (6)

In the common case of β = 2, this means that

∣∣∣∣∣p(u)− [p(x) + (x− u)T∇p(x)]

∣∣∣∣∣ ≤ L||x− u||2.

The Sobolev class S1(β, L) is the set of β times differentiable functions (technically, it only
requires weak derivatives) g : R→ R such that

∫
(g(β)(x))2dx ≤ L2.

Again this extends naturally to Rd. Also, there is an extension to non-integer β. It can be
shown that Sd(β, L) ⊂ Hd(β, L).

3 The Bias–Variance Tradeoff

Let m̂(x) be an estimate of m(x). The pointwise risk (or pointwise mean squared error) is

E
(
(m̂(x)−m(x))2

)
, (7)

while the integrated mean squared error is given by:

E
∫ (

(m̂(x)−m(x))2
)
dP (x). (8)

The predictive risk is
R(m, m̂) = E((Y − m̂(X))2) (9)
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where (X, Y ) denotes a new observation. It follows that

R(m, m̂) = σ2 + E
∫

(m(x)− m̂(x))2dP (x) (10)

= σ2 +

∫
b2n(x)dP (x) +

∫
vn(x)dP (x) (11)

where bn(x) = E(m̂(x))−m(x) is the bias and v(x) = Var(m̂(x)) is the variance.

The estimator m̂ typically involves smoothing the data in some way. The main challenge is
to determine how much smoothing to do. When the data are oversmoothed, the bias term
is large and the variance is small. When the data are undersmoothed the opposite is true.
This is called the bias–variance tradeoff. Minimizing risk corresponds to balancing bias and
variance.

An estimator m̂ is consistent if
‖m̂−m‖ P→ 0. (12)

When unspecified, the function norm ‖ · ‖ will typically mean the L2 norm ‖ · ‖2 in terms of
PX , acting on functions m : Rd → R, by

‖m‖22 = E[m2(X)] =

∫
m2(x) dPX(x).

The minimax risk over a set of functions M is

Rn(M) = inf
m̂

sup
m∈M

R(m, m̂) (13)

and an estimator is minimax if its risk is equal to the minimax risk. We say that m̂ is rate
optimal if

R(m, m̂) � Rn(M). (14)

Typically the minimax rate is of the form n−C/(C+d) for some C > 0.

4 k-nearest-neighbors regression

A basic method to start us off is k-nearest-neighbors regression. We fix an integer k ≥ 1 and
define

m̂(x) =
1

k

∑

i∈Nk(x)

Yi, (15)

where Nk(x) contains the indices of the k closest points of X1, . . . , Xn to x.

A small k corresponding to a more flexible fit, and large k less flexible.
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However the fitted function m̂ essentially always looks jagged, especially for small or mod-
erate k. Why is this? It helps to write

m̂(x) =
n∑

i=1

wi(x)Yi, (16)

where the weights wi(x), i = 1, . . . , n are defined as

wi(x) =

{
1/k if Xi is one of the k nearest points to x

0 else.

Note that wi(x) is discontinuous as a function of x, and therefore so is m̂(x).

4.1 Consistency

The k-nearest-neighbors estimator is universally consistent, which means E‖m̂−m0‖22 → 0
as n→∞, with no assumptions other than E(Y 2) ≤ ∞, provided that we take k = kn such
that kn →∞ and kn/n→ 0; e.g., k =

√
n will do. See Chapter 6.2 of Gyorfi et al. (2002).

Furthermore, assuming the underlying regression function m0 is Lipschitz continuous, the
k-nearest-neighbors estimate with k � n2/(2+d) satisfies

E‖m̂−m0‖22 . n−2/(2+d). (17)

See Chapter 6.3 of Gyorfi et al. (2002). Later, we will see that this is optimal.

Proof sketch: assume that Var(Y |X = x) = σ2, a constant, for simplicity, and fix (condition
on) the training points. Using the bias-variance tradeoff,

E
[(
m̂(x)−m0(x)

)2]
=
(
E[m̂(x)]−m0(x)

)2
︸ ︷︷ ︸

Bias2(m̂(x))

+E
[(
m̂(x)− E[m̂(x)]

)2]
︸ ︷︷ ︸

Var(m̂(x))

=

(
1

k

∑

i∈Nk(x)

(
m0(Xi)−m0(x)

))2

+
σ2

k

≤
(
L

k

∑

i∈Nk(x)

‖Xi − x‖2
)2

+
σ2

k
.

In the last line we used the Lipschitz property |m0(x)−m0(z)| ≤ L‖x−z‖2, for some constant
L > 0. Now for “most” of the points we’ll have ‖Xi − x‖2 ≤ C(k/n)1/d, for a constant C > 0.
(Think of a having input points Xi, i = 1, . . . , n spaced equally over (say) [0, 1]d.) Then our
bias-variance upper bound becomes

(CL)2
(
k

n

)2/d

+
σ2

k
,
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Figure 3: The curse of dimensionality, with ε = 0.1

We can minimize this by balancing the two terms so that they are equal, giving k1+2/d � n2/d,
i.e., k � n2/(2+d) as claimed. Plugging this in gives the error bound of n−2/(2+d), as claimed.

4.2 Curse of dimensionality

As discussed in the non-parametric density estimation lecture, the above error rate n−2/(2+d)

exhibits a very poor dependence on the dimension d, requiring number of samples n scaling
exponentially in the dimension d to achieve error ε: n ≥ ε−(2+d)/2. See Figure 3 for an
illustration with ε = 0.1

This curse of dimensionality is unfortunately necessary: we cannot hope to do better than
the rate in(17) over the space of L-Lipschitz functions in d dimensions, which we denote
Hd(1, L), for a constant L > 0. It can be shown that

inf
m̂

sup
m0∈Hd(1,L)

E‖m̂−m0‖22 & n−2/(2+d), (18)

where the infimum above is over all estimators m̂. See Chapter 3.2 of Gyorfi et al. (2002).

So why can we sometimes predict well in high dimensional problems? Presumably, it is
because m0 often (approximately) satisfies stronger assumptions. This suggests we should
look at classes of functions with more structure.
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5 The Kernel Estimator

Another simple nonparametric estimator is the kernel estimator. The word “kernel” is often
used in two different ways. Here are we referring to smoothing kernels. Later we will discuss
Mercer kernels which are a distinct (but related) concept.

A one-dimensional smoothing kernel is any smooth, symmetric function K such that K(x) ≥
0 and ∫

K(x) dx = 1,

∫
xK(x)dx = 0 and σ2

K ≡
∫
x2K(x)dx > 0. (19)

Let h > 0 be a positive number, called the bandwidth. The Nadaraya–Watson kernel esti-
mator is defined by

m̂(x) ≡ m̂h(x) =

∑n
i=1 Yi K

(
‖x−Xi‖

h

)

∑n
i=1K

(
‖x−Xi‖

h

) =
n∑

i=1

Yi`i(x) (20)

where `i(x) = K(‖x−Xi‖/h)/
∑

jK(‖x−Xj‖/h).

Thus m̂(x) is a local average of the Yi’s. It can be shown that the optimal kernel is the
Epanechnikov kernel. But, as with density estimation, the choice of kernel K is not too
important. Estimates obtained by using different kernels are usually numerically very similar.
This observation is confirmed by theoretical calculations which show that the risk is very
insensitive to the choice of kernel. What does matter much more is the choice of bandwidth
h which controls the amount of smoothing. Small bandwidths give very rough estimates
while larger bandwidths give smoother estimates.

The kernel estimator can be derived by minimizing the localized squared error

n∑

i=1

K

(
x−Xi

h

) (
c− Yi

)2

. (21)

A simple calculation shows that this is minimized by the kernel estimator c = m̂(x) as given
in equation (20).

Kernel regression and kernel density estimation are related. Let p̂(x, y) be the kernel density
estimator and define

m̂(x) = Ê(Y |X = x) =

∫
yp̂(y|x)dy =

∫
yp̂(x, y)dy

p̂(x)
(22)

where p̂(x) =
∫
p̂(x, y)dy. Then m̂(x) is the Nadaraya-Watson kernel regression estimator.

