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1 What is Nonparametric Bayes?

In parametric Bayesian inference we have a model M = {f(y|θ) : θ ∈ Θ} and data
Y1, . . . , Yn ∼ f(y|θ). We put a prior distribution π(θ) on the parameter θ and compute the
posterior distribution using Bayes’ rule:

π(θ|Y ) =
Ln(θ)π(θ)

m(Y )
(1)

where Y = (Y1, . . . , Yn), Ln(θ) =
∏

i f(Yi|θ) is the likelihood function and

m(y) = m(y1, . . . , yn) =

∫
f(y1, . . . , yn|θ)π(θ)dθ =

∫ n∏
i=1

f(yi|θ)π(θ)dθ

is the marginal distribution for the data induced by the prior and the model. We call m the
induced marginal. The model may be summarized as:

θ ∼ π

Y1, . . . , Yn|θ ∼ f(y|θ).

We use the posterior to compute a point estimator such as the posterior mean of θ. We can
also summarize the posterior by drawing a large sample θ1, . . . , θN from the posterior π(θ|Y )
and the plotting the samples.

In nonparametric Bayesian inference, we replace the finite dimensional model {f(y|θ) : θ ∈
Θ} with an infinite dimensional model such as

F =

{
f :

∫
(f ′′(y))2dy <∞

}
(2)

If there is a dominating measure for a set of densities F then the posterior can be found by
Bayes theorem:

πn(A) ≡ P(f ∈ A|Y ) =

∫
A
Ln(f)dπ(f)∫

F Ln(f)dπ(f)
(3)

where A ⊂ F , Ln(f) =
∏

i f(Yi) is the likelihood function and π is a prior on F . If there
is no dominating measure for F then the posterior still exists but cannot be obtained by
simply applying Bayes’ theorem. An estimate of f is the posterior mean

f̂(y) =

∫
f(y)dπn(f). (4)
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A posterior 1− α region is any set A such that πn(A) = 1− α.

Several questions arise:

1. How do we construct a prior π on an infinite dimensional set F?

2. How do we compute the posterior? How do we draw random samples from the poste-
rior?

3. What are the properties of the posterior?

The answers to the third question are subtle. In finite dimensional models, the inferences
provided by Bayesian methods usually are similar to the inferences provided by frequentist
methods. Hence, Bayesian methods inherit many properties of frequentist methods: consis-
tency, optimal rates of convergence, frequency coverage of interval estimates etc. In infinite
dimensional models, this is no longer true. The inferences provided by Bayesian methods do
not necessarily coincide with frequentist methods and they do not necessarily have properties
like consistency, optimal rates of convergence, or coverage guarantees.

2 Distributions on Infinite Dimensional Spaces

To use nonparametric Bayesian inference, we will need to put a prior π on an infinite di-
mensional space. For example, suppose we observe X1, . . . , Xn ∼ F where F is an unknown
distribution in some space of distributions F . We will put a prior π on the set of all distri-
butions in F . In many cases, we cannot explicitly write down a formula for π as we can in
a parametric model. This leads to the following problem: how we we describe a distribution
π on an infinite dimensional space? One way to describe such a distribution is to give an
explicit algorithm for drawing from the distribution π. In a certain sense, “knowing how to
draw from π” takes the place of “having a formual for π.”

The Bayesian model can be written as

F ∼ π

X1, . . . , Xn|F ∼ F.

The model and the prior induce a marginal distribution m for (X1, . . . , Xn),

m(B) =

∫
PF (B)dπ(F )

where

PF (B) =

∫
IB(x1, . . . , xn)dF (x1) · · · dF (xn).
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We call m the induced marginal. Another aspect of describing our Bayesian model will be
to give an algorithm for drawing X = (X1, . . . , Xn) from m.

After we observe the data X = (X1, . . . , Xn), we are interested in the posterior distribution

πn(A) ≡ π(F ∈ A|X1, . . . , Xn). (5)

Once again, we will describe the posterior by giving an algorithm for drawing randonly from
it.

