
Random Forests
10716, Spring 2020

Pradeep Ravikumar (amending notes from Larry
Wasserman)

Random forests are a very simple and effective class of models, but there is still a large gap
between theory and practice. Basically, a random forest is a simple average of tree estimators,
each of which is learnt with some randomization (e.g. using a random subset of features)
over a random subsample (typically with replacement, also called bootstrap samples). This
is in contrast to boosted trees which computes an adaptive average of sequentially learnt
trees. While boosted trees have become very popular as an off-the-shelf method, they come
with many tuning parameters to which they are much more sensitive to, as compared to
random forests. The two key ingredients, randomization, and bootstrap sampling (also
called bagging), also lend themselves very easily to more complex function classes such as
DNNs, so it is likely that random forests will see renewed interest in years to come.

These notes rely heavily on Biau, Gerard and Scornet (2016) as well as the other references
at the end of the notes.

1 Recap: Partitions and Trees

Recall that simple and interpretable non-parametric classifiers can be derived by partitioning
the range of X. Let Πn = {A1, . . . , AN} be a partition of X . Let Aj be the partition element
that contains x. Then, the partition binary classifier is given as:
ĥ(x) = 1 if

∑
Xi∈Aj

Yi ≥
∑

Xi∈Aj
(1− Yi) and ĥ(x) = 0 otherwise.

This is nothing other than the plugin classifier based on the partition regression estima-
tor

m̂(x) =
N∑
j=1

Y j I(x ∈ Aj)

where Y j = n−1
j

∑n
i=1 YiI(Xi ∈ Aj) is the average of the Yi’s in Aj and nj = #{Xi ∈ Aj},

defining Y j to be 0 if nj = 0.

Recall from the results on regression that if m ∈ H1(1, L) and the binwidth b of a regular
partition satisfies b � n−1/(d+2) then

E||m̂−m||2P ≤
c

n2/(d+2)
. (1)

We conclude that the corresponding classification risk satisfies R(ĥ)−R(h∗) = O(n−1/(d+2)).

1

0 1

Blood Pressure 1

Age

< 100 ≥ 100

< 50 ≥ 50

Figure 1: A simple classification tree.

1

0

1

Age

B
lo

od
P

re
ss

ur
e

50

110

Figure 2: Partition representation of classification tree.

Regression trees and classification trees (also called decision trees) are partition classifiers
where the partition is built recursively. For illustration, suppose there are two covariates,
X1 = age and X2 = blood pressure. Figure 1 shows a classification tree using these variables.

The tree is used in the following way. If a subject has Age ≥ 50 then we classify him as
Y = 1. If a subject has Age < 50 then we check his blood pressure. If systolic blood pressure
is < 100 then we classify him as Y = 1, otherwise we classify him as Y = 0. Figure 2 shows
the same classifier as a partition of the covariate space.

Since estimating the optimal tree is computationally hard, it is constructed greedily. Specifi-
cally, we greedily choose among a finite set of splits, and where we measure the quality of each
split by the reduction in the loss, which for continuous Y (regression) is typically squared
loss, and for binary Y (classification) is typically classification error, or as is more typical,
a surrogate for classification error which is smoother, and hence easier to minimize. A com-
mon choice for surrogate classification error is the Gini index, which for binary classification,
defined as

γ = 1−
2∑

j=1

[Y
2

s + (1− Y s)
2], (2)

2

Method Test Error
Logistic regression 0.23
SVM (Gaussian Kernel) 0.20
Kernel Regression 0.24
Additive Model 0.20
Reduced Additive Model 0.20
11-NN 0.25
Trees 0.20

Table 1: Various methods on the MAGIC data. The reduced additive model is based on
using the three most significant variables from the additive model.

which can be seen to be smoother than the classification error:

error = 1−max(Y s, (1− Y s)).

Each split partitions the input space as {Aj}kj=1. The overall loss of a split is the weighted
average of the losses evaluated in each of the partition components.

We continue recursively splitting until some stopping criterion is met. For example, we might
stop when every partition element has fewer than n0 data points, where n0 is some fixed
number. The bottom nodes of the tree are called the leaves. Each leaf has an estimate m̂(x)

which is the mean of Yi’s in that leaf. For classification, we take ĥ(x) = I(m̂(x) > 1/2).

The result is a piecewise constant estimator that can be represented as a tree.

