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1 Introduction

In classical sampling regimes, the number of parameters d is typically much smaller than
n. Classical statistical analyses in fact assume that d is fixed, and analyze the behavior of
the estimator risk as the number of samples n scales to infinity, treating d as just another
constant. In high-dimensional estimation, we no longer make such an assumption, and even
allow for the number of samples n to be smaller than the dimension d. This introduces a
number of challenges, ranging over a lack of identifiability, and a low signal to noise ratio.
This has thus led to devising various types of additional “side information” or constraints
that ensures identifiability, and estimation with strong guarantees. Showing the latter has
also necessitaed new tools for statistical analyses.

Some good recent on high-dimensional estimation are: Hastie, Tibshirani & Wainwright
(2015), Buhlmann & van de Geer (2011), Wainwright (2017).

2 Preliminaries: Sparsity and the Lasso

Before we consider a more general account, let us briefly review the case of additional con-
straint of sparsity and the Lasso estimator. A natural additional constraint one could impose
on the model parameter is that it be sparse, so that many of the values of the model param-
eter are identically zero. In other words,

107]l0 = [{j € {1,...,p}: 0] # 0},
is small.

Consider the sparse linear regression model: y; = x7 6* 4wy, for i € [n], which can be collated
in vector form as y = X60* + w, and where 6* is sparse.
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We can then estimate the parameters of this sparse linear model via ¢y constrained linear
regression:

min [|y — X0]3
s.t. 6]l < k.

But the estimation problem is non-convex, and NP-Hard (Davis 1994, Natarajan 1995).

The ¢, norm |6, = >%_, is the closest “convex” norm to the /, penalty, and can thus
be thought of as a measure of sparsity. This can be readily seen even when p = 1:
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{o quasi-norm /1 norm {5 norm

(Image from Tropp 06)

As an example, consider the vectors z = (1/v/d,...,1/v/d) and y = (1,0,...,0) have the
same Ly norm. But ||y||, =1 < ||z]|, = Vd.

This thus motivates ¢; regularized least squares estimator, also known as the Lasso.



Estimator: Lasso program
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Some past work: Tibshirani, 1996; Chen et al., 1998; Donoho/Xuo, 2001; Tropp, 2004;
Fuchs, 2004; Meinshausen/Buhlmann, 2005; Candes/Tao, 2005; Donoho, 2005; Haupt &
Nowak, 2006; Zhao/Yu, 2006; Wainwright, 2006; Zou, 2006; Koltchinskii, 2007;
Meinshausen/Yu, 2007; Tsybakov et al., 2008

In an equivalent constrained form, the estimator is given as:

n

1
min — Z(yL —zl0)?

0 n <
=1

st. 0], < C.

These are convex problems which can thus be solved efficiently.

3 Theoretical analysis of the lasso

We now discuss some theoretical properties of the Lasso.

There has been an enormous amount theoretical work analyzing the performance of the lasso.
Some references are Greenshtein & Ritov (2004), Fuchs (2005), Donoho (2006), Candes &
Tao (2006), Meinshausen & Buhlmann (2006), Zhao & Yu (2006), Candes & Plan (2009),
Wainwright (2009).

3.1 /5 error

A common assumption imposed is that X satisfies the restricted eigenvalue condition
with constant ¢y > 0, i.e.,

1
—[| X053 > ¢gllv]|5 for all subsets J C {1,...,p} such that |J| = s,
n

and all v € R? such that ||vse|ly < 3ljvsll1. (1)

Think of v as an error direction E — Bo. The assumption ensures that error in parameter space
is bounded by error in prediction space. This cannot hold for all directions since in high-



dimensions X is low-rank, and its minimum eigenvalue (the unconstrained minimum above)
is zero. The condition thus only requires this hold for some directions: these essentially are
directions we know (or can show) that the Lasso error 5 — (y will lie in.

It can be shown that under this assumption, the Lasso estimator satisfies:

~ lo
_ g2 < Sologp 5
18- 5ol £ 223 )

with probability tending to 1. (This condition can be slightly weakened, but not much.)

The condition is unlikely to hold in any real problem. Nor is it checkable. The proof is in
the appendix.