To summarize: in some nonparametric Bayesian models, we describe the prior distribution
by giving an algorithm for sampling from the prior π, the marginal m and the posterior πn.

3 Three Nonparametric Problems

We will focus on three specific problems. The four problems and their most common fre-
quentist and Bayesian solutions are:

Statistical Problem Frequentist Approach Bayesian Approach
Estimating a cdf empirical cdf Dirichlet process
Estimating a density kernel smoother Dirichlet process mixture
Estimating a regression function kernel smoother Gaussian process

4 Estimating a cdf

Let X1, . . . , Xn be a sample from an unknown cdf (cumulative distribution function) F where
Xi ∈ R. The usual frequentist estimate of F is the empirical distribution function

Fn(x) =
1

n

n∑
i=1

I(Xi ≤ x). (6)

Recall that for every ε > 0 and every F ,

PF
(

sup
x
|Fn(x)− F (x)| > ε

)
≤ 2e−2nε

2

. (7)

Setting εn =
√

1
2n

log
(
2
α

)
we have

inf
F

PF

(
Fn(x)− εn ≤ F (x) ≤ Fn(x) + εn for all x

)
≥ 1− α (8)
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where the infimum is over all cdf’s F . Thus,
(
Fn(x)− εn, Fn(x) + εn

)
is a 1− α confidence

band for F .

To estimate F from a Bayesian perspective we put a prior π on the set of all cdf’s F and then
we compute the posterior distribution on F given X = (X1, . . . , Xn). The most commonly
used prior is the Dirichlet process prior which was invented by the statistician Thomas
Ferguson in 1973.

The distribution π has two parameters, F0 and α and is denoted by DP(α, F0). The param-
eter F0 is a distribution function, and the number α controls how tightly concentrated the
prior is around F0. You can then think of F as some “noisy” draw around F0, similar to how
Z ∼ N(θ, I) is a noisy sample around some fixed θ, except that here we have the infinite-
dimensional analogue where we draw distributions. Before defining the Dirichlet Process, let
us first build some further intuition, and which would also shed light on why it is called a
Dirichlet process. Recall that a random vector P = (P1, . . . , Pk) has a Dirichlet distribution
with parameters (α, g1, . . . , gk) (with

∑
j gj = 1) if the distribution of P has density

f(p1, . . . , pk) =
Γ(α)∏k

j=1 Γ(αgj)

k∏
j=1

p
αgj−1
j

over the simplex {p = (p1, . . . , pk) : pj ≥ 0,
∑

j pj = 1}.

Let (A1, . . . , Ak) be any partition of R. Suppose that for a random distribution F , we
let F (Aj) be the amount of mass that F puts on the set Aj. Consider the requirement
that for any such partition, the random distribution F should satisfy the condition that
(F (A1), . . . , F (Ak)) have a Dirichlet distribution with parameters (α, F0(A1), . . . , F0(Ak)).
This property precisely characterizes a random draw from the Dirichlet process DP(α, F0).

Formal Specification of the Prior. To draw a single random distribution F from Dir(α, F0)
we do the following steps:

1. Draw s1, s2, . . . independently from F0.

2. Draw V1, V2, . . . ∼ Beta(1, α). (Note that Vi ∈ [0, 1].)

3. Let w1 = V1 and wj = Vj
∏j−1

i=1 (1− Vi) for j = 2, 3, . . ..

4. Let F be the discrete distribution that puts mass wj at sj, that is, F =
∑∞

j=1wjδsj
where δsj is a point mass at sj.