2 Example

The following data are from simulated images of gamma ray events for the Major Atmo-
spheric Gamma-ray Imaging Cherenkov Telescope (MAGIC) in the Canary Islands. The
data are from archive.ics.uci.edu/ml/datasets/MAGIC+Gamma+Telescope. The telescope
studies gamma ray bursts, active galactic nuclei and supernovae remnants. The goal is to
predict if an event is real or is background (hadronic shower). There are 11 predictors that
are numerical summaries of the images. We randomly selected 400 training points (200 pos-
itive and 200 negative) and 1000 test cases (500 positive and 500 negative). The results of
various methods are in Table 1.

3

3 Bagging

Trees are useful for their simplicity and interpretability. But the prediction error can be
reduced by combining many trees. In contrast to boosting, which computes the trees se-
quentially, and adaptively, a much simpler approach, called bagging, is as follows.

Suppose we are given a set D of n samples. A bootstrap sample is a set of n random samples
drawn with replacement from D. Suppose we draw B such bootstrap samples and each time
we construct a classifier. This gives tree classifiers h1, . . . , hB. (The same idea applies to
regression.) We now classify by combining them:

h(x) =

{
1 if 1

B

∑
j hj(x) ≥ 1

2

0 otherwise.

This is called bagging which stands for bootstrap aggregation. A variation is sub-bagging
where we use random subsamples (without replacement) instead of bootstrap samples.

To get some intuition about why bagging is useful, consider this example from Buhlmann
and Yu (2002). Suppose we are given n samples {Yi}ni=1 ⊆ R drawn from some distribution
with mean µ = E[Yi] and variance Var(Yi) = 1. Then we know that by LLN, the sample
mean Y n satisfies:

Y n ≈ N(µ, 1/n),

so that
√
n(Y n − µ) ≈ N(0, 1).

Suppose that y ∈ R and consider the simple decision rule θ̂n = I(Y n ≤ y).

Suppose that y is close to µ relative to the sample size, so that y ≡ yn = µ+ c/
√
n. Then,

θ̂n = I(Y n ≤ y)

= I(
√
n(Y n − µ) ≤ c),

which by LLN converges to I(Z ≤ c), where Z ∼ N(0, 1). So the limiting mean and variance

of θ̂n are Φ(c) and Φ(c)(1− Φ(c)), where Φ(·) is the CDF of N(0, 1).

Now the bootstrap distribution of Y
∗

(conditional on Y1, . . . , Yn) in turn is approximately
N(Y , 1/n), so that

√
n(Y

∗ − Y) ≈ N(0, 1). Let E∗ denote the average with respect to the

bootstrap randomness. Then, if θ̃n is the bagged estimator, we have

θ̃n = E∗[I(Y
∗ ≤ yn)] = E∗

[
I

(
√
n(Y

∗ − Y) ≤
√
n(yn − Y)

)]
= Φ(

√
n(yn − Y)) + o(1)

= Φ(c+
√
n(µ− Y)) = Φ(c+ Z) + o(1),

4

where Z ∼ N(0, 1).

To summarize, θ̂n ≈ I(Z ≤ c) while θ̃n ≈ Φ(c+Z) which is a smoothed version of I(Z ≤ c).
In other words, bagging is a smoothing operator. In particular, suppose we take c = 0. Then
θ̂n converges to a Bernoulli with mean Φ(0) = 1/2 and variance Φ(0)(1− Φ(0)) = 1/4. The
bagged estimator converges to Φ(Z) = Unif(0, 1) which has mean 1/2 and variance 1/12.
The reduction in variance is due to the smoothing effect of bagging.

4 Random Forests

Finally we get to random forests. These are bagged trees except that we also choose random
subsets of features for each tree. The estimator can be written as

m̂(x) =
1

M

M∑
j=1

m̂j(x)

where m̂j is a tree estimator based on a subsample (or bootstrap) of size a using p randomly
selected features. The trees are usually required to have some number k of observations in
the leaves. There are three tuning parameters: a, p and k. You could also think of M as a
tuning parameter but generally we can think of M as tending to ∞.

For each tree, we can estimate the prediction error on the un-used data. (The tree is built
on a subsample.) Averaging these prediction errors gives an estimate called the out-of-bag
error estimate.

