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1 Introduction: Bayesian, Frequentist, Likelihood Principle

Consider an estimator δ : X 7→ Θ. From a decision theoretic perspective, is said to be
“frequentist” if it is designed to minimize the “frequentist” risk R(θ∗, δ), ideally in some
global sense as θ∗ ranges over Θ (for instance, in a minimax sense).

Looking at the frequentist risk R(θ∗, δ) = EX∼P (·;θ∗)L(θ∗, δ(X)), it cares about the perfor-
mance not only on observed data X, but over all possible datasets, and thus might lead to
estimators that do not satisfy the “conditonality principle” introduced earlier.

An estimator is said to be Bayesian if it specifically aims to minimize r(π, δ) =
∫
θ∗
R(θ∗, δ)π(θ∗)dθ∗.

The beauty of the Bayesian estimator is that it does satisfy the conditionality principle due
to the result that:

δBayes(X) ∈ arg inf
a∈A

∫
θ∗
L(θ∗, a)π(θ∗|x)dθ∗,

where π(θ∗|X) is the posterior distribution over Θ given the observations X. Given a pre-
specified prior, it can be seen that it only depends on the data via its likelihood function
L(θ∗) = p(X|θ∗), and thus also satisfies the likelihood principle.

Now consider R(θ∗, δ) = EX∼P (·;θ∗)L(θ∗, δ(X)). In machine learning practice, we evaluate the
loss of an estimator over multiple datasets, and care about the overall performance across
datasets. So for instance, given N parameters {θ∗i }Ni=1, and N datasets X(i), we might care
about the performance:

1

N

N∑
i=1

L(θ∗i , δ(X
(i))).

Here, the average is over multiple datasets from different parameters in contrast the typical
frequentist risk of averaging over multiple datasets drawm from a single parameter. Interest-
ingly, this latter notion dates back to the earliest frequentist ideas of Neyman and Pearson
(Neyman 1967).

But overall, frequentist estimators care about performance over multiple datasets, and might
not satisfy the likelihood principle. This additional flexibility might seem like it could lead
to bad and even irrational estimators, such as in the examples in previous lecture. In this
lecture, we will see that this additional flexibility can also help us.
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2 Stone’s Paradox

We will first discuss a famous example from Stone (1970, 1976, 1982). In technical jargon,
he shows that “a finitely additive measure on the free group with two generators is noncon-
glomerable.” In English: even for a simple problem with a discrete parameters space, flat
priors (and consequently, likelihood principle) can lead to surprises. Fortunately, we don’t
need to know anything about free groups to understand this example.

2.1 Hunting For a Treasure In Flatland

Suppose that I can wander randomly in a two dimensional grid-world. I can only move in
four directions: North, South, West, East. I wander around for a while then I stop and bury
a treasure. Call this path θ∗. Here is an example:

Now I take one more random step. Each direction has equal probability. Call this final path
x. So it might look like this:
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There are only four possible paths that could have yielded x, namely the paths that end one
step away from x:

Let us call these four paths N, S, W, E. The likelihood is the same for each of these. That
is, p(x|θ) = 1/4 for θ ∈ {N,S,W,E}. It can be seen that the likelihood function has
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no information at all about the four possible parameter values. Note that the likelihood
principle says that the observed likelihood contains all the useful information in the data.

Now suppose two people, Bob (a Bayesian) and Carla (a classical statistician) want to find
the treasure. Suppose Bob uses a flat prior (so that he is again following the likelihood
principle). Since the likelihood is also flat, his posterior is

P (θ = N |x) = P (θ = S|x) = P (θ = W |x) = P (θ = E|x) =
1

4
.

His Bayesian risk of any path decision θ̂ ∈ {N,S,W,E}, with respect to the zero-one loss, is
then 3/4.

Carla (the classical statistician) on the other hand is not bound by the likelihood principle.
She reasons: for any treasure path θ∗, out of the four extensions to the observed x, only
one would reduce the length of the path. That is, there is a 3/4 chance that the path of x
would be longer than that of θ∗. Since South is the only estimate such that the observed x
is longer, she decides to output South. It can be seen that her risk is now only 1/4, since
she will be wrong only 1/4 of the times that the extension x is a reduction of θ∗.

Bayesian Bob trying to follow this line of thought could be led further astray. Suppose
he says: given x, the posterior probability of a θ∗ being longer than x is 3/4 i.e. P (θ∗ ∈
{N,W,E}|x) = 3/4. So he decides to output one of these paths at random. Even if gets
zero loss if any of these three choices were right, his risk would still be 1/4.

Here is quote from Stone (1976): (changing his B and C to Bob and Carla):

“ ... it is clear that when Bob and Carla repeatedly engage in this treasure hunt,
Bob will find that his posterior probability assignment becomes increasingly
discrepant with his proportion of wins and that Carla is, somehow, doing better
than [s]he ought. However, there is no message ... that will allow Bob to escape
from his Promethean situation; he cannot learn from his experience because each
hunt is independent of the other.”