It is clear from this description that F is discrete with probability one. The construction
of the weights w1, w2, . . . is often called the stick breaking process. Imagine we have a stick
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V1 V2(1 − V1)
w1 w2

…

…

Figure 1: The stick breaking process shows how the weights w1, w2, . . . from the Dirichlet
process are constructed. First we draw V1, V2, . . . ∼ Beta(1, α). Then we set w1 = V1, w2 =
V2(1− V1), w3 = V3(1− V1)(1− V2), . . ..

of unit length. Then w1 is is obtained by breaking the stick a the random point V1. The
stick now has length 1 − V1. The second weight w2 is obtained by breaking a proportion
V2 from the remaining stick. The process continues and generates the whole sequence of
weights w1, w2, . . .. See Figure 1. It can be shown that if F ∼ Dir(α, F0) then the mean is
E(F ) = F0.

Remark. In practice, we can consider a finite truncation of the above, and draw a random
draw from the Dirichlet process as:

1. Draw s1, . . . , sN independently from F0.

2. Draw V1, . . . , vN−1 ∼ Beta(1, α). (Note that Vi ∈ [0, 1].)

3. Let w1 = V1 and wj = Vj
∏j−1

i=1 (1− Vi) for j = 2, . . . , N − 1, and wN = 1−
∑N−1

j=1 wj.

4. Let F be the discrete distribution that puts mass wj at sj, that is, F =
∑N

j=1wjδsj
where δsj is a point mass at sj.

How to Sample From the Marginal. One way is to draw from the induced marginal m is
to sample F ∼ π (as described above) and then draw X1, . . . , Xn from F :

F ∼ DP(α, F0)

X1, . . . , Xn|F ∼ F

where π =.

But there is an alternative method, called the Chinese Restaurant Process or infinite Pólya
urn (Blackwell 1973). The algorithm is as follows.

1. Draw X1 ∼ F0.
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X1
* X2

* X3
* X4

* X5
* …

Figure 2: The Chinese restaurant process. A new person arrives and either sits at a table
with people or sits at a new table. The probability of sitting at a table is proportional to
the number of people at the table.

2. For i = 2, . . . , n: draw

Xi|X1, . . . Xi−1 =

{
X ∼ Fi−1 with probability i−1

i+α−1
X ∼ F0 with probability α

i+α−1

where Fi−1 is the empirical distribution of X1, . . . Xi−1.

The sample X1, . . . , Xn is likely to have ties since F is discrete. Let X∗1 , X
∗
2 , . . . denote the

unique values of X1, . . . , Xn. Define cluster assignment variables c1, . . . , cn where ci = j
means that Xi takes the value X∗j . Let nj = |{i : cj = j}|. Then we can write

Xn =

{
X∗j with probability

nj

n+α−1
X ∼ F0 with probability α

n+α−1 .

In the metaphor of the Chinese restaurant process, when the nth customer walks into the
restaurant, he sits at table j with probability nj/(n+α− 1), and occupies a new table with
probability α/(n + α − 1). The jth table is associated with a “dish” X∗j ∼ F0. Since the
process is exchangeable, it induces (by ignoring X∗j ) a partition over the integers {1, . . . , n},
which corresponds to a clustering of the indices. See Figure 2.

How to Sample From the Posterior. Now suppose that X1, . . . , Xn ∼ F and that we
place a Dir(α, F0) prior on F .

Theorem 1 Let X1, . . . , Xn ∼ F and let F have prior π = Dir(α, F0). Then the posterior
π for F given X1, . . . , Xn is Dir

(
α + n, F n

)
where

F n =
n

n+ α
Fn +

α

n+ α
F0. (9)
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Since the posterior is again a Dirichlet process, we can sample from it as we did the prior
but we replace α with α+ n and we replace F0 with F n. Thus the posterior mean is F n is a
convex combination of the empirical distribution and the prior guess F0. Also, the predictive
distribution for a new observation Xn+1 is given by F n.

To explore the posterior distribution, we could draw many random distribution functions
from the posterior. We could then numerically construct two functions Ln and Un such that

π
(
Ln(x) ≤ F (x) ≤ Un(x) for all x|X1, . . . , Xn

)
= 1− α.

This is a 1− α Bayesian confidence band for F . Keep in mind that this is not a frequentist
confidence band. It does not guarantee that

inf
F

PF (Ln(x) ≤ F (x) ≤ Un(x) for all x) = 1− α.