In comparison to the k-nearest-neighbors estimator in (15), which can be thought of as a
raw (discontinuous) moving average of nearby responses, the kernel estimator in (20) is a
smooth moving average of responses. See Figure 4 for an example with d = 1.
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FIGURE 6.1. In each panel 100 pairs xi, yi are generated at random from the
blue curve with Gaussian errors: Y = sin(4X)+ε, X ∼ U [0, 1], ε ∼ N(0, 1/3). In
the left panel the green curve is the result of a 30-nearest-neighbor running-mean
smoother. The red point is the fitted constant f̂(x0), and the red circles indicate
those observations contributing to the fit at x0. The solid yellow region indicates
the weights assigned to observations. In the right panel, the green curve is the
kernel-weighted average, using an Epanechnikov kernel with (half) window width
λ = 0.2.

6.1 One-Dimensional Kernel Smoothers

In Chapter 2, we motivated the k–nearest-neighbor average

f̂(x) = Ave(yi|xi ∈ Nk(x)) (6.1)

as an estimate of the regression function E(Y |X = x). Here Nk(x) is the set
of k points nearest to x in squared distance, and Ave denotes the average
(mean). The idea is to relax the definition of conditional expectation, as
illustrated in the left panel of Figure 6.1, and compute an average in a
neighborhood of the target point. In this case we have used the 30-nearest
neighborhood—the fit at x0 is the average of the 30 pairs whose xi values
are closest to x0. The green curve is traced out as we apply this definition
at different values x0. The green curve is bumpy, since f̂(x) is discontinuous
in x. As we move x0 from left to right, the k-nearest neighborhood remains
constant, until a point xi to the right of x0 becomes closer than the furthest
point xi′ in the neighborhood to the left of x0, at which time xi replaces xi′ .
The average in (6.1) changes in a discrete way, leading to a discontinuous

f̂(x).
This discontinuity is ugly and unnecessary. Rather than give all the

points in the neighborhood equal weight, we can assign weights that die
off smoothly with distance from the target point. The right panel shows
an example of this, using the so-called Nadaraya–Watson kernel-weighted

Figure 4: Comparing k-nearest-neighbor and Epanechnikov kernels, when d = 1. From
Chapter 6 of Hastie et al. (2009)

5.1 Error Analysis

The kernel smoothing estimator is universally consistent (E‖m̂−m0‖22 → 0 as n→∞, with
no assumptions other than E(Y 2) ≤ ∞), provided we take a compactly supported kernel K,
and bandwidth h = hn satisfying hn → 0 and nhdn → ∞ as n → ∞. See Chapter 5.2 of
Gyorfi et al. (2002). We can say more.

Theorem. Suppose that d = 1 and that m′′ is bounded. Also suppose that X has a
non-zero, differentiable density p and that the support is unbounded. Then, the risk is

Rn =
h4n
4

(∫
x2K(x)dx

)2 ∫ (
m′′(x) + 2m′(x)

p′(x)

p(x)

)2

dx

+
σ2
∫
K2(x)dx

nhn

∫
dx

p(x)
+ o

(
1

nhn

)
+ o(h4n)

where p is the density of PX .

It follows that the optimal bandwidth is hn ≈ n−1/5 yielding a risk of n−4/5. In d dimensions,
the term nhn becomes nhdn. In that case It follows that the optimal bandwidth is hn ≈
n−1/(4+d) yielding a risk of n−4/(4+d).
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Biases of the bias. The first term in the risk bound from the theorem is the squared bias,
and it has two disturbing properties. The first is that it has a dependence on p and p′, which
is also called design bias. We’ll fix this problem later using local linear smoothing.

If the support has boundaries then there is bias of order O(h) near the boundary, in contrast
to O(h2) in the interior. This is also called boundary bias. The risk then becomes O(h3)
instead of O(h4). This happens because of the asymmetry of the kernel weights in such
regions. See Figure 5. We’ll also fix this problems using local linear smoothing.

Also, the result above depends on assuming that PX has a density. We can drop that
assumption and get a slightly weaker result due to Gyorfi, Kohler, Krzyzak and Walk (2002).

For simplicity, we will use the spherical kernel K(‖x‖) = I(‖x‖ ≤ 1); the results can be
extended to other kernels. Hence,

m̂(x) =

∑n
i=1 Yi I(‖Xi − x‖ ≤ h)∑n
i=1 I(‖Xi − x‖ ≤ h)

=

∑n
i=1 Yi I(‖Xi − x‖ ≤ h)

nPn(B(x, h))

where Pn is the empirical measure and B(x, h) = {u : ‖x − u‖ ≤ h}. If the denominator
is 0 we define m̂(x) = 0. The proof of the following theorem is from Chapter 5 of Györfi,
Kohler, Krzyżak and Walk (2002).

Theorem: Risk bound without density. Suppose that the distribution of X has compact
support and that Var(Y |X = x) ≤ σ2 <∞ for all x. Then

sup
P∈Hd(1,L)

E‖m̂−m‖2P ≤ c1h
2 +

c2
nhd

. (23)

Hence, if h � n−1/(d+2) then

sup
P∈Hd(1,L)

E‖m̂−m‖2P ≤
c

n2/(d+2)
. (24)

Recall from (18) we saw that this was the minimax optimal rate over Hd(1, L). More gener-
ally, the minimax rate over Hd(α,L), for a constant L > 0, is

inf
m̂

sup
m0∈Hd(α,L)

E‖m̂−m0‖22 & n−2α/(2α+d), (25)

see again Chapter 3.2 of Gyorfi et al. (2002). But on the other hand this rate n−2/(d+2) is
slower than the pointwise rate n−4/(d+2) earlier (which is minimax for Hd(2, L)) because we
have made weaker assumptions.
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6 Local Polynomials Estimators

Recall that the kernel estimator can be derived by minimizing the localized squared error

n∑

i=1

K

(
x−Xi

h

) (
c− Yi

)2

. (26)

To reduce the design bias and the boundary bias we simply replace the constant c with a
polynomial. In fact, it is enough to use a polynomial of order 1; in other words, we fit a local
linear estimator instead of a local constant. The idea is that, for u near x, we can write,
m(u) ≈ β0(x) + β1(x)(u− x). We define β̂(x) = (β̂0(x), β̂1(x)) to minimize

n∑

i=1

K

(
x−Xi

h

) (
Yi − β0(x)− β1(x)(Xi − x)

)2

.

Then m̂(u) ≈ β̂0(x) + β̂1(x)(u − x). In particular, m̂(x) = β̂0(x). The minimizer is easily
seen to be

β̂(x) = (β̂0(x), β̂1(x))T = (BTWB)−1BTWY

where Y = (Y1, . . . , Yn),

B =




1 X1 − x
1 X2 − x
...

...
1 Xn − x


 , W =




Kh(x−X1) 0 · · · 0
0 Kh(x−X2) · · · 0
...

... · · · · · ·
0 0 · · · Kh(x−Xn)


 .

Then m̂(x) = β̂0(x).

It can be shown that local linear regression removes boundary bias and design bias. See
Figure 5.

Theorem. Under some regularity conditions, the risk of m̂ is

h4n
4

∫ (
tr(m′′(x)

∫
K(u)uuTdu)

)2

dP (x)+
1

nhdn

∫
K2(u)du

∫
σ2(x)dP (x)+o(h4n+(nhdn)−1).

For a proof, see Fan & Gijbels (1996). For points near the boundary, the bias is Ch2m′′(x)+
o(h2) whereas, the bias is Chm′(x) + o(h) for kernel estimators.

11



6.1 One-Dimensional Kernel Smoothers 195

N-W Kernel at Boundary
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FIGURE 6.3. The locally weighted average has bias problems at or near the
boundaries of the domain. The true function is approximately linear here, but
most of the observations in the neighborhood have a higher mean than the target
point, so despite weighting, their mean will be biased upwards. By fitting a locally
weighted linear regression (right panel), this bias is removed to first order

because of the asymmetry of the kernel in that region. By fitting straight
lines rather than constants locally, we can remove this bias exactly to first
order; see Figure 6.3 (right panel). Actually, this bias can be present in the
interior of the domain as well, if the X values are not equally spaced (for
the same reasons, but usually less severe). Again locally weighted linear
regression will make a first-order correction.

Locally weighted regression solves a separate weighted least squares prob-
lem at each target point x0:

min
α(x0),β(x0)

N∑

i=1

Kλ(x0, xi) [yi − α(x0) − β(x0)xi]
2
. (6.7)

The estimate is then f̂(x0) = α̂(x0) + β̂(x0)x0. Notice that although we fit
an entire linear model to the data in the region, we only use it to evaluate
the fit at the single point x0.