2.2 More Trouble For Bob

Let A∗θ be the event that the final step reduced the length of the treasure path. Using the
posterior above, we see that Bob finds that P (A∗θ|x) = 3/4 for each x. Since this holds for
each x, Bob deduces that P (A∗θ) = 3/4. On the other hand, Bob notes that P (A∗θ|θ∗) = 1/4
for every θ∗. Hence, P (A∗θ) = 1/4.

Bob has just proved that 3/4 = 1/4.
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2.3 The Four Sided Die

Here is another description of the problem. Consider a four sided die whose sides are labeled
with the symbols {a, b, a−1, b−1}. We roll the die several times and we record the label on
the lowermost face (there is a no uppermost face on a four-sided die). A typical outcome
might look like this string of symbols:

a a b a−1 b b−1 b a a−1 b

Now we apply an annihilation rule. If a and a−1 appear next to each other, we eliminate
these two symbols. Similarly, if b and b−1 appear next to each other, we eliminate those two
symbols. So the sequence above gets reduced to:

a a b a−1 b b

Let us denote the resulting string of symbols, after removing annihilations, by θ. Now we
toss the die one more time. We add this last symbol to θ and we apply the annihilation rule
once more. This results in a string which we will denote by x.

You get to see x and you want to infer θ.

Having observed x, there are four possible values of θ and each has the same likelihood. For
example, suppose x = (a, a). Then θ has to be one of the following:

(a), (a a a), (a a b−1), (a a b)

The likelihood function is constant over these four values.

Suppose we use a flat prior on θ. Then the posterior is uniform on these four possibilities.

But fix any θ. Now note that x is smaller than θ only if the last symbol of θ is annihilated,
which occurs with probability 1/4. So a smart frequentist choice for an estimate of θ is the
only one that is smaller than x.

2.4 Likelihood Principle

In these examples, the likelihood does not distinguish the four possible parameter values.
Whereas, for instance, in the path example, the direction of the path from the current
position — which does not affect the likelihood — has lots of information. This suggests
that both MLE and Bayesian inference might not always be the best decision theoretic
strategy.

Technically the problem here is that there is group structure and the group is not amenable.
Hidden beneath this seemingly simple example is some rather deep group theory.
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3 Partial Observations

The example in question is from Robins and Ritov (1997). A simplified version appeared in
Wasserman (2004) and Robins and Wasserman (2000). The example is related to ideas from
the foundations of survey sampling (Basu 1969, Godambe and Thompson 1976) and also to
ancillarity paradoxes (Brown 1990, Foster and George 1996).

3.1 The Model

Here is (a version of) the example. Consider iid random variables

(X1, Y1, R1), . . . , (Xn, Yn, Rn).

The random variables take values as follows:

Xi ∈ [0, 1]d, Yi ∈ {0, 1}, Ri ∈ {0, 1}.

Think of d as being very, very large. For example, d = 100, 000 and n = 1, 000.

The idea is this: we observe Xi. Then we flip a biased coin Ri. If Ri = 1 then you get to
see Yi. If Ri = 0 then you don’t get to see Yi. The goal is to estimate

ψ = P (Yi = 1).

Here are the details. The distribution takes the form

p(x, y, r) = pX(x)pY |X(y|x)pR|X(r|x).

Note that Y and R are independent, given X. For simplicity, we will take p(x) to be uniform
on [0, 1]d. Next, let

θ(x) ≡ pY |X(1|x) = P (Y = 1|X = x)

where θ(x) is a function. That is, θ : [0, 1]d → [0, 1]. Of course,

pY |X(0|x) = P (Y = 0|X = x) = 1− θ(x).

Similarly, let
π(x) ≡ pR|X(1|x) = P (R = 1|X = x)

where π(x) is a function. That is, π : [0, 1]d → [0, 1]. Of course,

pR|X(0|x) = P (R = 0|X = x) = 1− π(x).

The function π is known. We construct it. Remember that π(x) = P (R = 1|X = x) is the
probability that we get to observe Y given that X = x. Think of Y as something that is
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expensive to measure. We don’t always want to measure it. So we make a random decision
about whether to measure it. And we let the probability of measuring Y be a function π(x)
of x. And we get to construct this function.

Let δ > 0 be a known, small, positive number. We will assume that

π(x) ≥ δ

for all x.

The only thing in the the model we don’t know is the function θ(x). Again, we will assume
that

δ ≤ θ(x) ≤ 1− δ.

Let Θ denote all measurable functions on [0, 1]d that satisfy the above conditions. The
parameter space is the set of functions Θ.

Let P be the set of joint distributions of the form

p(x) π(x)r(1− π(x))1−r θ(x)y(1− θ(x))1−y

where p(x) = 1, and π(·) and θ(·) satisfy the conditions above. So far, we are considering
the sub-model Pπ in which π is known.

The parameter of interest is ψ = P (Y = 1). We can write this as

ψ = P (Y = 1) =

∫
[0,1]d

P (Y = 1|X = x)p(x)dx =

∫
[0,1]d

θ(x)dx.

Hence, ψ is a function of θ. If we know θ(·) then we can compute ψ.