When n is large, F n ≈ Fn in which case there is little difference between the Bayesian and
frequentist approach. The advantage of the frequentist approach is that it does not require
specifiying α or F0.

Example 2 Figure 3 shows a simple example. The prior is DP(α, F0) with α = 10 and
F0 = N(0, 1). The top left plot shows the discrete probabilty function resulting from a single
draw from the prior. The top right plot shows the resulting cdf along with F0. The bottom
left plot shows a few draws from the posterior based on n = 25 observations from a N(5,1)
distribution. The blue line is the posterior mean and the red line is the true F . The posterior
is biased because of the prior. The bottom right plot shows the empirical distribution function
(solid black) the true F (red) the Bayesian postrior mean (blue) and a 95 percnt frequentist
confidence band.

5 Density Estimation

Let X1, . . . , Xn ∼ F where F has density f and Xi ∈ R. Our goal is to estimate f . The
Dirichlet process is not a useful prior for this problem since it produces discrete distributions
which do not even have densities. Instead, we use a modification of the Dirichlet process.

Specifically, recall that F ∼ DP(α, F0) has the form F =
∑∞

j=1wjδθj , which could be thought
of an infinite mixture model with point mass distributions δθj , for which as we noted above a
density does not exist. A natural extension is to instead consider an infinite mixture model
with smoother components than point mass distributions:

f(x) =
∞∑
j=1

wjg(x; θj),
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Figure 3: The top left plot shows the discrete probabilty function resulting from a single
draw from the prior which is a DP(α, F0) with α = 10 and F0 = N(0, 1). The top right
plot shows the resulting cdf along with F0. The bottom left plot shows a few draws from
the posterior based on n = 25 observations from a N(5,1) distribution. The blue line is the
posterior mean and the red line is the true F . The posterior is biased because of the prior.
The bottom right plot shows the empirical distribution function (solid black) the true F
(red) the Bayesian postrior mean (blue) and a 95 percnt frequentist confidence band.
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where g(x; θ) is some smooth density such as that of the Normal distribution, for which
θj = (µj, σj). Here we wish to draw a random density f , which we could do so by largely
following the same strategy as that of the Dirichlet process.

Formal Specification of the Dirichlet Process Mixture Prior. Draw θ1, θ2, . . . , F0, and
draw w1, w2, . . . , from the stsick breaking process. Set f(x) =

∑∞
j=1wjg(x; θj). The density

f is a random draw from the prior. We could repeat this process many times resulting in
many randomly drawn densities from the prior. Plotting these densities could give some
intuition about the structure of the prior.

This infinite mixture model is known as the Dirichlet process mixture model. As discussed
above, this infinite “Dirichlet Process mixture” is similar to the random distribution F ∼
DP(α, F0) drawn from a Dirichlet Process which had the form F =

∑∞
j=1wjδθj except that

the point mass distributions δθj are replaced by smooth densities f(x|θj).

Let us now briefly review the frequentist approach to density estimation.

The most common frequentist estimator is the kernel estimator

f̂(x) =
1

n

n∑
i=1

1

h
K

(
x−Xi

h

)
where K is a kernel and h is the bandwidth.

The kernel estimator can be thought of as a mixture with n components. A more general
finite mixture model would take the form

f(x) =
k∑
j=1

wjg(x; θj).

In the Bayesian approach we would put a prior on θ1, . . . , θk, on w1, . . . , wk and a prior on k.
The Dirichlet process mixture model could thus be viewed as infinite analogue of a Bayesian
mixture model with a specific prior on the infinite set of mixture weights {wj}, and the
mixture component weights {θj}.