Define the vector-valued function b(x)T = (1, x). Let B be the N × 2
regression matrix with ith row b(xi)

T , and W(x0) the N × N diagonal
matrix with ith diagonal element Kλ(x0, xi). Then

f̂(x0) = b(x0)
T (BT W(x0)B)−1BT W(x0)y (6.8)

=

N∑

i=1

li(x0)yi. (6.9)

Equation (6.8) gives an explicit expression for the local linear regression
estimate, and (6.9) highlights the fact that the estimate is linear in the

Figure 5: Comparing (Nadaraya-Watson) kernel smoothing to local linear regression; the
former is biased at the boundary, the latter is unbiased (to first-order). From Chapter 6 of
Hastie et al. (2009)

6.1 Higher-order smoothness

How can we hope to get optimal error rates over Hd(α, d), when α ≥ 2? With kernels there
are basically two options: use local polynomials, or use higher-order kernels

Local polynomials build on our previous idea of local linear regression (itself an extension
of kernel smoothing.) Consider d = 1, for concreteness. Define m̂(x) = β̂x,0 +

∑k
j=1 β̂x,jx

j,
where β̂x,0, . . . , β̂x,k minimize

n∑

i=1

K

( |x−Xi|
h

)(
Yi − β0 −

k∑

j=1

βjX
j
i

)2
.

over all β0, β1, . . . , βk ∈ R. This is called (kth-order) local polynomial regression

Again we can express

m̂(x) = b(x)(BTΩB)−1BTΩy = w(x)Ty,

where b(x) = (1, x, . . . , xk), B is an n× (k+ 1) matrix with ith row b(Xi) = (1, Xi, . . . , X
k
i ),

and W is as before. Hence again, local polynomial regression is a linear smoother

Assuming that m0 ∈ H1(α,L) for a constant L > 0, a Taylor expansion shows that the local
polynomial estimator m̂ of order k, where k is the largest integer strictly less than α and
where the bandwidth scales as h � n−1/(2α+1), satisfies

E‖m̂−m0‖22 . n−2α/(2α+1).
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Figure 6: A higher-order kernel function: specifically, a kernel of order 4

See Chapter 1.6.1 of Tsybakov (2009). This matches the lower bound in (25) (when d = 1)

In multiple dimensions, d > 1, local polynomials become kind of tricky to fit, because of the
explosion in terms of the number of parameters we need to represent a kth order polynomial
in d variables. Hence, an interesting alternative is to return back kernel smoothing but use
a higher-order kernel. A kernel function K is said to be of order k provided that

∫
K(t) dt = 1,

∫
tjK(t) dt = 0, j = 1, . . . , k − 1, and 0 <

∫
tkK(t) dt <∞.

This means that the kernels we were looking at so far were of order 2.

An example of a 4th-order kernel is K(t) = 3
8
(3− 5t2)1{|t| ≤ 1}, plotted in Figure 6. Notice

that it takes negative values, which might seem weird for a kernel, and hence are not that
popular.

Lastly, while local polynomial regression and higher-order kernel smoothing can help “track”
the derivatives of smooth functions m0 ∈ Hd(α,L), α ≥ 2, it should be noted that they don’t
share the same universal consistency property of kernel smoothing (or k-nearest-neighbors).
See Chapters 5.3 and 5.4 of Gyorfi et al. (2002)
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7 Basis Functions and Dictionaries

Suppose that

m ∈ L2(a, b) =

{
g : [a, b]→ R :

∫ b

a

g2(x)dx <∞
}
.

Let φ1, φ2, . . . be an orthonormal basis for L2(a, b). This means that
∫
φ2
j(x)dx = 1,∫

φjφk(x)dx = 0 for j 6= k and the only function b(x) such that
∫
b(x)φj(x)dx = 0 for

all j is b(x) = 0. It follows that any m ∈ L2(a, b) can be written as

m(x) =
∞∑

j=1

βjφj(x)

where βj =
∫
m(x)φj(x)dx. For [a, b] = [0, 1], an example is the cosine basis

φ0(x) = 1, φj(x) =
√

2 cos(πjx), j = 1, 2, . . .

To use a basis for nonparametric regression, we regress Y on the first J basis functions and
we treat J as a smoothing parameter. In other words we take m̂(x) =

∑J
j=1 β̂jφj(x) where

β̂ = (BTB)−1BTY and Bij = φj(Xi). It follows that m̂(x) is a linear smoother. See Chapters
7 and 8 of Wasserman (2006) for theoretical properties of orthogonal function smoothers.

It is not necessary to use orthogonal functions for smoothing. Let D = {ψ1, . . . , ψN} be
any collection of functions, called a dictionary. The collection D could be very large. For
example, D might be the union of several different bases. The smoothing problem is to
decide which functions in D to use for approximating m. One way to approach this problem
is to use the lasso: regress Y on D using an `1 penalty.

8 Penalized Regression: Splines

Another smoothing method is penalized regression (or regularized regression) where m̂ is
defined to be the minimizer of

n∑

i=1

(Yi − m̂(Xi))
2 + λJ(m̂) (27)

where λ ≥ 0 and J(m̂) is a penalty (or regularization) term. A popular choice of J is

J(g) =

∫
(g′′(x))2dx.

14



To find the minimizer of (27) we need to use cubic splines. Let (a, b) be an interval and
let x1, . . . , xk be k points such that a < x1 < · · · < xk < b. A continuous function f on
(a, b) is a cubic spline with knots {x1, . . . , xn} if f is cubic polynomial over the intervals
(x1, x2), (x2, x2), . . . and f has continuous first and second derivatives at the knots.

Theorem 3 Let m̂ be the minimizer of (27) where J(g) =
∫

(g′′(x))2dx. Then m̂ is a cubic
spline with knots at the points X1, . . . , Xn.

According to this result, the minimizer m̂ of (27) is contained in Mn, the set of all cubic
splines with knots at {X1, . . . , Xn}. However, we still have to find which function in Mn is
the minimizer.

Define B1(x) = 1, B2(x) = x, B3(x) = x2, B4(x) = x3 and

Bj(x) = (x−Xj−4)
3
+ j = 5, . . . , n+ 4.

It can be shown that B1, . . . , Bn+4 form a basis, also called the truncated power basis, for the
Mn. (In practice, another basis for M called the B-spline basis is used since it has better
numerical properties.) Thus, every g ∈Mn can be written as g(x) =

∑N
j=1 βjBj(x) for some

coefficients β1, . . . , βN . If we substitute m̂(x) =
∑N

j=1 βjBj(x) into (27), the minimization
problem becomes: find β = (β1, . . . , βN) to minimize

(Y − Bβ)T (Y − Bβ) + λβTΩβ (28)

where Y = (Y1, . . . , Yn), Bij = Bj(Xi) and Ωjk =
∫
B′′j (x)B′′k(x)dx. The solution is

β̂ = (BTB + λΩ)−1BTY

and hence
m̂(x) =

∑

j

β̂jBj(x) = `(x)TY

where `(x) = b(x)(BTB + λΩ)−1BT and b(x) = (B1(x), . . . , BN(x))T . Hence, the spline
smoother is another example of a linear smoother.

The parameter λ is a smoothing parameter. As λ→ 0, m̂ tends to the interpolating function
m̂(Xi) = Yi. As λ→∞, m̂ tends to the least squares linear fit.

8.1 Error rates

Define the Sobolev class of functions W1(m,C), for an integer m ≥ 0 and C > 0, to contain
all m times differentiable functions f : R→ R such that

∫ (
f (m)(x)

)2
dx ≤ C2.

15



(The Sobolev class Wd(m,C) in d dimensions can be defined similarly, where we sum over
all partial derivatives of order m.)

Assuming f0 ∈ W1(m,C) for the underlying regression function, where C > 0 is a constant,
the smoothing spline estimator f̂ in (??) of polynomial order k = 2m − 1 with tuning
parameter λ � n1/(2m+1) � n1/(k+2) satisfies

‖f̂ − f0‖2n . n−2m/(2m+1) in probability.

The proof of this result uses much more fancy techniques from empirical process theory
(entropy numbers) than the proofs for kernel smoothing. See Chapter 10.1 of van de Geer
(2000)

This rate is minimax optimal over W1(m,C) (e.g., Nussbaum (1985)).