Unfortunately, it is very difficult to develop theory for random forests since the splitting is
done using greedy methods. Much of the theoretical analysis is thus done using simplified
versions of random forests.

One such simplification is the so-called centered forest which is defined as follows. Suppose
the data are on [0, 1]d. Choose a random feature, split in the center. Repeat until there are
k leaves. This defines one tree. Now we average M such trees. Breiman (2004) and Biau
(2002) proved the following.

Theorem 1 If each feature is selected with probability 1/d, k = o(n) and k →∞ then

E[|m̂(X)−m(X)|2]→ 0

as n→∞.

A significant step forward was made by Scornet, Biau and Vert (2015). Here is their result.

5

Theorem 2 Suppose that the response is specified by an additive model:

Y =
∑
j

mj(Xj) + ε,

where X ∼ Uniform[0, 1]d, ε ∼ N(0, σ2) and each mj is continuous. Assume that the split is
greedily chosen based on minimizing the squared loss. Let kn be the number of leaves on each
tree and let an be the subsample size. If kn →∞, an →∞ and kn(log an)9/an → 0 then

E[|m̂(X)−m(X)|2]→ 0

as n→∞.

The theorem has strong assumptions, but it does allow for greedy split selection.

5 Connection to Nearest Neighbors

Lin and Jeon (2006) showed that there is a connection between random forests and k-NN
methods. We say that Xi is a layered nearest neighbor (LNN) of x if the hyper-rectangle
defined by x and Xi contains no data points except Xi. Now note that if tree is grown until
each leaf has one point, then m̂(x) is simply a weighted average of LNN’s. More generally,
Lin and Jeon (2006) call Xi a k-potential nearest neighbor k-PNN if there are fewer than
k samples in the the hyper-rectangle defined by x and Xi. If we restrict to random forests
whose leaves have k points then it follows easily that m̂(x) is some weighted average of the
k-PNN’s.

Let us know return to LNN’s. Let Ln(x) denote all LNN’s of x and let Ln(x) = |Ln(x)|. We
could directly define

m̂(x) =
1

Ln(x)

∑
i

YiI(Xi ∈ Ln(x)).

Biau and Devroye (2010) showed that, if X has a continuous density, Y is bounded, and m
is continuous then, for all p ≥ 1,

E|m̂n(X)−m(X)|p → 0

as n→∞.

Unfortunately, the rate of convergence is slow.

They also showed that if X has a continuous density,

(d− 1)!E[Ln(x)]

2d(log n)d−1
→ 1.

6

Suppose that Var(Y |X = x) = σ2 is constant. Then

E|m̂n(X)−m(X)|p ≥ σ2

E[Ln(x)]
∼ σ2(d− 1)!

2d(log n)d−1
.

If we use k-PNN, with k →∞ and k = o(n), then the results Lin and Jeon (2006) show that
the estimator is consistent and has variance of order O(1/k(log n)d−1).

As an aside, Biau and Devroye (2010) also show that if we apply bagging to the usual 1-NN
rule to subsamples of size k and then average over subsamples, then, if k →∞ and k = o(n),
then for all p ≥ 1 and all distributions P , we have that E|m̂(X)−m(X)|p → 0. So bagged
1-NN is universally consistent. But at this point, we have wondered quite far from random
forests.

6 Connection to Kernel Methods

There is also a connection between random forests and kernel methods (Scornet 2016). Let
Aj(x) be the cell containing x in the jth tree. Then we can write the tree estimator as

m̂(x) =
1

M

M∑
j=1

n∑
i=1

YiI(Xi ∈ Aj(x))

Nj(x)

where Nj(x) is the number of data points in Aj(x). Based on this observation, Scornet
(2016) defined kernel based random forest (KeRF) by

m̂(x) =

∑n
i=1

∑M
j=1 YiI(Xi ∈ Aj(x))∑M

j=1Nj(x)
.

With this modification, m̂(x) is the average of each Yi weighted by how often it appears in
the trees. The KeRF can be written as

m̂(x) =

∑n
i=1 YiK(x,Xi)∑n
i=1 K(x,Xi)

where

K(x, z) =
1

M

M∑
j=1

I(z ∈ Aj(x)).