How to Sample From the Prior Marginal. Given the construction of the Dirichlet Process
Mixture, we can draw samples via:

F ∼ DP(α, F0) (10)

θ1, . . . , θn|F ∼ F (11)

Xi|θi ∼ f(x|θi), i = 1, . . . , n. (12)

(In practice, F0 itself has free parameters which also require priors.) Note that in the DPM,
the parameters θi of the mixture are sampled from a Dirichlet process. The data Xi are not
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Figure 4: Samples from a Dirichlet process mixture model with Gaussian generator, n = 500.

sampled from a Dirichlet process. Because F is sampled from from a Dirichlet process, it
will be discrete. Hence there will be ties among the θi’s. (Recall our earlier discussion of the
Chinese Restaurant Process.) The k < n distinct values of θi can be thought of as defining
clusters. The beauty of this model is that the discreteness of F automatically creates a
clustering of the θj’s. In other words, we have implicitly created a prior on k, the number of
distinct θj’s.

As before, we can also use the Chinese restaurant representation to draw the θj’s sequentially.
Given θ1, . . . , θi−1 we draw θj from

α

α + n− 1
F0(·) +

1

α + n− 1

n−1∑
i=1

δθi(·). (13)

Let θ∗j denote the unique values among the θi, with nj denoting the number of elements in
the cluster for parameter θ∗i ; that is, if c1, c2, . . . , cn−1 denote the cluster assignments θi = θ∗ci
then nj = |{i : ci = j}|. Then we can write

θn =

{
θ∗j with probability

nj

n+α−1
θ ∼ F0 with probability α

n+α−1 .
(14)

How to Sample From the Posterior. Unlike the Dirichlet Process case, here the posterior
does not have a simple form, in part due to the presence of more general densities g(x; θ)
rather than simple point mass distributions δθ. It is thus common to sample from the
posterior by Gibbs sampling.
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We briefly discuss an example using a mixture of Normals, via the approach of Ishwaran et
al. (2002). The first step (in this particular approach) is to replace the infinite mixture with
a large but finite mixture as discussed earlier. Thus we replace the stick-breaking process
with V1, . . . , VN−1 ∼ Beta(1, α) and w1 = V1, w2 = V2(1−V1), . . .. This generates w1, . . . , wN
which sum to 1. Replacing the infinite mixture with the finite mixture is a numerical trick
not an inferential step and has little numerical effect as long as N is large. For example,
they show tha when n = 1, 000 it suffices to use N = 50. A full specification of the resulting
model, including priors on the hyperparameters is:

θ ∼ N(0, A)

α ∼ Gamma(η1, η2)

µ1, . . . , µN ∼ N(θ, B2)
1

σ2
1

, . . . ,
1

σ2
N

∼ Gamma(ν1, ν2)

K1, . . . , Kn ∼
N∑
j=1

wjδj

Xi ∼ N(µKi
, σ2

Ki
) i = 1, . . . , n

The hyperparemeters A,B, γ1, γ2, ν1, ν2 still need to be set. Compare this to kernel density
estimation whihc requires the single bandwidth h. Ishwaran et al use A = 1000, ν1 = ν2 =
η1 = η2 = 2 and they take B to be 4 ties the standard deviation of the data. It is now
possible to wite down a Gibbs sampling algorithm for sampling from the posterior.

6 Nonparametric Regression

Consider the nonparametric regression model

Yi = m(Xi) + εi, i = 1, . . . , n (15)

where E(εi) = 0. The frequentist kernel estimator for m is

m̂(x) =

∑n
i=1 Yi K

(
||x−Xi||

h

)
∑n

i=1K
(
||x−Xi||

h

) (16)

where K is a kernel and h is a bandwidth. The Bayesian version requires a prior π on the
set of regression functions M. A common choice is the Gaussian process prior.

A stochastic process m(x) indexed by x ∈ X ⊂ Rd is a Gaussian process if for each
x1, . . . , xn ∈ X the vector (m(x1),m(x2), . . . ,m(xn)) is Normally distributed:

(m(x1),m(x2), . . . ,m(xn)) ∼ N(µ(x), K(x)) (17)
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where Kij(x) = K(xi, xj) is a Mercer kernel.

