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1 Recap: RKHS Kernel Regression

As we have seen, kernel methods (or kernel machines as they are sometimes called) learn
functions in a Reproducing Kernel Hilbert Space (RKHS). Recall that an RKHS is specified
by a Mercer kernel K : X × X 7→ R, and loosely, consists of functions of the form f(x) =∑

i αiK(xi, x), where {xi} ⊆ X . More formally, consider the function space:

H0 = {f : f(x) =
m∑
j=1

αjK(xj, x), αj ∈ R, xj ∈ X ,m ∈ N}.

Given two such functions f =
∑

i αiK(xi, x) and g(x) =
∑

j βjK(yj, x), we can define the
inner product:

〈f, g〉K =
∑
i

∑
j

αiβjK(xi, yj),

which then defines a norm ‖f‖K =
√
〈f, f〉K . The RKHS HK corresponding to the kernel

K is then the completion of H0 with respect to the inner product ‖ · ‖K .

(Ridge) RKHS regression, also simply called kernel (ridge) regression in the ML literature
(not to be confused with Nadaraya Watson smoothing kernel based non-parametric regres-
sion), then consists of solving:

inf
f∈HK

{
R̂n(f) + λ‖f‖2K

}
,

where R̂n(f) = 1
n

∑n
i=1 L(f(xi), yi) is some empirical risk. A typical loss function is the

squared loss L(f(xi), yi) = 1
2
(f(xi)− yi)2, in which case the estimate can be shown to be:

f̂n(x) = K(x,X)(K + λI)−1y,

where K(x,X) = (K(x, x1), . . . , K(x, xn)) ∈ Rn, and K ∈ Rn×n is the so-called kernel gram
matrix with Kij = K(xi, xj), and y = (y1, . . . , yn) ∈ Rn is the set of responses. In the case

where λ = 0, this yields the estimator: f̂n(x) = K(x,X)K−1y.

2 Random Features

Suppose the Mercer kernel has the spectral decomposition:

K(x, y) =

∫
λ(w)φ(w, x)φ(w, y)dw,
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where {φ(w, ·)} are called the eigenfunctions of the kernel, and {λ(w)} the corresponding
eigenvalues. Then, an alternative characterization of the RKHS HK is:

HK =

{
f(x) =

∫
θ(w)φ(w, x)dw

∣∣ ∫ θ2(w)

λ(w)
<∞

}
.

A key advantage of such a spectral characterization is that the kernels, as well as the functions
from the corresponding RKHS, can be approximated via a finite dimensional feature map.
Suppose we draw m random samples W := {wj}mj=1 iid from p(w) := λ(w)/

∫
λ(w)dw. This

then specifies the following finite-dimensional feature map:

ΦW (x) =

(
1√
m
φ(w1, x), . . . ,

1√
m
φ(wm, x)

)
,

that is indexed by the random draw W. Thus, the feature map ΦW (x) itself is random. In
contrast to learning a function in the RKHS corresponding to K, one can then simply learn
a linear function of these random features, an approach, which naturally, is called “random
features” (Rahimi & Recht 2008, 2009). But would doing so approximate the RKHS, and
would the Euclidean inner product of the random feature map approximate the kernel?

Approximating the kernel. Consider the empirical kernel K̂(x, y) = 1
m

∑m
j=1 φ(wj, x)φ(wj, y),

which is simply the Euclidean dot product of the feature maps ΦW (x) and ΦW (y). Rahimi
& Recht (2008) then showed that for any compact set M,

P

[
sup

(x,y)∈M
(K̂(x, y)−K(x, y)) ≥ ε

]
≺ diam2(M)

ε2
exp(−mε2).

Approximating the RKHS. Consider the sub-class HC ⊂ HK given by:

HC =

{∫
θ(w)φ(w, x)dw

∣∣ |θ(w)| < Cp(w)

}
,

for some constant C > 0. Consider its empirical counterpart:

ĤW ;C =

{
f(x) =

m∑
j=1

θjφ(wj, x)
∣∣ |θj| ≤ C/

√
m

}
.

Consider the estimator
f̂W ∈ arg inf

f∈ĤW ;C

R̂n(f).

Rahimi & Recht (2009) then showed that with probability at least 1− δ:

R(f̂W )− min
f∈HC

R(f) ≺
(

1√
m

+
1√
n

)√
log

1

δ
.
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In particular, they showed that the approximation error scales as:

inf
f∈ĤW ;C

R(f)− inf
f∈HC

R(f) ≺ 1

m
,

and that the estimation error scales as:

sup
f∈ĤW ;C

(R̂(f)−R(f)) ≺ 1

n
.

Rahimi & Recht (2009) moreover showed that linear combinations of such randomly weighted
features {φ(wj, x)} often outperform approaches that also aim to learn these weights, such
as in additive boosting.