3.2 Support recovery

Here we discuss results on support recovery of the lasso estimator. There are a few versions
of support recovery results and Buhlmann & van de Geer (2011) is a good place to look for
a thorough coverage. Here we describe a result due to Wainwright (2009), who introduced a
proof technique called the primal-dual witness method. The assumptions are even stronger
(and less believable) than in the previous section. In addition to the previous assumptions
we need:

Mutual incoherence: for some v > 0, we have

[(XEXs) ' XEXG]i <1—1n, for j¢s,

This condition requires the regression coefficients
n;(5) = (X5 Xs) ' XEX;,

given by regressing each X; on the truly active variables Xg, to be small (in ¢; norm) for all
j ¢ S. In other words, no truly inactive variables can be highly correlated (or well-explained,
in a linear projection sense) by any of the truly active variables.

Minimum eigenvalue: for some C' > 0, we have
L o7
Amin _XS XS Z 07
n

where Apyin(A) denotes the minimum eigenvalue of a matrix A. This is somewhat like the
restricted eigenvalue condition on X. Here we are restricting to directions with support in

S.



Minimum signal:
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where [|Alloc = maxi—y,_m > j_; |Ay| denotes the (o norm of an m x ¢ matrix A. This

minimum signal condition ensures that the nonzero entries of the true coefficient vector Sy
are big enough to detect.

Bomin = min |5o;| = (X5 Xs) oo +

Under these assumptions, once can show that, if A is chosen just right, then

-~

P(support(/) = support(3)) — 1. (3)

These conditions are quite restrictive, and are not needed for risk bounds, but are crucial to
support recovery.

3.3 What happens if assumptions don’t hold?

If these assumptions don’t hold, one can still show consistency, but with what are known as
slow rates. It is this inherent robustness that is likely responsible for the practical popularity
of the Lasso.

Thes results to follow don’t place any real assumptions on the predictor matrix X, but
deliver slow(er) rates for the risk of the lasso estimator than what we would get under more
assumptions, hence their name.

We will assume the standard linear model with X fixed, and € ~ N(0,0%). We will also
assume that || X;[|3 < n, for j = 1,...,p. That the errors are Gaussian can be easily relaxed
to sub-Gaussianity.

The lasso estimator in bound form (?7?) is particularly easy to analyze. Suppose that we
choose t = ||By]|1 as the tuning parameter. Then, simply by virtue of optimality of the
solution § in (?7?), we find that

ly — XBl3 < lly — XBoll2,
or, expanding and rearranging,
158 = XBoll3 < 2(e, X5 — XBo).

Here we denote (a,b) = a’bh. The above is sometimes called the basic inequality (for the
lasso in bound form). Now, rearranging the inner product, using Holder’s inequality, and
recalling the choice of bound parameter:

1X5 — X B2 < 2(XTe, B — Bo) < 4|Bol[1]| X el oo

5



Notice that || XT¢€||o = max;—1,__, |X]-T€| is a maximum of p Gaussians, each with mean zero
and variance upper bounded by o?n. By a standard maximal inequality for Gaussians, for

any 0 > 0,
max | XTe| < ov/2nlog(ep/d),
]: 7"'7p
with probability at least 1 — §. Plugging this to the second-to-last display and dividing by

n, we get the finite-sample result for the lasso estimator

1 ~ 21 )
LB - X6l < ooy 2P, (@)

with probability at least 1 — §.

The high-probability result (4) implies an in-sample risk bound of

1 ~ log p
—EI|XB - Xfoll3 S ol 2L

Compare to this with the risk bound of Lasso scaling as sglogp/n when Sy has sy nonzero
components. If each of the nonzero components here has constant magnitude, then above
risk bound for the lasso estimator is on the order of sy/logp/n, which is much slower.

Predictive risk. Instead of in-sample risk, we might also be interested in out-of-sample
risk, as after all that reflects actual (out-of-sample) predictions. In least squares, recall, we
saw that out-of-sample risk was generally higher than in-sample risk. The same is true for
the lasso Chatterjee (2013) gives a nice, simple analysis of out-of-sample risk for the lasso.
He assumes that xg, x;, 2 = 1,...,n are i.i.d. from an arbitrary distribution supported on a
compact set in R?, and shows that the lasso estimator in bound form (??) with ¢t = ||5o|x
has out-of-sample risk satisfying

~ log p
E(afB - af 8) S A3 22,

The proof is not much more complicated than the above, for the in-sample risk, and reduces
to a clever application of Hoeffding’s inequality, though we omit it for brevity. Note here
the dependence on ||3o||?, rather than ||3y]]; as in the in-sample risk.