3.2 Likelihood, Bayesian Analysis

Now consider the likelihood function. The likelihood for one observation takes the form
p(x)p(r|x)p(y|x)r. The reason for having r in the exponent is that, if r = 0, then y is not
observed so the p(y|x) gets left out. The likelihood for n observations is

n∏
i=1

p(Xi)p(Ri|Xi)p(Yi|Xi)
Ri =

∏
i

p(Xi)π(Xi)
Ri(1− π(Xi))

1−Ri θ(Xi)
YiRi(1− θ(Xi))

(1−Yi)Ri .

But remember that the only unknown is θ(x), and that π(x), and hence π(Xi)
Ri(1 −

π(Xi))
1−Ri is known. So, the likelihood is

L(θ) ∝
∏
i

θ(Xi)
YiRi(1− θ(Xi))

(1−Yi)Ri .
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Now comes the interesting part. The likelihood has essentially no information in it.

To see that the likelihood has no information, consider a simpler case where θ(x) is a function
on [0, 1]. Now discretize the interval into many small bins. Let B be the number of bins.
We can then replace the function θ with a high-dimensional vector θ = (θ1, . . . , θB). With
n < B, most bins are empty. The data contain no information for most of the θj’s.

Indeed, we have the following theorem from Robins and Ritov (1997):

Theorem. (Robins and Ritov 1997). Any estimator that is not a function of π(·) cannot
be uniformly consistent.

This means that, at no finite sample size, will an estimator ψ̂ that is not a function of π be
close to ψ for all distributions in P . In fact, the theorem holds for a neighborhood around
every pair (π, θ). But when π is known and is used in the estimator (as we will see in the
frequentist estimator in the next section) we can have uniform consistency.

For a Bayesian analysis, we can combine the likelihood above with a prior W on Θ, to creates
a posterior distribution on Θ which we will denote by Wn. Since the parameter of interest ψ
is a function of θ, the posterior Wn for θ defines a posterior distribution for ψ. But note that
this Bayesian analysis will also ignore π since the π(Xi)

′s are just constants in the likelihood.

A Bayesian criticism might be that this is because we have not enforced any smoothness
(perhaps via the prior) on θ(x). Without smoothness, knowing θ(x) does not tell you any-
thing about θ(x+ ε) (assuming the prior W does not depend on π). This is true and better
inferences would obtain if we used a prior that enforced smoothness. But this argument
falls apart when d is large. When d is large, forcing θ(x) to be smooth does not help unless
you make it very, very, very smooth. The larger d is, the more smoothness you need to get
borrowing of information across different values of θ(x). But this introduces a huge bias
which precludes uniform consistency.

3.3 Frequentist Analysis

The usual frequentist estimator is the Horwitz-Thompson estimator

ψ̂ =
1

n

n∑
i=1

YiRi

π(Xi)
.

It is easy to verify that ψ̂ is unbiased and consistent. Furthermore, ψ̂ − ψ = OP (n−
1
2 ). In

fact, let us define
In = [ψ̂ − εn, ψ̂ + εn]
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where

εn =

√
1

2nδ2
log

(
2

α

)
.

It follows from Hoeffding’s inequality that

sup
P∈Pπ

P (ψ ∈ In) ≥ 1− α

Thus we have a finite sample, 1− α confidence interval with length O(1/
√
n).

4 Freedman’s Theorem

We now review an interesting result by David Freedman (Annals of Mathematical Statistics,
Volume 36, Number 2 (1965), 454-456).

The result says that, “almost all” Bayesian posterior distributions are inconsistent, in a
sense we’ll make precise below. The math is uncontroversial but, as you might imagine, the
intepretation of the result is likely to be controversial.

The paper is very short, barely more than two pages. This summary will be even shorter
(with slightly different notation.)

LetX1, . . . , Xn be an iid sample from a distribution P on the natural numbers I = {1, 2, 3, . . . , }.
Let P be the set of all such distributions. We endow P with the weak∗ topology. Hence,
Pn → P iff Pn(i)→ P (i) for all i.

Let µ denote a prior distribution on P . (More precisely, a prior on an appropriate σ-field.)
Let Π be all priors. Again, we endow the set with the weak∗ topology. Thus µn → µ iff∫
fdµn →

∫
fdµ for all bounded, continuous, real functions f .

Let µn be the posterior corresponding to the prior µ after n observations. We will say that
the pair (P, µ) is consistent if

P∞
(

lim
n→∞

µn = δP

)
= 1

where P∞ is the product measure corresponding to P and δP is a point mass at P .

Now we need to recall some topology. A set is nowhere dense if its closure has an empty
interior. A set is meager if it is a countable union of nowehere dense sets. Meager sets are
small; think of a meager set as the topological version of a null set in measure theory.

Freedman’s theorem is: the sets of consistent pairs (P, µ) is meager.
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This means that, in a topological sense, consistency is rare for Bayesian procedures. From
this result, it can also be shown that most pairs of priors lead to inferences that disagree.
(The agreeing pairs are meager.) Or as Freedman says in his paper:

“ ... it is easy to prove that for essentially any pair of Bayesians, each thinks the other is
crazy.”
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