Random Features as a Kernel Machine. The previous results show that random features
i.e. learning a linear parameterization of a random feature map drawn from the spectral
decomposition of the kernel, would approximate a kernel machine (i.e. learning a function
from the corresponding RKHS) with the kernel K. The approximation results hinge on the
fact that random features are also a kernel machine, just with a “random features kernel”
K̂(x, y) = 〈ΦW (x),ΦW (y)〉, which is an approximation of the kernel K.

3 Generalized Random Features and Top Layer Training of
DNNs

Suppose we have a generic random feature map, ΦW (X), that is indexed by a random vector
W , but that is not necessarily derived via a spectral decomposition of a Mercer Kernel. Sup-
pose we learn linear functions of this feature map, fθ(x) =

∑m
j=1 θjΦW ;j(x). We could then

consider this as a kernel machine with the random kernel K̂(x, y) = 〈ΦW (x),ΦW (y)〉, which
could be viewed as a randomized approximation of the kernel K(x, y) = EW 〈ΦW (x),ΦW (y)〉.
This broadened perspective of random features can be used to connect DNNs and kernels: if
we can approximate a DNN (or any similar complex model) via a linear function of a random
feature map, then we could in turn connect it to kernel machines with some specific kernel.

The most natural approach to extract such a random feature map from a DNN is implicit
in the common approach of freezing all but the top layer of some pre-trained DNN, and just
fitting the top layer. Let ΦW (x) denote the mapping from the inputs to the penultimate
layer: this is random because the pre-trained DNN weights (in this case, of all but the last
layer) depend on random training points, and some random initialization. They thus provide

a generic random feature map, that in turn specify the random kernel K̂, with expectation
K as detailed above. A simpler instance of this is where we simply randomly initialize all
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but the top layer, and then just fit the top layer. The corresponding kernel K̂ in that case
can be shown to converge to a specific compositional kernel that we will discuss in the next
section.

3.1 Kernel Gradient Descent

You might have seen the phrase “kernel gradient descent” in some recent papers. Suppose we
fix the random features ΦW (·) (for instance extracted from a randomly wired or pre-trained
DNN as discussed above), and learn the linear functions fθ(·) given training data {(xi, yi)}ni=1

by solving for:

inf
θ

1

n

n∑
i=1

L(fθ(xi), yi),

via gradient descent. The gradient descent path is then given by:

dθ

dt
= −η 1

n

∑
i

∂L(fθ(xi), yi)

∂fθ
ΦW (xi),

where we use the shorthand

ΦW (x) =

(
1√
m
φ(w1, x), . . . ,

1√
m
φ(wm, x)

)
.

It thus follows that:

dfθ(x)

dt
= −η 1

n

∑
i

∂L(fθ(xi), yi)

∂fθ
〈ΦW (xi),ΦW (x)〉

= −η 1

n

∑
i

∂L(fθ(xi), yi)

∂fθ
K̂(xi, x),

which has as its limit point precisely the unregularized RKHS regression estimate with the
random features kernel K̂. For instance, for the squared loss L(f(x), y) = 1

2
(f(x)− y)2, the

limit point is precisely K̂(x,X)K̂−1y. Thus gradient descent on the linear coefficients of

random features is also termed “kernel gradient descent” with the kernel K̂ in some recent
papers.

4 Randomly Wired DNNs and Gaussian Processes

We have just seen that just training the top layer of a DNN, while freezing the rest of the
layers to some random initialization, or some pre-trained random weights, can be connected
to a corresponding kernel machine. But what if we do not train even the top layer, and
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simply consider a DNN with randomly set weights. Would this still compute something
useful? As it turns out, it still serves as a very useful Gaussian Process prior over possible
functions (Lee et al. 2017).

Consider an L layer DNN, with n` units in the `-th layer, for ` ∈ {0, . . . , L}, where we have
n0 = d features in the input layer. Denote the pre-activation output of the `-th layer as z[`],
and the output of the `-th layer as x[`] = φ(z[`]). Thus, the pre-activation computation at
the `-th layer is given as

z
[`]
i = b[`] +

n`−1∑
j=1

W
[`]
ij x

[`−1]
j ,

where b[`] is the scalar bias term, and W (`) ∈ Rn`×n`−1 . Denote the set of all parameters by
θ, and the final DNN output as fθ(x) = x[L](x).