Oracle inequality. If we don’t want to assume linearity of the mean then we can still derive
an oracle inequality that characterizes the risk of the lasso estimator in excess of the risk of
the best linear predictor. For this part only, assume the more general model

y=n(X)+e

with an arbitrary mean function ;(X), and normal errors e ~ N(0,0°). We will analyze the
bound form lasso estimator (??) for simplicity. By optimality of 3, for any other /3 feasible

6



for the lasso problem in (?7), it holds that!

~

(XT(y—XB),B—B)<0. (5)
Rearranging gives o R o
<M(X)_X57Xﬁ_XB>§<XT676_B> (6)
Now using the polarization identity ||al|3 + ||b||3 — [la — b||3 = 2{(a, ),
|XB = p(OE + 1X5 = XBI3 < 1X5 — p(X)[3 + 2(X e, 5 — B).

and from the exact same arguments as before, it holds that

1.~ 1o~ ~ 1, o~ 21log(ep/9)
LB )+ S IXB — X < HIXE — p(X)[3 + oty ZOED/D),

with probability at least 1 — §. This holds simultaneously over all B with || E |1 <t. Thus,
we may write, with probability 1 — 9,

%IIXE—M(X)H% < { inf ~|[XF - (X))

I1Bll1<t ™

} + 4oty 2108lep/0)
n

Also if we write X Ebe“ as the best linear that predictor of ¢; at most ¢, achieving the infimum
on the right-hand side (which we know exists, as we are minimizing a continuous function
over a compact set), then

1.~ ~ 21 )
LxB = X B3 < oty 2RI,
n n

with probability at least 1 — 9.

3.4 Problems With Sparsity

Sparse estimators are convenient and popular but they can some problems. Say that B is
weakly sparsistent if, for every (3,

Ps(1(B; =1) < I(8;=1) forall j) =1 (7)

as n — oo. In particular, if Bn is sparsistent, then it is weakly sparsistent. Suppose that d
is fixed. Then the least squares estimator (3, is minimax and satisfies

s%pEﬁmHBn — BII*) = 0(1). (8)

But sparsistent estimators have much larger risk:

ITo see this, consider minimizing a convex function f(x) over a convex set C. Let T be a minimizer. Let
z € C be any other point in C. If we move away from the solution & we can only increase f(z). In other
words, (Vf(Z),z—2) > 0.



Theorem 1 (Leeb and Pé6tscher (2007)) Suppose that the following condiitons hold:

1. d is fized.

2. n ' X'X — Q for some positive definite matriz Q.

2

3. The errors €; are independent with mean 0, finite variance o° and have a density f

satisfying / ,
0< / (?8) f(x)dz < oo.

[fB 15 weakly sparsistent then
sup Es(nl|B, — BI*) = oo. (9)

More generally, if £ is any nonnegative loss function then

sup Es(¢(n'"?(B, — B))) — sup {(s). (10)

S

Proof. Choose any s € R? and let 3, = —s/y/n. Then,
sup Es(U(n'*(B — B)) > Es,(U(n'*(5 — B)) = B, (L(n'*(B — B))I(B = 0))
= ((—/nB,)Ps, (B =0) = ((s)Ps,(B =0).

~

Now, Py(8 = 0) — 1 by assumption. It can be shown that we also have Pjg, (B=0)—1
(due to a property called contiguity.) Hence, with probability tending to 1,

sup Bs(e(n'*(B — B)) > £(s).

Since s was arbitrary the result follows. [

It follows that, if R, denotes the minimax risk then

sup R(Bn) — 00

B n

The implication is that when d is much smaller than n, sparse estimators have poor behavior.
However, when d,, is increasing and d,, > n, the least squares estimator no longer satisfies
(8). Thus we can no longer say that some other estimator outperforms the sparse estimator.
In summary, sparse estimators are well-suited for high-dimensional problems but not for low
dimensional problems.