8.2 Splines as piece-wise polynomials

Splines can also be motivated from a different perspective than penalized regression, namely
that of carefully constructed basis functions, that are called splines, which in turn arise
from fitting a piece-wise polynomial. Let’s assume that d = 1 for simplicity. A kth-order
spline f is a piecewise polynomial function of degree k that is continuous and has continuous
derivatives of orders 1, . . . , k− 1, at its knot points. Specifically, there are t1 < . . . < tp such
that f is a polynomial of degree k on each of the intervals

(−∞, t1], [t1, t2], . . . , [tp,∞)

and f (j) is continuous at t1, . . . , tp, for each j = 0, 1, . . . , k − 1

Informally, a spline is a lot smoother than a piecewise polynomial, and so modeling with
splines can serve as a way of reducing the variance of fitted estimators. See Figure 7

How can we parametrize the set of a splines with knots at t1, . . . , tp? The most natural way
is to use the truncated power basis introduced earlier, g1, . . . , gp+k+1, defined as

g1(x) = 1, g2(x) = x, . . . gk+1(x) = xk,

gk+1+j(x) = (x− tj)k+, j = 1, . . . , p.
(29)

(Here x+ denotes the positive part of x, i.e., x+ = max{x, 0}.) From this we can see that
the space of kth-order splines with knots at t1, . . . , tp has dimension p+ k + 1.

While these basis functions are natural, a much better computational choice, both for speed
and numerical accuracy, is the B-spline basis. This was a major development in spline theory
and is now pretty much the standard in software. See de Boor (1978) or the Appendix of
Chapter 5 in Hastie et al. (2009) for details
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5.2 Piecewise Polynomials and Splines 143
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FIGURE 5.2. A series of piecewise-cubic polynomials, with increasing orders of
continuity.

increasing orders of continuity at the knots. The function in the lower
right panel is continuous, and has continuous first and second derivatives
at the knots. It is known as a cubic spline. Enforcing one more order of
continuity would lead to a global cubic polynomial. It is not hard to show
(Exercise 5.1) that the following basis represents a cubic spline with knots
at ξ1 and ξ2:

h1(X) = 1, h3(X) = X2, h5(X) = (X − ξ1)
3
+,

h2(X) = X, h4(X) = X3, h6(X) = (X − ξ2)
3
+.

(5.3)

There are six basis functions corresponding to a six-dimensional linear space
of functions. A quick check confirms the parameter count: (3 regions)×(4
parameters per region) −(2 knots)×(3 constraints per knot)= 6.

Figure 7: Illustration of the effects of enforcing continuity at the knots, across various orders
of the derivative, for a cubic piecewise polynomial. From Chapter 5 of Hastie et al. (2009)
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We can then perform regression given these basis functions, the resulting approach is also
called regression splines. This would work well provided we choose good knots t1, . . . , tp;
but in general choosing knots is a tricky business. Another problem with regression splines
is that the estimates tend to display erractic behavior, i.e., they have high variance at the
boundaries of the input domain. (This is the opposite problem to that with kernel smoothing,
which had poor bias at the boundaries.) This only gets worse as the polynomial order k gets
larger.

A way to remedy this problem is to force the piecewise polynomial function to have a lower
degree to the left of the leftmost knot, and to the right of the rightmost knot—this is exactly
what natural splines do. A natural spline of order k, with knots at t1 < . . . < tp, is a
piecewise polynomial function f such that

• f is a polynomial of degree k on each of [t1, t2], . . . , [tp−1, tp],

• f is a polynomial of degree (k − 1)/2 on (−∞, t1] and [tp,∞),

• f is continuous and has continuous derivatives of orders 1, . . . , k − 1 at t1, . . . , tp.

It is implicit here that natural splines are only defined for odd orders k. There is a variant of
the truncated power basis for natural splines, and a variant of the B-spline basis for natural
splines. Again, B-splines are the preferred parametrization for computational speed and
stability. Natural splines of cubic order is the most common special case: these are smooth
piecewise cubic functions, that are simply linear beyond the leftmost and rightmost knots

Smoothing splines are simply regularized regression over the natural spline basis, placing
knots at all inputs x1, . . . , xn. They circumvent the problem of knot selection as they just
use the inputs as knots, and they control for overfitting by shrinking the coefficients of the
estimated function (in its basis expansion)

8.3 Multivariate splines

Splines can be extended to multiple dimensions, in two different ways: thin-plate splines and
tensor-product splines. See Chapter 7 of Green & Silverman (1994), and Chapters 15 and
20.4 of Gyorfi et al. (2002)). These multivariate extensions however are highly nontrivial,
especially when we compare them to the conceptually simple extension of kernel smoothing
to higher dimensions. In multiple dimensions, if one wants to study penalized nonparametric
estimation, it is easier to study RKHS based estimators. We’ll see, in fact, that this covers
smoothing splines (and thin-plate splines) as a special case.
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9 Penalized Regression: RKHS

Another approach to penalized regression is to consider functions lying in a so-called Repro-
ducing Kernel Hilbert Space (RKHS), and penalize the estimation loss by the RKHS norm of
the function (or equivalently, constrain the RKHS norm by some constant). We next cover
the necessary background.

9.1 Hilbert Spaces

A Hilbert space is a complete inner product space. A reproducing kernel Hilbert space
(RKHS) is simply a Hilbert space with extra structure that makes it very useful for statistics
and machine learning.

An example of a Hilbert space is

L2[0, 1] =
{
f : [0, 1]→ R :

∫
f 2 <∞

}

endowed with the inner product

〈f, g〉 =

∫
f(x)g(x)dx.

The corresponding norm is

||f || =
√
〈f, f〉 =

√∫
f 2(x)dx.

We write fn → f to mean that ||fn − f || → 0 as n→∞.

9.2 Evaluation Functional

The evaluation functional δx assigns a real number to each function. It is defined by δxf =
f(x). In general, the evaluation functional is not continuous. This means we can have fn → f
but δxfn does not converge to δxf . For example, let f(x) = 0 and fn(x) =

√
nI(x < 1/n2).

Then ||fn−f || = 1/
√
n→ 0. But δ0fn =

√
n which does not converge to δ0f = 0. Intuitively,

this is because Hilbert spaces can contain very unsmooth functions. We shall see that RKHS
are Hilbert spaces where the evaluation functional is continous. Intuitively, this means that
the functions in the space are well-behaved.

What has this got to do with kernels? Hang on; we’re getting there.
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9.3 Mercer Kernels

A RKHS is defined by a Mercer kernel. A Mercer kernel K(x, y) is a function of two
variables that is symmetric and positive definite. This means that, for any function f ,

∫ ∫
K(x, y)f(x)f(y)dx dy ≥ 0.

(This is like the definition of a positive definite matrix: xTAx ≥ 0 for each x.)

Our main example is the Gaussian kernel

K(x, y) = e−
||x−y||2

σ2 .

Given a kernel K, let Kx(·) be the function ontained by fixing the first coordinate. That is,
Kx(y) = K(x, y). For the Gaussian kernel, Kx is a Normal, centered at x. We can create
functions by taking linear combinations of the kernel:

f(x) =
k∑

j=1

αjKxj(x).

Let H0 denote all such functions:

H0 =

{
f :

k∑

j=1

αjKxj(x)

}
.

Given two such functions f(x) =
∑k

j=1 αjKxj(x) and g(x) =
∑m

j=1 βjKyj(x) we define an
inner product

〈f, g〉 = 〈f, g〉K =
∑

i

∑

j

αiβjK(xi, yj).

In general, f (and g) might be representable in more than one way. You can check that
〈f, g〉K is independent of how f (or g) is represented. The inner product defines a norm:

||f ||K =
√
〈f, f, 〉 =

√∑

j

∑

k

αjαkK(xj, xk) =
√
αTKα

where α = (α1, . . . , αk)
T and K is the k × k matrix with Kjk = K(xj, xk).

9.4 The Reproducing Property

Let f(x) =
∑

iKxi(x). Note the following crucual property:

〈f,Kx〉 =
∑

i

αiK(xi, x) = f(x).
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This follows from the definition of 〈f, g〉 where we take g = Kx. This implies that

〈Kx, Ky〉 = K(x, y).

This is called the reproducing property. It also implies that Kx is the representer of the
evaluation functional.

The completion of H0 with respect to || · ||K is denoted by HK and is called the
RKHS generated by K.