Consider the random initialization of the parameters as: W
[`]
ij ∼ N (0, σw/n`), and b[`] ∼

N (0, σb). Since we have that z
[1]
i = b[1] +

∑d
j=1W

[1]
ij xj, it follows that z

[1]
i and z

[1]
i′ are

independent for i 6= i′, and hence so are x
[1]
i and x

[1]
i′ . Consider the next layer: z

[2]
i = b[2] +∑n1

j=1W
[2]
ij x

[1]
j . In the limit of infinite width, with n1 →∞, by the Central Limit Theorem, it

follows that z
[2]
i (x) is Gaussian distributed. Moreover, any collection (z

[2]
i (x1), . . . , z

[2]
i (xm))

is also multivariate Gaussian distributed. It thus follows that z
[2]
i (x) is a Gaussian Process

with mean µ2(x) = E[z[2](x)] = 0, and covariance:

K [2](x, x′) = E[z
[2]
i (x)z

[2]
i (x′)] = σ2

b + σ2
wC(x, x′),

where C(x, x′) = E[x
[1]
i (x)x

[1]
i (x′)] is obtained by integrating out W [1] and b[1].

We can generalize this argument to all layers of a DNN by induction. Suppose that z
[`−1]
i is a

Gaussian Process and independent for every j. Then by the same argument as above, in the
limit n` → ∞, it follows that z

[`]
i (x) is a Gaussian Process with mean zero, and covariance

K [`](x, x′) = σ2
b + σ2

wEz[`−1]
i ∼GP(0,K[`−1])

[φ(z
[`−1]
i (x)), φ(z

[`−1]
i (x′))].

Since the expectation is only over two Gaussian variables, it can be simplified as:

K [`](x, x′) = σ2
b + σ2

wFφ(K [`−1](x, x), K [`−1](x, x′), K [`−1](x′, x′)),

for some function Fφ(·).

Note that in the base case, K [1](x, x′) = E[z
[1]
i (x)z

[1]
i (x′)] = σ2

b + σ2
w
xT x′

d
, where d is the

dimensionality of the inputs x.

It thus follows that at initialization, infinite width DNNs are Gaussian Processes with a
specific “deep” or compositional kernel that is as specified by the compositional recurrence
above.
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Consider the Gaussian Process regression model y = f(x) + ε, where f ∼ GP(0, K [L]), and
ε ∼ N(0, σ2

ε ). Then, given data {(xi, yi)}ni=1, as our Bayesian predictor at a test point x, we
can simply output the posterior mean:

K(x,X)(K(X,X) + σ2
ε I)−1y,

where we have used the shorthand K(x,X) = (K(x, x1), . . . , K(x, xn)).

5 Fully trained DNNs, Linearized Models

So far, we have seen that either just training the top layer, freezing the rest, or not training
any layer, just using a fully randomly wired DNN, can both be connected to kernel machines.
But what if we trained all the DNN layers. Could this still be connected to a kernel machine?

More generally, consider training a complex parametric function fθ(x) (for instance a DNN)
via gradient descent:

dθ

dt
= −η 1

n

∑
i

∂L(fθ(xi), yi)

∂fθ

∂fθ(xi)

∂θ
,

so that it follows that:

dfθ(x)

dt
= −η 1

n

∑
i

∂L(fθ(xi), yi)

∂fθ

〈
∂fθ(xi)

∂θ
,
∂fθ(x)

∂θ

〉
= −η 1

n

∑
i

∂L(fθ(xi), yi)

∂fθ
K̂t(xi, x),

where

K̂t(x, y) =

〈
∂fθ(x)

∂θ
,
∂fθ(y)

∂θ

〉
.

When fθ is a DNN, Jacot et al. (2018) termed the corresponding kernel K̂t as the Neural
Tangent Kernel at the current iterate θt. Jacot et al. (2018) moreover showed the following
two results: (a) as the widths of the layers sequentially approach infinity (so-called infinitely

wide DNNs), the random NTKs at the initialization K̂0 converge to a deterministic compo-
sitional kernel, which can be derived via a recurrence similar to that of the Gaussian Process
kernel above; and (b) uniformly over t ∈ [0, T ] for some finite time horizon T > 0, the
random NTKs at the iterates θt also converge to that same limit determinsitic NTK.

Arora et al. (2019) further refined this analysis providing non-asymoptotic deviation bounds.
Specifically, they showed that:

Theorem 1 ∀ε > 0, δ ∈ (0, 1), suppose that min`∈[L] n` ≺ log(1/δ)/ε4. Then for any inputs
x, x′ ∈ Rd, such that ‖x‖ ≤ 1, ‖x′‖ ≤ 1, with probability at least 1 − δ, there exists a
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deterministic limit kernel K∞ such that:

|K̂t(x, x
′)−K∞(x, x′)| ≺ ε.

5.1 Linearization

The results above essentially show that in infinite width limit, DNNs are essentially behave
similar to the generalized random features machines as in the previous section: linear ma-
chines of some random feature maps, which in turn specify some random kernels, which are
close to their deterministic expectations. But why do they have such linear behavior?