Let’s assume that µ = 0. Then for given x1, x2, . . . , xn the density of the Gaussian process
prior of m = (m(x1), . . . ,m(xn)) is

π(m) = (2π)−n/2|K|−1/2 exp

(
−1

2
mTK−1m

)
(18)

What functions have high probability according to the Gaussian process prior? The prior
favors mTK−1m being small. Suppose we consider an eigenvector v of K, with eigenvalue
λ, so that Kv = λv. Then we have that

1

λ
= vTK−1v (19)

Thus, eigenfunctions with large eigenvalues are favored by the prior. These correspond to
smooth functions; the eigenfunctions that are very wiggly correspond to small eigenvalues.

In this Bayesian setup, MAP estimation corresponds to Mercer kernel regression, which
regularizes the squared error by the RKHS norm ‖α‖2K . The posterior mean, which due to
Gaussianity, is also the posterior mode, and hence maximizes the log-posterior above, can
be easily seen to be

m̂ = E(m|Y ) = K
(
K + σ2I

)−1
Y. (20)

We see that m̂ is nothing but a linear smoother.

Comparison to Kernel Regression. We can see that this is in fact, very similar to the
frequentist kernel smoother, which can be written as m̂ = KD−1Y , where D is a diagonal
matrix with Dii =

∑n
j=1Kij.

Unlike kernel regression, where we just need to choose a bandwidth h, here we need to choose
the function K(x, y). This is a delicate matter.

Comparison to RKHS regression. It is also instructive to compare Gaussian processes
and RKHS regression. To do so, we first consider the spectral representation of the kernel
function:

k(x, y) =
∞∑
i=1

λiψi(x)ψi(y),

so that {λi} are its eigenvalues, and {ψi} are the corresponding eigenfunctions. The Gaussian
process can then be written as an infinite Bayesian linear regression model:

m(x) =
∞∑
i=1

θiψi(x),
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where θi ∼ N(0, λi). This can be seen by noting that for this Bayesian linear regression
model: m(x) is Gaussian, with mean 0, and variance

∞∑
i=1

λiψi(x)ψi(x) = k(x, x).

Also (m(x),m(y)) is jointly Gaussian with covariance

∞∑
i=1

λiψi(x)ψi(y) = k(x, y),

so that m(x) is precisely the Gaussian process with kernel k.

On the other hand, as we have seen in earlier lecture, RKHS regression with the kernel k
again estimates regression functions of the form m(x) =

∑∞
i=1 θiψi(x), with bounded RKHS

norm

‖m‖k =
∞∑
i=1

θ2i /λi.

However for a Gaussian process, its expected RKHS norm will be infinite since

E‖m‖k =
∞∑
i=1

E(θ2i )/λi =∞,

since E(θ2i ) = λi for a Gaussian process. Thus regression functions drawn from a Gaussian
process are likely to be much less smooth compared to RKHS regression functions.

Predictive Distribution. Now, to compute the predictive distribution, given a Gaussian
process prior, for a new point Yn+1 = m(xn+1) + εn+1, we note that (Y1, . . . , Yn) ∼ N(0, K +
σ2I). Let k be the vector

k = (K(x1, xn+1), . . . , K(xn, xn+1)) (21)

Then (Y1, . . . , Yn+1) is jointly Gaussian with covariance(
K + σ2I k
kT k(xn+1, xn+1) + σ2

)
(22)

Therefore, conditional distribution of Yn+1 is

Yn+1|Y1:n, x1:n ∼ N
(
kT (K + σ2I)−1Y, k(xn+1, xn+1) + σ2 − kT (K + σ2I)−1k

)
(23)

Note that the above variance differs from the variance estimated using the frequentist
method. However, Bayesian Gaussian process regression and kernel regression often lead
to similar results. The advantages of the kernel regression is that it requires a single param-
eter h that can be chosen by cross-valdiation and its theoretical properties are simple and
well-understood.
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Figure 5: Mean of a Gaussian process

7 Theoretical Properties of Nonparametric Bayes

In this section we briefly discuss some theoretical properties of nonparametric Bayesian
methods. We will focus on density estimation. In frequentist nonparametric inference,
procedures are required to have certain guarantees such as consistency and minimaxity.
Similar reasoning can be applied to Bayesian procedures. It is desirable, for example, that
the posterior distribution πn has mass that is concentrated near the true density function f .