4 Beyond Sparsity

Let us now consider some other popular classes of structural constraints on model parameters
that go beyond simple sparsity.

Group-Sparsity. Suppose the model parameters can be grouped into natural groups, so
that 6 = («91, O O Gty - - ,9,;)

-~ -~

9G1 GGm

A group analog of sparsity is where many of the groups are identically zero. For instance
0* = (*, ok 0,...,0,.. ) has a single non-zero group. Thus, if we construct a vector
——
0,
of £, norms (for ¢ > 2) of the group sub-vectors {[|0g,|,}}~,, then group sparsity entails
that this vector is sparse, so that {j € [m] : ||, |, # 0} is small. This thus motivates the
group-analogue of the ¢; norm, also called the group Lasso norm: Z;”Zl 10c;lq-

Block Sparsity. A natural variant of such group sparsity is what is known as block-sparsity.
Consider the task of multiple linear regression. Here, we have m response variables and m
corresponding linear regression models:

Y = XxTe0 4 i=1,... n

%

We can collate these into matrices Y € R™™ X € R™? and © € R™*P so that we get the
following compact representation of the multiple linear regression model:

Y =X0+W.

A natural set of groups given the parameter matrix © are the rows of the matrix, so that
group sparsity here would correspond to most of the rows being entirely zero, other than a
few rows with non-zero entries. Such block sparsity here has a very natural interpretation:
the set of relevant (specifically, the set of irrelevant) features are shared across the multiple
linear regression tasks, even while the actual values of the relevant feature weights can be
different.



X O*

Y %4
n — + n
p
m m

Thus block sparsity of © would entail that: |[{j € {1,...,p} : ©;. # 0}] is small. While the
block Lasso norm is given as: > [|©;[l,. The block-sparse estimator of multiple linear

regression is then given as:

m n p
min {Z Z(Yi(l) - X70.4) + )‘Z ||@j~||q} :
j=1

=1 i=1

Example: Handwriting Recognition.

10
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Consider data consisting of written images of digits from multiple writers. The task is that
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o quasi norm yields what is known as the nuclear norm: ||A||, = Z;ﬂ‘{k’m} ;. Just as the £,

norm regularization encourages vectors to be sparse, nuclear norm regularization encourages
matrices to be low-rank.

o* U D VT

rXxXr

Set-up: Matrix ©* € R¥*™ with rank r < min{k, m}.

Estimator:
R 1 min{k,m}
. - o ) 2 )
© € argmin — ;@/ (Xi, ©)) + An ; 7;(©)

Some past work: Frieze et al., 1998; Achilioptas & McSherry, 2001; Srebro et al., 2004;
Drineas et al., 2005; Rudelson & Vershynin, 2006; Recht et al., 2007; Bach, 2008; Meka et
al., 2009; Candes & Tao, 2009; Keshavan et al., 2009

5 Unified Frameworks for Analyzing High-dimensional Mod-
els

We will now briefly review the unified framework from (Negahban, Ravikumar, Wainwright,
Yu 12) for statistical analyses of general high-dimensional models, with general structural
constraints.

In the previous section, we saw varied structural constraints ranging over sparse, group-
sparse, block-sparse, low-rank, among many others (e.g. graph based) that all allow us to
estimate high-dimensional models with guarantees. Is there an underlying commonality to
them? It can be shown that all these structural constraints essentially impose the condition
that the model parameters lie in some low-dimensional subspace from a specific collection of
low-dimensional subspaces.

12



Example: Sparse Vectors. Consider the set of s-sparse vectors in p dimensions. For any
particular subset S C {1,...,p}, with cardinality s, define the subspace:

A(S)={0€Rr:0,=0, Vjé&Ss}

It can then be seen an s-sparse vector lies in one of the collection of low-dimensional subspaces
{A(S) bscp-

Example: Group-Sparse Vectors. Suppose that {1,...,p} can be partitioned into a set
of T disjoint groups G = {G4,...,Gr}. Given any subset Sg C [T] of the group indices, we
can define the subspace:

A(Sg) = {9 e RP : QG]. =0, Vjé& Sg}

It can be again be seen that a group-sparse vector lies in a collection of these low-dimensional
subspaces.