To verify that this is a well-defined Hilbert space, you should check that the following
properties hold:

〈f, g〉 = 〈g, f〉
〈cf + dg, h〉 = c〈f, h〉+ c〈g, h〉
〈f, f〉 = 0 iff f = 0.

The last one is not obvious so let us verify it here. It is easy to see that f = 0 impies that
〈f, f〉 = 0. Now we must show that 〈f, f〉 = 0 implies that f(x) = 0. So suppose that
〈f, f〉 = 0. Pick any x. Then

0 ≤ f 2(x) = 〈f,Kx〉2
≤ ||f ||2 ||Kx||2 = 〈f, f〉2 ||Kx||2 = 0

where we used Cauchy-Schwartz. So 0 ≤ f 2(x) ≤ 0 which means that f(x) = 0.

Returning to the evaluation functional, suppose that fn → f . Then

δxfn = 〈fn, Kx〉 → 〈f,Kx〉 = f(x) = δxf

so the evaluation functional is continuous. In fact, a Hilbert space is a RKHS if and
only if the evaluation functionals are continuous.

9.5 Examples

Example 4 Let H be all functions f on R such that the support of the Fourier transform
of f is contained in [−a, a]. Then

K(x, y) =
sin(a(y − x))

a(y − x)

and

〈f, g〉 =

∫
fg.
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Example 5 Let H be all functions f on (0, 1) such that
∫ 1

0

(f 2(x) + (f ′(x))2)x2dx <∞.

Then
K(x, y) = (xy)−1

(
e−xsinh(y)I(0 < x ≤ y) + e−ysinh(x)I(0 < y ≤ x)

)

and

||f ||2 =

∫ 1

0

(f 2(x) + (f ′(x))2)x2dx.

Example 6 The Sobolev space of order m is (roughly speaking) the set of functions f such
that

∫
(f (m))2 <∞. For m = 1 and X = [0, 1] the kernel is

K(x, y) =

{
1 + xy + xy2

2
− y3

6
0 ≤ y ≤ x ≤ 1

1 + xy + yx2

2
− x3

6
0 ≤ x ≤ y ≤ 1

and

||f ||2K = f 2(0) + f ′(0)2 +

∫ 1

0

(f ′′(x))2dx.

9.6 Spectral Representation, RKHS as Orthogonal Series

Suppose that supx,yK(x, y) <∞. Define eigenvalues λj and orthonormal eigenfunctions ψj
by ∫

K(x, y)ψj(y)dy = λjψj(x).

Then
∑

j λj <∞ and supx |ψj(x)| <∞. Also,

K(x, y) =
∞∑

j=1

λjψj(x)ψj(y).

We can expand f either in terms of K or in terms of the basis ψ1, ψ2, . . .:

f(x) =
∑

i

αiK(xi, x) =
∞∑

j=1

βjψj(x).

Furthermore, if f(x) =
∑

j ajψj(x) and g(x) =
∑

j bjψj(x), then

〈f, g〉 =
∞∑

j=1

ajbj
λj

.

Roughly speaking, when ||f ||K is small, then f is smooth.
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9.7 Kernel Trick

Define the feature map Φ by

Φ(x) = (
√
λ1ψ1(x),

√
λ2ψ2(x), . . .).

We can then see that K(x, y) is the corresponding `2 inner product of the two `2 sequences
Φ(x) and Φ(y). The key advantage of an RKHS is that this inner product is made compu-
tationally feasible by just evaluating the kernel K(x, y).

Thus, in any algorithm that uses its features x only via inner products 〈xi, xj〉, we can
then replace the features {xi} by their (infinite dimensional) feature maps {Φ(xi)}, and just
substitute the linear feature inner products with the feature map inner products K(xi, xj) =
〈Φ(xi),Φ(xj)〉 and get a nonlinear version of the algorithm. This is called the “kernel trick”
since K(xi, xj) is easy to compute, allowing us to turn a linear procedure into a nonlinear
procedure without adding much computation.

9.8 Representer Theorem

Let ` be a loss function depending on (X1, Y1), . . . , (Xn, Yn) and on f(X1), . . . , f(Xn). Let

f̂ minimize
`+ g(||f ||2K)

where g is any monotone increasing function. Then f̂ has the form

f̂(x) =
n∑

i=1

αiK(xi, x)

for some α1, . . . , αn.

9.9 RKHS Regression

Define m̂ to minimize
R =

∑

i

(Yi −m(Xi))
2 + λ||m||2K .

By the representer theorem, m̂(x) =
∑n

i=1 αiK(xi, x). Plug this into R and we get

R = ||Y −Kα||2 + λαTKα

where Kjk = K(Xj, Xk) is the Gram matrix. The minimizer over α is

α̂ = (K + λI)−1Y
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and m̂(x) =
∑

j α̂jK(Xi, x). The fitted values are

Ŷ = Kα̂ = K(K + λI)−1Y = LY.

So this is a linear smoother.

We can use cross-validation to choose λ. Compare this with smoothing kernel regres-
sion.

One could also combine RKHS estimation with losses other than squared error.

Logistic Regression. Let

m(x) = P(Y = 1|X = x) =
ef(x)

1 + ef(x)
.

We can estimate m by minimizing

−loglikelihood + λ||f ||2K .

Then f̂ =
∑

jK(xj, x) and α may be found by numerical optimization; see the chapter. In
this case, smoothing kernels are much easier.

Support Vector Machines. Suppose Yi ∈ {−1,+1}. Recall the the linear SVM minimizes
the penalized hinge loss:

J =
∑

i

[1− Yi(β0 + βTXi)]+ +
λ

2
||β||22.

The RKHS version is to minimize

J =
∑

i

[1− Yif(Xi)]+ +
λ

2
||f ||2K .

The dual is the same except that 〈Xi, Xj〉 is replaced with K(Xi, Xj).

9.10 Hidden Tuning Parameters

There are hidden tuning parameters in the RKHS. Consider the Gaussian kernel

K(x, y) = e−
||x−y||2

σ2 .
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For nonparametric regression we minimize
∑

i(Yi − m(Xi))
2 subject to ||m||K ≤ L. We

control the bias variance tradeoff by doing cross-validation over L. But what about σ?

This parameter seems to get mostly ignored. Suppose we have a uniform distribution on a
circle. The eigenfunctions of K(x, y) are the sines and cosines. The eigenvalues λk die off
like (1/σ)2k. So σ affects the bias-variance tradeoff since it weights things towards lower
order Fourier functions. In principle we can compensate for this by varying L. But clearly
there is some intercation between L and σ. The practical effect is not well understood.

Now consider the polynomial kernel K(x, y) = (1 + 〈x, y〉)d. This kernel has the same
eigenfunctions but the eignvalues decay at a polynomial rate depending on d. So there is an
interaction between L, d and, the choice of kernel itself.

9.11 Two Sample Test

Gretton, Borgwardt, Rasch, Scholkopf and Smola (GBRSS 2008) show how to use kernels
for two sample testing. Suppose that

X1, . . . , Xm ∼ P Y1, . . . , Yn ∼ Q.

We want to test the null hypothesis H0 : P = Q.

Let F = {f : ||f ||K ≤ 1}. Define

M = sup
f∈F

∣∣∣∣∣EP [f(X)]− EQ[f(X)]

∣∣∣∣∣.

Under weak regulaarty conditions on K, it can be shown that M = 0 if and only if P = Q.
Thus we can test H0 by estimating M .

Define

M̂ = sup
f∈F

∣∣∣∣∣
1

m

m∑

i=1

f(Xi)−
1

n

m∑

i=1

f(Yi)

∣∣∣∣∣ .

Some calcculations show that

M̂2 =
1

m2

∑

j,k

K(Xj, Xk)−
2

mn

∑

j,k

K(Xj, Yk) +
1

n2

∑

j,k

K(Yj, Yk).

We reject H0 if M̂ > t.

To determine t, using McDiarmmid’s inequality and a Rademacher bound, GBRSS shows
that

P

(
|M̂ −M | > 2

(√
C

m
+

√
C

n

)
+ ε

)
≤ exp

(
− ε2mn

C(m+ n)

)
.
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There is a connection with smoothing kernels. Let

f̂X(u) =
1

m

n∑

i=1

κ(Xi − u)

and similarly for f̂Y . Then ∫
|f̂X(u)− f̂Y (u)|2du = M̂2

where M̂ is based on the kernel K(x, y) =
∫
κ(x−z)κ(y−z)dz. So they are really the same!