Consider a complex parametric function fθ (for instance a DNN). When this function is
highly overparameterized, and we take relatively fewer descent steps, then it is likely that
each individual parameter moves only slightly away from its initial value, to have the overall
function value with its hundreds of millions of parameters to move sufficiently far from its
initial value, and in particular to fit the data well. In such cases, where each individual
parameter only moves a small amount even with full training, we can approximate the
learning of fθ to simply learning the coefficients of a linearization (Lee et al. 2019):

fLIN
w (x) = fθ0(x) +

〈
w,
∂fθ(x)

∂θ

∣∣
θ=θ0

〉
.

Denote φθ0(x) = ∂fθ(x)
∂θ

∣∣
θ=θ0

. Suppose we initialize θ0 randomly, for instance via iid standard

Gaussians: [θ0]i ∼ N(0, 1). It can then be seen that training this linear model is essentially
random features regression corresponding to the kernel:

KNTK(x, x′) = Covθ0 [φθ0(x), φθ0(x
′)].

In the case of DNNs, this can be seen to be precisely the Neural Tangent Kernel (NTK) at
initialization.

5.2 Lazy Training

Chizat et al. (2019) recently argued that such linearization (or what they call “lazy training”)
is not due to overparameterization per se, but rather due to a particular scaling of the
parameters relative to the gradient descent step size. Their high level insight is that if the
step size is too small relative to the scale of the parameters, we might naturally expect to
be in the “lazy training” or linearized regime where the parameters inividually do not move
too far from the initial parameters.

Towards formalizing this, consider the rescaled risk function:

Rα(θ) =
1

α2
R(α fθ),
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as well as its linearization:

RLIN
α (θ) =

1

α2
R(α fLIN

θ ),

where

fLIN
θ (x) = fθ0(x) +

〈
θ,
∂fθ(x)

∂θ

∣∣
θ=θ0

〉
,

is the linearization of fθ around some initial parameter θ0. Now consider both gradient
descent on the full rescaled risk:

dθα
dt

= −∇Rα(θ),

as well as gradient descent on the linearized rescaled risk:

dθLINα

dt
= −∇RLIN

α (θ).

Chizat et al. (2019) then showed that given a finite time horizon T > 0:

sup
t∈[0,T ]

‖θα(t)− θ0‖ = O(1/α) (1)

sup
t∈[0,T ]

‖θα(t)− θLIN(t)‖ = O(1/α2) (2)

so that the gradient descent iterates remain close to the initial parameter, and the gradient
descent path for the linearized function remains close to the path for the original function
itself.

6 The representational power of (compositional) kernel meth-
ods

The previous sections showed that at least in some over-parameterized or parameter scaling
regimes, learning complex functions such as DNNs is essentially similar to kernel machines
for some fixed, if a deep or compositionally specified kernel function. But how good are such
kernel machines? Do we actually get the flexibility of arbitrary DNNs?

Chizat et al. (2019) empirically showed that lazy training (such as in learning linearized
models in overparameterized settings) is much worse empirically than “non-lazy” training
where the parameters are no longer in the “lazy training” regimes. Ghorbani et al. (2019)
bolstered this with a very powerful set of theoretical results that rigorously analyzed the
approximation and generalization errors of such kernel machines, ranging over both random
as well as deterministic kernel machines discussed above.
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Specifically, they considered the setting where the inputs xi ∼ Unif(Sd−1(
√
d)), where

Sd−1(r) denotes the sphere with radius r in d dimensions. And the responses yi = f ∗(xi),
for some arbitrary f ∗ : Sd−1(

√
d) 7→ R.

For the random kernel machines, let N be the dimensionality of finite-dimensional random
feature maps. They then showed that if d`+δ ≤ N ≤ d`+1−δ, then the shallow random kernel
machines have the same approximation error as fitting a linear function over all monomials
of degree ` in x, while the deeper Neural Tangent Kernel based random kernel machines
have the same approximation error as fitting a linear function over all monomials of degree
`+ 1 in x. They also considered general deterministic kernels that are rotationally invariant
over the sphere Sd−1(

√
d), which might have zero or negligible approximation error. But in

such cases, the generalization error is in turn large. Let n denote the number of samples.
They then showed that when d`+δ ≤ n ≤ d`+1−δ, then the generalization error of these kernel
machines scales as the approximation error of linear regression over all monomials of degree
` in x.

They also coupled this with a very simple separation result to show that this does not entail
that DNNs itself have large approximation or generalization error. Specifically, consider the
case where the target function f ∗ = σ(w∗ · x) is a single neuron. In such a case, under
the distributional assumptions on the training inputs above, it can be shown that gradient
descent over the empirical mean squared error recovers the true parameter w∗. But using
say the NTK kernel machine with d`+δ ≤ N ≤ d`+1−δ would have approximation error of
linear regression over all monomials of degree ` in x, which could be large if σ cannot be
approximated well by polynomials of degree atmost `.
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