Low-Rank Matrices. For any matrix © € RP**P2_ let row(©) € RP* denote its row space,
and col(©) € RP? its column space. For a given pair (U,V) or r-dimensional subspaces
U CRPrand V C RP?2) we can define the subspaces:

AU, V) ={0 e R""*P2 : row(©) C U, col(®) C V'}.

It can then be seen that any low-rank matrix © € RP**P2 of rank r < min(pl, ps) lies in a
collection of the low-dimensional subspaces above.

(Chandrasekharan, Recht, Parillo, Willsky, 10) further refine this notion of structure as fol-
lows: If the “structured” parameter belongs to a low-dimensional subspace, then it can be
written down as the sum of a small number of dictionary vectors of that low-dimensional sub-
space. One could call the dictionary elements of the low-dimensional subspaces as “atoms”.
Thus, a collection of low-dimensional subspaces is just a collection of simple “atoms” —
which provides an alternative notion of structure. We briefly list some examples of such
structured atoms.

13



Group Sparsity

Sparsity
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T Atoms are permutation matrices
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(with u, v having unit £2 norm)

5.1 Unified Analysis

Consider the following general statistical estimation problem: we have a set of probability
distributions { Py : 6 € O}, for some parameter space ©. Suppose we are given n observations
{Z;}1-, ~ P;(-), and wish to estimate §* given these samples.

The general class of M-estimators solve an optimization problem of the form:
6 € argmin {L(6; {Z}1)) + AR(6)}

where L£(6, D) is some loss function measuring the goodness of fit of the candidate parameter
6 to the data D = {Z;}I' |, and R(0) is some regularization function that encodes the prior
information about the true parameter, and encourages the candidate parameter 6 to have
specific structure. But would the regularization function be suited to the specific structural
constraint we wish to impose? What would be the performance of the M-estimator above
for general losses, and general regularization functions?

Surprisingly, one can analyze these general class of M-estimators with respect to general
structured parameters via a very simple theorem. Before discussing this theorem, let us first
introduce some terminology.

14



5.1.1 Decomposability

We will first introduce the property of decomposability, which captures whether a regulariza-
tion function R(-) is “suited” to a class of structural constraints, as encoded by a collection
of subspaces. We will say that a regularization function R(-) is decomposable with respect
to a collection of subspaces A if for any V € A, any v € V, and u* € V*, it holds that:

R(u+u') = R(u) + R(u™).

Note that, assuming R(-) is some norm, by the triangle inequality, the RHS is always larger
than the LHS. By requiring an equality, the decomposability property states that R(-) pe-
nalizes “unstructured” deviations ut (since they belong to V+ for V € A) by the maximum
possible.

Example: Sparse Vectors. The ¢; norm is decomposable with respect to the sparse vector
subspaces introduced earlier. To see this, note that any § € A(S) can be written as 6 =
(05,0s¢), and any 0+ € A(S)L can be written as 8+ = (0g, 6<.), so that:

16+ 0%l = [[(0s, 0s<) + (0s, 05 ) [ = [0} + [16-]]1.
The key advantage of a decomposable regularizer when used within an M-estimator, is that

one can then show that the error of the M-estimator will always lie in a cone, as shown in
the following figure.

R(Am)

15



5.1.2 Restricted Strong Convexity

When we solve an M-estimation problem, we are minimizing in the range space of the loss
functions. But suppose we require guarantees in our estimate of the parameter. Then, one
should be able to translate small values of excess loss (from optimum) to small values of pa-
rameter error. But this requires curvature of the loss function, as can be seen by the figure
below. For a loss with large curvature around the optimum, a small excess loss translates to
small parameter error. But with flatter losses, a small excess loss could still entail a large
parameter error.

!
\ /
\\l ,-’/
\ o
I o \\// } | |
7 N/ ~ |
i : T R e
N t ~a "
0° O, 0 N

But this is a problem in high-dimensions, because the empirical risk will always have flat
directions, since the Hessian will be low-rank. For instance, with the squared loss in linear
regression, the Hessian is % > X; X', which is a p x p matrix with rank at most n, which
in turn is smaller than p under high-dimensional sampling regimes. Thus, the Hessian is
rank deficient, which means that it lack curvature at least along some directions. But on the
positive side, it will have curvature at least along some directions, as in the following figure.