In practice, one would use the Gaussian kernel Kσ(x, y) = e−
||x−y||2

σ2 . Call the resulting

statistic M̂σ. For hypothesis testing, there is no need to choose a bandwidth σ. Just define

M̂ = sup
σ
M̂σ.

Since the distribution of M̂ under H0 is very complex and involved unknown quantities, the
critical value can be obtained using permutation methods.

10 Choosing the Smoothing Parameter

The estimators depend on the bandwidth h. Let R(h) denote the risk of m̂h when bandwidth
h is used. We will estimate R(h) and then choose h to minimize this estimate. As with linear
regression, the training error

R̃(h) =
1

n

n∑

i=1

(Yi − m̂h(Xi))
2 (30)

is biased downwards. We will estimate the risk using the cross-validation.

10.1 Leave-One-Out Cross-Validation

The leave-one-out cross-validation score is defined by

R̂(h) =
1

n

n∑

i=1

(Yi − m̂(−i)(Xi))
2 (31)

where m̂(−i) is the estimator obtained by omitting the ith pair (Xi, Yi), that is, m̂(−i)(x) =∑n
j=1 Yj`j,(−i)(x) and

`j,(−i)(x) =

{
0 if j = i

`j(x)∑
k 6=i `k(x)

if j 6= i.
(32)
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Theorem 7 Let m̂ be a linear smoother. Then the leave-one-out cross-validation score R̂(h)
can be written as

R̂(h) =
1

n

n∑

i=1

(
Yi − m̂h(Xi)

1− Lii

)2

(33)

where Lii = `i(Xi) is the ith diagonal element of the smoothing matrix L.

The smoothing parameter h can then be chosen by minimizing R̂(h). An alternative is
generalized cross-validation in which each Lii in equation (33) is replaced with its average
n−1

∑n
i=1 Lii = ν/n where ν = tr(L) is the effective degrees of freedom. (Note that ν depends

on h.) Thus, we minimize

GCV(h) =
R̃

(1− ν/n)2
. (34)

Usually, GCV and cross-validation are very similar. Using the approximation (1 − x)−2 ≈
1 + 2x we see that

GCV(h) ≈ 1

n

n∑

i=1

(Yi − m̂(Xi))
2 +

2νσ̂2

n
≡ Cp (35)

where σ̂2 = n−1
∑n

i=1(Yi − m̂(Xi))
2. Equation (35) is the nonparametric version of the Cp

statistic that we saw in linear regression.

Example 8 (Doppler function) Let

m(x) =
√
x(1− x) sin

(
2.1π

x+ .05

)
, 0 ≤ x ≤ 1 (36)

which is called the Doppler function. This function is difficult to estimate and provides a
good test case for nonparametric regression methods. The function is spatially inhomogeneous
which means that its smoothness (second derivative) varies over x. The function is plotted
in the top left plot of Figure 8. The top right plot shows 1000 data points simulated from
Yi = m(i/n) + σεi with σ = .1 and εi ∼ N(0, 1). The bottom left plot shows the cross-
validation score versus the effective degrees of freedom using local linear regression. The
minimum occurred at 166 degrees of freedom corresponding to a bandwidth of .005. The
fitted function is shown in the bottom right plot. The fit has high effective degrees of freedom
and hence the fitted function is very wiggly. This is because the estimate is trying to fit the
rapid fluctuations of the function near x = 0. If we used more smoothing, the right-hand side
of the fit would look better at the cost of missing the structure near x = 0. This is always a
problem when estimating spatially inhomogeneous functions.
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Figure 8: The Doppler function estimated by local linear regression. The function (top left),
the data (top right), the cross-validation score versus effective degrees of freedom (bottom
left), and the fitted function (bottom right).

10.2 Data Splitting

As with density estimation, stronger guarantees can be made using a data splitting version
of cross-validation. Suppose the data are (X1, Y1), . . . , (X2n, Y2n). Now randomly split the
data into two halves that we denote by

D =
{

(X̃1, Ỹ1), . . . , (X̃n, Ỹn)
}

and
E =

{
(X∗1 , Y

∗
1 ), . . . , (X∗n, Y

∗
n )
}
.

Construct regression estimators M = {m1, . . . ,mN} from D. Define the risk estimator

R̂(mj) =
1

n

n∑

i=1

|Y ∗i −mj(X
∗
i )|2.

Finally, let
m̂ = argminm∈MR̂(m).

Theorem 9 Let m∗ ∈M minimize ‖mj −m‖2P . There exists C > 0 such that

E(‖m̂−m‖2P ) ≤ 2E‖m∗ −m‖2P +
C logN

n
.

28



The Backfitting Algorithm

Initialization: set α̂ = Y and set initial guesses for m̂1, . . . , m̂d. Now iterate the
following steps until convergence. For j = 1, . . . , d do:

• Compute Ỹi = Yi − α̂−
∑

k 6=j m̂k(Xi), i = 1, . . . , n.

• Apply a smoother to Ỹ on Xj to obtain m̂j.

• Set m̂j(x)←− m̂j(x)− n−1∑n
i=1 m̂j(Xi).

• end do.

Figure 9: Backfitting.

11 Additive Models

Interpreting and visualizing a high-dimensional fit is difficult. As the number of covariates
increases, the computational burden becomes prohibitive. A practical approach is to use an
additive model. An additive model is a model of the form

Y = α +
d∑

j=1

mj(xj) + ε (37)

where m1, . . . ,md are smooth functions. The model (37) is not identifiable since we can add
any constant to α and subtract the same constant from one of the mj’s without changing the
regression function. This problem can be fixed in a number of ways; the simplest is to α̂ = Y
and then regard the mj’s as deviations from Y . In this case we require that

∑n
i=1 m̂j(Xi) = 0

for each j.

There is a simple algorithm called backfitting for turning any one-dimensional regression
smoother into a method for fitting additive models. This is essentially a coordinate descent,
Gauss-Seidel algorithm. See Figure 9.

Example 10 This example involves three covariates and one response variable. The data
are 48 rock samples from a petroleum reservoir, the response is permeability (in milli-Darcies)
and the covariates are: the area of pores (in pixels out of 256 by 256), perimeter in pixels
and shape (perimeter/

√
area). The goal is to predict permeability from the three covariates.

We fit the additive model

permeability = m1(area) +m2(perimeter) +m3(shape) + ε.
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We could scale each covariate to have the same variance and then use a common bandwidth
for each covariate. Instead, we perform cross-validation to choose a bandwidth hj for co-
variate xj during each iteration of backfitting. The bandwidths and the functions estimates
converged rapidly. The estimates of m1, m2 and m3 are shown in Figure 10. Y was added
to each function before plotting it.
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Figure 10: The rock data. The plots show m̂1, m̂2, and m̂3 for the additive model Y =
m̂1(X1) + m̂2(X2) + m̂3(x3) + ε.

12 SpAM

Ravikumar, Lafferty, Liu and Wasserman (2007) introduced a sparse version of additive
models called SpAM (Sparse Additive Models). This is a functional version of the grouped
lasso (Yuan and Lin 2006) and is closely related to the COSSO (Lin and Zhang 2006).

We form an additive model

Yi = α +
d∑

j=1

βjgj(Xij) + εi (38)

with the identifiability conditions
∫
gj(xj)dP (xj) = 0 and

∫
g2j (xj)dP (xj) = 1. Further, we

impose the sparsity condition
∑d

j=1 |βj| ≤ Ln and the smoothness condition gj ∈ Sj where
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Sj is some class of smooth functions. While this optimization problem makes plain the role
`1 regularization of β to achieve sparsity, it is convenient to reexpress the model as

min
mj∈Hj

E
(
Y −∑d

j=1mj(Xj)
)2

subject to
d∑

j=1

√
E(m2

j(Xj)) ≤ L, E(mj) = 0, j = 1, . . . , d.

The Lagrangian for the optimization problem is

L(f, λ, µ) =
1

2
E
(
Y −∑d

j=1mj(Xj)
)2

+ λ

d∑

j=1

√
E(m2

j(Xj)) +
∑

j

µjE(mj). (39)

Theorem 11 The minimizers m1, . . . ,mp of (39) satisfy

mj =


1− λ√

E(P 2
j )




+

Pj a.e. (40)

where [·]+ denotes the positive part, and Pj = E[Rj |Xj] denotes the projection of the residual
Rj = Y −∑k 6=jmk(Xk) onto Hj.