The trees are random. So let us write the jth tree as Tj = T (Θj) for some random quantity
Θj. So the forests is built from T (Θ1), . . . , T (ΘM). And we can write Aj(x) as A(x,Θj).
Then K(x, z) converges almost surely (as M → ∞) to κ(x, z) = PΘ(z ∈ A(x,Θ)) which is
just the probability that x and z are connected, in the sense that they are in the same cell.
Under some assumptions, Scornet (2016) showed that KeRF’s and forests are close to each
other, thus providing a kernel interpretation of forests.

7

7 Variable Importance

Let m̂ be a random forest estimator. How important is feature X`?

LOCO. One way to answer this question is to fit the forest with all the data and fit it
again without using X`. When we construct a forest, we randomly select features for each
tree. This second forest can be obtained by simply average the trees where feature ` was not
selected. Call this m̂(−`). Let V be a hold-out sample of size m. Then let

∆̂` =
1

m

∑
i∈V

Wi

where
Wi = (Yi − m̂(−`)(Xi))

2 − (Yi − m̂(Xi))
2.

Then ∆̂` is a consistent estimate of the prediction risk inflation that occurs by not having
access to X`. Formally, if T denotes the training data then,

E[∆̂`|T] = E

[
(Y − m̂(−`)(X))2 − (Y − m̂(X))2

∣∣∣∣∣ T
]
≡ ∆`.

This approach is called LOCO (Leave-Out-COvariates).

Permutation Importance. A different approach is to permute the values of X` for the
out-of-bag observations, for each tree. Let Oj be the out-of-bag observations for tree j
and let O∗j be the out-of-bag observations for tree j with X` permuted, and suppose that
mj = |Oj| = |O∗j |. Then, let

Γ̂` =
1

M

M∑
j=1

Wj

where

Wj =
1

mj

∑
i∈O∗

j

(Yi − m̂j(Xi))
2 − 1

mj

∑
i∈Oj

(Yi − m̂j(Xi))
2.

This avoids using a hold-out sample. This is estimating

Γ` = E[(Y − m̂(X(`)))2]− E[(Y − m̂(X))2]

where X(`) has the same distribution as X except that X
(`)
` is an independent draw from X`.

In the additive model case where Y =
∑d

`=1 m`(X`) + ε with E[ε|X] = 0 and E[ε2|X] < ∞,
they show that Γ` = 2Var(m`(X`).

8

8 Summary

Random forests are considered one of the best all purpose classifiers. But it is still a mystery
why they work so well. The situation is very similar to deep learning. We have seen that
there are now many interesting theoretical results about forests. But the results make strong
assumptions that create a gap between practice and theory. Furthermore, there is no theory
to say why forests outperform other methods. The gap between theory and practice is due
to the fact that forests — as actually used in practice — are complex functions of the data.

9 References

Biau, Devroye and Lugosi. (2008). Consistency of Random Forests and Other Average
Classifiers. JMLR.

Biau, Gerard, and Scornet. (2016). A random forest guided tour. Test 25.2: 197-227.

Biau, G. (2012). Analysis of a Random Forests Model. arXiv:1005.0208.

Buhlmann, P., and Yu, B. (2002). Analyzing bagging. Annals of Statistics, 927-961.

Gregorutti, Michel, and Saint Pierre. (2013). Correlation and variable importance in random
forests. arXiv:1310.5726.

Lei J, G’Sell M, Rinaldo A, Tibshirani RJ, Wasserman L. (2017). Distribution-free predictive
inference for regression. Journal of the American Statistical Association.

Lin, Y. and Jeon, Y. (2006). Random Forests and Adaptive Nearest Neighbors. Journal of
the American Statistical Association, 101, p 578.

L. Mentch and G. Hooker. (2015). Ensemble trees and CLTs: Statistical inference for
supervised learning. Journal of Machine Learning Research.

Rinaldo A, Tibshirani R, Wasserman L. (2015). Uniform asymptotic inference and the
bootstrap after model selection. arXiv preprint arXiv:1506.06266.

Scornet E. Random forests and kernel methods. (2016). IEEE Transactions on Information
Theory. 62(3):1485-500.

Wager, S. (2014). Asymptotic Theory for Random Forests. arXiv:1405.0352.

Wager, S. (2015). Uniform convergence of random forests via adaptive concentration. arXiv:1503.06388.

Wager, S. and Athey, S. (2017). Estimation and inference of heterogeneous treatment effects
using random forests. Journal of the American Statistical Association.

9