16
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And we do not need curvature along directions in the first place: we only need curvature
along directions the parameter estimate deviations 6 — 6* can take, since that is all we need
to translate excess loss to error in parameters. We just saw previously that the error of the
M-estimator lies in a cone: so all we need is the guarantee that the loss has curvature along
any direction in the cone. We call this property restricted strong convexity:

La(07 + D) = Lo(07) = V(Lo (07), &) = (L) d*(D),

for all directions A € C in some restricted set C, and where d(-) is the error norm with
respect to which we desire to obtain error bounds.

5.1.3 Subspace Sizes.

Finally, we will measure the size of the subspace A in which the true parameter 6* lies via
the compability constant between the regularization function R(-) and the error norm d(-):

: R(6%)
Upa(A) =
ra(4) e*eﬁ?*#o d(6+)

Example: Sparse Vectors. Suppose we use ¢; regularization and wish to measure /5 error,
so that R(0) = |01, and d(A) = ||A||2. Then, for sparse vector subspaces A(S) = {6 : Ogc =
0}, we have:

\Ij&,ﬁz (A(S)) = \/m

17



5.1.4 Noise Level.

The final ingredient we will need is a measure of the “noise” in the estimation problem,
since that should naturally affect the parameter estimation error rates. It can be seen that
the score function E(V L, (0*)) = 0, when #* is the optimal parameter with respect to the
expected loss E(L,,(0)). Thus, quantifying how far the sample estimate of the score function
is from zero seems a reasonable approach to quantify the “noise level” in the estimation
problem. We will specifically use:

R (VL (07)),

where R*(-) is the dual norm of the regularization function R(-).

Example: Lasso. Consider the linear regression model: Y = X6* + W, with Y € R", and
X € R™*?. With Lasso, the loss function is the squared loss £, (0) = 5-||Y — X0||3, and the
regularization function is the ¢; norm R(6) = ||0||1, so that its dual norm is the , norm:

R*(0) = ||0||co- We can then measure the noise level via:
. 1
VL0l = 1 XTI

which when W ~ N(0, 1), and with bounded columns || X;||3 < C, can be bounded as:

1
VLA (07 oo < ) —2L.

n

5.1.5 Error Bounds

Suppose we wish to bound the error of the M-estimator 9 from the true parameter 0* with
respect to some error norm d(-).

Theorem 2 (Negahban, Ravikumar, Wainwright, Yu 2012) Suppose the regularization pa-
rameter is set so that A\, > 2R*(V L, (0%), the reqularization function satisfies the decompos-
ability condition with respect a collection of subspaces A, the true parameter 0* € A for some

A € A, and the loss satisfies the restricted strong convexity condition with parameter v(L).
Then:

Example: Sparse Linear Regression Model. Suppose Y = X0*+W, with W ~ N(0, 0%I),
and [|6*]|o = k. Consider the Lasso estimator:

. (1 )
GRS arg min {%HY — X0|5 + )\n||9||1} :

18



The restricted strong convexity condition reduces to a restricted eigenvalue condition on
LXTX. The noise level can be bound as

1T < /8L
n oo n b)

with high probability, so that by setting A, < 4/ %, we have that with high probability:

o klogp

0 — 6% <

Example: Low Rank Matrices. Consider a matrix-structured linear regression model:
Y; = (X;,0%) + W;, with W; ~ N(0,0?), for i € [n]. Suppose that the true parameter
©* € R*™™ has rank r < min(k, m), so that we solve for the nuclear norm regularized least
squares estimator:

~ ) ] — 2
O e arg min {% ;(Yz — (X3, 0)° + /\n|||@|||*} :

Then, the noise level can be bounded as

1 k m
I=X:Will. < o (\/j+ \/ —> ,
n n n

with high probability. Thus, assuming the design matrix X satisfies the restricted strong

convexity condition, and by setting the regularization parameter as A\, < o <\/§ + ﬁ),
we have with high probability:

10—l < -7 <\/§+ ﬁ) |
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