To solve this problem, we insert sample estimates into the population algorithm, as in stan-
dard backfitting. We estimate the projection Pj by smoothing the residuals:

P̂j = SjRj (41)

where Sj is a linear smoother, such as a local linear or kernel smoother. Let

ŝj =
1√
n
‖P̂j‖2 =

√
mean(P̂ 2

j ). (42)

be the estimate of
√

E(P 2
j ). We have thus derived the SpAM backfitting algorithm given in

Figure 11.

We choose λ by minimizing an estimate of the risk. Let νj be the effective degrees of freedom
for the smoother on the jth variable, that is, νj = trace(Sj) where Sj is the smoothing matrix
for the j-th dimension. Also let σ̂2 be an estimate of the variance. Define the total effective
degrees of freedom

df(λ) =
∑

j

νjI (‖m̂j‖ 6= 0) . (43)
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SpAM Backfitting Algorithm

Input : Data (Xi, Yi), regularization parameter λ.

Initialize m̂j = 0, for j = 1, . . . , p.

Iterate until convergence:

For each j = 1, . . . , p:

(1) Compute the residual: Rj = Y −∑k 6=j f̂k(Xk);

(2) Estimate Pj = E[Rj |Xj] by smoothing: P̂j = SjRj;

(3) Estimate norm: ŝ2j = 1
n

∑n
i=1 P̂

2
j (i);

(4) Soft-threshold: m̂j = [1− λ/ŝj]+ P̂j;
(5) Center: m̂j ← m̂j −mean(m̂j).

Output : Component functions m̂j and estimator m̂(Xi) =
∑

j m̂j(Xij).

Figure 11: The SpAM backfitting algorithm. The first two steps in the iterative algorithm are
the usual backfitting procedure; the remaining steps carry out functional soft thresholding.

Two estimates of risk are

Cp =
1

n

n∑

i=1

(
Yi −

d∑

j=1

m̂j(Xj)

)2

+
2σ̂2

n
df(λ) (44)

and

GCV(λ) =
1
n

∑n
i=1(Yi −

∑
j m̂j(Xij))

2

(1− df(λ)/n)2
. (45)

The first is Cp and the second is generalized cross validation but with degrees of freedom
defined by df(λ). A proof that these are valid estimates of risk is not currently available.
Thus, these should be regarded as heuristics.

Synthetic Data. We generated n = 150 observations from the following 200-dimensional
additive model:

Yi = m1(xi1) +m2(xi2) +m3(xi3) +m4(xi4) + εi (46)

m1(x) = −2 sin(2x), m2(x) = x2 − 1

3
, m3(x) = x− 1

2
, m4(x) = e−x + e−1 − 1

and mj(x) = 0 for j ≥ 5 with noise εi ∼ N (0, 1). These data therefore have 196 irrelevant
dimensions.
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The results of applying SpAM with the plug-in bandwidths are summarized in Figure 12.
The top-left plot in Figure 12 shows regularization paths as a function of the parameter
λ; each curve is a plot of ‖m̂j‖2 versus λ for a particular variable Xj. The estimates are
generated efficiently over a sequence of λ values by “warm starting” m̂j(λt) at the previous
value m̂j(λt−1). The top-center plot shows the Cp statistic as a function of λ. The top-
right plot compares the empirical probability of correctly selecting the true four variables
as a function of sample size n, for p = 128 and p = 256. This behavior suggests the same
threshold phenomenon that was proven for the lasso.

Boston Housing. The Boston housing data were collected to study house values in the
suburbs of Boston. There are 506 observations with 10 covariates. The dataset has been
studied by many authors with various transformations proposed for different covariates. To
explore the sparsistency properties of our method, we added 20 irrelevant variables. Ten of
them are randomly drawn from Uniform(0, 1), the remaining ten are a random permutation
of the original ten covariates. The model is

Y = α +m1(crim) +m2(indus) +m3(nox) +m4(rm) +m5(age)

+ m6(dis) +m7(tax) +m8(ptratio) +m9(b) +m10(lstat) + ε. (47)

The result of applying SpAM to this 30 dimensional dataset is shown in Figure 13. SpAM
identifies 6 nonzero components. It correctly zeros out both types of irrelevant variables.
From the full solution path, the important variables are seen to be rm, lstat, ptratio,
and crim. The importance of variables nox and b are borderline. These results are basically
consistent with those obtained by other authors. However, using Cp as the selection criterion,
the variables indux, age, dist, and tax are estimated to be irrelevant, a result not seen in
other studies.

13 Partitions and Trees

Simple and interpretable estimators can be derived by partitioning the range of X. Let
Πn = {A1, . . . , AN} be a partition of X and define

m̂(x) =
N∑

j=1

Y j I(x ∈ Aj)

where Y j = n−1j
∑n

i=1 YiI(Xi ∈ Aj) is the average of the Yi’s in Aj and nj = #{Xi ∈ Aj}.
(We define Y j to be 0 if nj = 0.)

The simplest partition is based on cubes. Suppose that X = [0, 1]d. Then we can partition
X into N = kd cubes with lengths of size h = 1/k. Thus, N = (1/h)d. The smoothing
parameter is h.
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Figure 12: (Simulated data) Upper left: The empirical `2 norm of the estimated components
as plotted against the regularization parameter λ; the value on the x-axis is proportional to∑

j ‖m̂j‖2. Upper center: The Cp scores against the regularization parameter λ; the dashed
vertical line corresponds to the value of λ which has the smallest Cp score. Upper right:
The proportion of 200 trials where the correct relevant variables are selected, as a function
of sample size n. Lower (from left to right): Estimated (solid lines) versus true additive
component functions (dashed lines) for the first 6 dimensions; the remaining components are
zero.
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Figure 13: (Boston housing) Left: The empirical `2 norm of the estimated components versus
the regularization parameter λ. Center: The Cp scores against λ; the dashed vertical line
corresponds to best Cp score. Right: Additive fits for four relevant variables.
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Theorem 12 Let m̂(x) be the partition estimator. Suppose that

m ∈M =

{
m : |m(x)−m(x)| ≤ L‖x− z‖, x, z,∈ Rd

}
(48)

and that Var(Y |X = x) ≤ σ2 <∞ for all x. Then

E‖m̂−m‖2P ≤ c1h
2 +

c2
nhd

. (49)

Hence, if h � n−1/(d+2) then

E‖m̂−m‖2P ≤
c

n2/(d+2)
. (50)

The proof is virtually identical to the proof of Theorem ??.

A regression tree is a partition estimator of the form

m(x) =
M∑

m=1

cmI(x ∈ Rm) (51)

where c1, . . . , cM are constants and R1, . . . , RM are disjoint rectangles that partition the
space of covariates and whose sides are parallel to the coordinate axes. The model is fit in
a greedy, recursive manner that can be represented as a tree; hence the name.

Denote a generic covariate value by x = (x1, . . . , xj, . . . , xd). The covariate for the ith ob-
servation is Xi = (Xi1, . . . , Xij, . . . , Xid). Given a covariate j and a split point s we define
the rectangles R1 = R1(j, s) = {x : xj ≤ s} and R2 = R2(j, s) = {x : xj > s} where, in
this expression, xj refers the the jth covariate not the jth observation. Then we take c1 to
be the average of all the Yi’s such that Xi ∈ R1 and c2 to be the average of all the Yi’s such
that Xi ∈ R2. Notice that c1 and c2 minimize the sums of squares

∑
Xi∈R1

(Yi − c1)2 and∑
Xi∈R2

(Yi− c2)2. The choice of which covariate xj to split on and which split point s to use
is based on minimizing the residual sums if squares. The splitting process is on repeated on
each rectangle R1 and R2.

Figure 14 shows a simple example of a regression tree; also shown are the corresponding
rectangles. The function estimate m̂ is constant over the rectangles.

Generally one first grows a very large tree, then the tree is pruned to form a subtree by
collapsing regions together. The size of the tree is a tuning parameter and is usually chosen
by cross-validation.