We will be focusing on the property of consistency.

Let f0 denote the true density. By consistency we mean that, when f0 ∈ A, πn(A) should
converge, in some sense, to 1. According to Doob’s theorem, consistency holds under very
weak conditions.

To state Doob’s theorem we need some notation. The prior π and the model define a joint
distribution µn on sequences Y n = (Y1, . . . , Yn), namely, for any B ∈ Rn,1

µn(Yn ∈ B) =

∫
P(Y n ∈ B|f)dπ(f) =

∫
B

f(y1) · · · f(yn)dπ(f). (24)

In fact, the model and prior determine a joint distribution µ on the set of infinite sequences2

Y∞ = {Y ∞ = (y1, y2, . . . , )}.

Theorem 3 (Doob 1949) For every measurable A,

µ
(

lim
n→∞

πn(A) = I(f0 ∈ A)
)

= 1. (25)

1More precisely, for any Borel set B.
2More precisely, on an appropriate σ-field over the set of infinite sequences.
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By Doob’s theorem, consistency holds except on a set of probability zero. This sounds good
but it isn’t; consider the following example.

Example 4 Let Y1, . . . , Yn ∼ N(θ, 1). Let the prior π be a point mass at θ = 0. Then the
posterior is point mass at θ = 0. This posterior is inconsistent on the set N = R − {0}.
This set has probability 0 under the prior so this does not contradict Doob’s theorem. But
clearly the posterior is useless.

Doob’s theorem is useless for our purposes because it is solopsistic. The result is with respect
to the Bayesian’s own distribution µ. Instead, we want to say that the posterior is consistent
with respect to P0, the distribution generating the data.

To continue, let us define three types of neighborhoods. Let f be a density and let Pf be
the corresponding probability measure. A Kullback-Leibler neighborhood around Pf is

BK(p, ε) =

{
Pg :

∫
f(x) log

(
f(x)

g(x)

)
dx ≤ ε

}
. (26)

A Hellinger neighborhood around Pf is

BH(p, ε) =

{
Pg :

∫
(
√
f(x)−√g(x))2 ≤ ε2

}
. (27)

A weak neighborhood around Pf is

BW (P, ε) =

{
Q : dW (P,Q) ≤ ε

}
(28)

where dW is the Prohorov metric

dW (P,Q) = inf

{
ε > 0 : P (B) ≤ Q(Bε) + ε, for all B

}
(29)

where Bε = {x : infy∈B ‖x − y‖ ≤ ε}. Weak neighborhoods are indeed very weak: if
Pg ∈ BW (Pf , ε) it does not imply that g resembles f .

Theorem 5 (Schwartz 1963) If

π(BK(f0, ε)) > 0, for all ε > 0 (30)

then, for any δ > 0,
πn(BW (P0, δ))

a.s.→ 1 (31)

with respect to P0.
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This is still unsatisfactory since weak neighborhoods are large. Let N(M, ε) denote the
smallest number of functions f1, . . . , fN such that, for each f ∈ M, there is a fj such that
f(x) ≤ fj(x) for all x and such that supx(fj(x)− f(x)) ≤ ε. Let H(M, ε) = logN(M, ε).

Theorem 6 (Barron, Schervish and Wasserman (1999) and Ghosal, Ghosh and Ramamoorthi (1999))
Suppose that

π(BK(f0, ε)) > 0, for all ε > 0. (32)

Further, suppose there exists M1,M2, . . . such that π(Mc
j) ≤ c1e

−jc2 and H(Mj, δ) ≤ c3j
for all large j. Then, for any δ > 0,

πn(BH(P0, δ))
a.s.→ 1 (33)

with respect to P0.

16