Example 13 Figure 15 shows a tree for the rock data. Notice that the variable shape does
not appear in the tree. This means that the shape variable was never the optimal covariate to
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Figure 14: A regression tree for two covariates X1 and X2. The function estimate is m̂(x) =
c1I(x ∈ R1) + c2I(x ∈ R2) + c3I(x ∈ R3) where R1, R2 and R3 are the rectangles shown in
the lower plot.
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split on in the algorithm. The result is that tree only depends on area and peri. This illustrates
an important feature of tree regression: it automatically performs variable selection in the
sense that a covariate xj will not appear in the tree if the algorithm finds that the variable
is not important.

area < 1403

area < 1068 area < 3967

area < 3967
peri < .1991

peri < .1949

7.746 8.407 8.678 8.893 8.985 8.099 8.339

Figure 15: Regression tree for the rock data.

14 Linear Smoothers

Kernel estimators and local polynomial estimator are examples of linear smoothers.

Definition: An estimator m̂ of m is a linear smoother if, for each x, there is a vector
`(x) = (`1(x), . . . , `n(x))T such that

m̂(x) =
n∑

i=1

`i(x)Yi = `(x)TY (52)

where Y = (Y1, . . . , Yn)T .

For kernel estimators, `i(x) = K(‖x−Xi‖/h)∑n
j=1K(‖x−Xj‖/h) . For local linear estimators, we can deduce

the weights from the expression for β̂(x). Here is an interesting fact: the following estimators
are linear smoothers: Gaussian process regression, splines, RKHS estimators.
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Example 14 You should note confuse linear smoothers with linear regression. In linear
regression we assume that m(x) = xTβ. In fact, least squares linear regression is a special

case of linear smoothing. If β̂ denotes the least squares estimator then m̂(x) = xT β̂ =
xT (XTX)−1XTY = `(x)TY where `(x) = xT (XTX)−1XT .

Define the vector of fitted values Ŷ = (m̂(X1), . . . , m̂(Xn))T . It follows that Ŷ = LY where

L =




`(X1)
T

`(X2)
T

...
`(Xn)T


 =




`1(X1) `2(X1) · · · `n(X1)
`1(X2) `2(X2) · · · `n(X2)

...
...

...
...

`1(Xn) `2(Xn) · · · `n(Xn)


 . (53)

The matrix L defined in (53) is called the smoothing matrix. The ith row of L is called the
effective kernel for estimating m(Xi). We define the effective degrees of freedom by

ν = tr(L). (54)

The effective degrees of freedom behave very much like the number of parameters in a linear
regression model.

Remark. The weights in all the smoothers we will use have the property that, for all x,∑n
i=1 `i(x) = 1. This implies that the smoother preserves constants.

15 Non-linear Smoothers: Wavelets

Not every nonparametric regression estimate needs to be a linear smoother (though this
does seem to be very common), and wavelet smoothing is one of the leading nonlinear tools
for nonparametric estimation. The theory of wavelets is elegant and we only give a brief
introduction here; see Mallat (2008) for an excellent reference.

You can think of wavelets as defining an orthonormal function basis, with the basis functions
exhibiting a highly varied level of smoothness. Importantly, these basis functions also display
spatially localized smoothness at different locations in the input domain. There are actually
many different choices for wavelets bases (Haar wavelets, symmlets, etc.), but these are
details that we will not go into.

We assume d = 1. Local adaptivity in higher dimensions is not nearly as settled as it is with
smoothing splines or (especially) kernels (multivariate extensions of wavelets are possible,
i.e., ridgelets and curvelets, but are complex).
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Consider basis functions, φ1, . . . , φn, evaluated over n equally spaced inputs over [0, 1]:

Xi = i/n, i = 1, . . . , n.

Thus the inputs here are fixed and not random, such a setting is called the fixed design
regression setting. The assumption of evenly spaced inputs is crucial for fast computations;
we also typically assume with wavelets that n is a power of 2. We now form a wavelet basis
matrix W ∈ Rn×n, defined by

Wij = φj(Xi), i, j = 1, . . . , n

The goal, given outputs y = (y1, . . . , yn) over the evenly spaced input points, is to represent
y as a sparse combination of the wavelet basis functions. To do so, we first perform a wavelet
transform (multiply by W T ):

θ̃ = W Ty,

we threshold the coefficients θ (the threshold function Tλ to be defined shortly):

θ̂ = Tλ(θ̃),

and then perform an inverse wavelet transform (multiply by W ):

µ̂ = Wθ̂

The wavelet and inverse wavelet transforms (multiplication by W T and W ) each require
O(n) operations, and are practically extremely fast due do clever pyramidal multiplication
schemes that exploit the special structure of wavelets

The threshold function Tλ is usually taken to be hard-thresholding, i.e.,

[T hard
λ (z)]i = zi · 1{|zi| ≥ λ}, i = 1, . . . , n,

or soft-thresholding, i.e.,

[T soft
λ (z)]i =

(
zi − sign(zi)λ

)
· 1{|zi| ≥ λ}, i = 1, . . . , n.

These thresholding functions are both alsoO(n), and computationally trivial, making wavelet
smoothing very fast overall

We should emphasize that wavelet smoothing is not a linear smoother, i.e., there is no single
matrix S such that µ̂ = Sy for all y.

We can write the wavelet smoothing estimate in a more familiar form, following our previous
discussions on basis functions and regularization. For hard-thresholding, we solve

θ̂ = argmin
θ∈Rn

‖y −Wθ‖22 + λ2‖θ‖0,
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and then the wavelet smoothing fitted values are µ̂ = Wθ̂. Here ‖θ‖0 =
∑n

i=1 1{θi 6= 0}, the
number of nonzero components of θ, called the “`0 norm”. For soft-thresholding, we solve

θ̂ = argmin
θ∈Rn

‖y −Wθ‖22 + 2λ‖θ‖1,

and then the wavelet smoothing fitted values are µ̂ = Wθ̂. Here ‖θ‖1 =
∑n

i=1 |θi|, the `1
norm

15.1 The strengths of wavelets, the limitations of linear smoothers

Apart from its computational efficiency, an important strength of wavelet smoothing is that
it can represent a signal that has a spatially heterogeneous degree of smoothness, i.e., it can
be both smooth and wiggly at different regions of the input domain. The reason that wavelet
smoothing can achieve such local adaptivity is because it selects a sparse number of wavelet
basis functions, by thresholding the coefficients from a basis regression

We can make this more precise by considering convergence rates over an appropriate function
class. In particular, we define the total variation class M(k, C), for an integer k ≥ 0 and
C > 0, to contain all k times (weakly) differentiable functions whose kth derivative satisfies

TV(f (k)) = sup
0=z1<z2<...<zN<zN+1=1

N∑

j=1

|f (k)(zi+1)− f (k)(zi)| ≤ C.

(Note that if f has k + 1 continuous derivatives, then TV(f (k)) =
∫ 1

0
|f (k+1)(x)| dx.)

For the wavelet smoothing estimator, denoted by m̂wav, Donoho & Johnstone (1998) provide a
seminal analysis. Assuming that m0 ∈M(k, C) for a constant C > 0 (and further conditions
on the setup), they show that (for an appropriate scaling of the smoothing parameter λ),

E‖m̂wav −m0‖22 . n−(2k+2)/(2k+3) and inf
m̂

sup
m0∈M(k,C)

E‖m̂−m0‖22 & n−(2k+2)/(2k+3). (55)

Thus wavelet smoothing attains the minimax optimal rate over the function class M(k, C).
(For a translation of this result to the notation of the current setting, see Tibshirani (2014).)

Donoho & Johnstone (1998) showed that the minimax error over M(k, C), restricted to linear
smoothers, is much larger:

inf
m̂ linear

sup
m0∈M(k,C)

E‖m̂−m0‖22 & n−(2k+1)/(2k+2). (56)

Practically, the differences between wavelets and linear smoothers in problems with spatially
heterogeneous smoothness can be striking as well. However, you should keep in mind that
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wavelets are not perfect: a shortcoming is that they require a highly restrictive setup: recall
that they require evenly spaced inputs, and n to be power of 2, and there are often further
assumptions made about the behavior of the fitted function at the boundaries of the input
domain

Also, though you might say they marked the beginning of the story, wavelets are not the end
of the story when it comes to local adaptivity. The natural thing to do, it might seem, is
to make (say) kernel smoothing or smoothing splines more locally adaptive by allowing for
a local bandwidth parameter or a local penalty parameter. People have tried this, but it is
both difficult theoretically and practically to get right.
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