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---a basic survey of Bayesian network learning algorithm
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Causal Graph 
and Algorithm

▪ X is a cause of Y if intervening/manipulating the state 

of X changes the distribution of Y

▪ Directed acyclic graph (DAG) are often used to 

represent causal relations

▪ Constraint-based and score-based algorithms 

searching causal graphs

▪ Guarantee of Consistency: Markov Condition and 

Faithfulness Assumption
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Score-based 

- Starting with an empty graph 

- add edges/dependencies that improves the score 

mostly

- if adding edges does not improve score anymore, 

remove edges that improves the score mostly  



Simulation

▪ Linear

▪ Gaussian

▪ 20 variables

▪ Average degree:4, 8, 12

▪ Constraint-based:FCI

▪ Score-based:FGES

▪ Combination: GFCI



Simulation Uses 
Linear Gaussian 

Model
Data(X,Y,Z) ~ P(X,Y,Z) ~ X=a1 Z + a1Y +e



20 variables 
with ave.

degree of 4



FCI



FGES



GFCI



Adjancency
Precision & 

Recall

▪ Precision – percentage of edges in the output graph that 

are in the true graph

▪ Recall – percentage of edges in the true graph are in 

the output graph



Adjancency
Precision & 

Recall



Arrow Head
Precison & 

Recall

▪ Precision – percentage of edges in the output graph 

pointing at the correct direction that are in the true 

graph

▪ Recall – percentage of edges in the true graph are in 

the output graph pointing at the correct direction



Arrow Head
Precison & 

Recall



Summary

▪ Constraint-based algorithm produces fewer extra 

edges and is more accurate about the direction of the 

edges

▪ Score-based algorithm are more sensitive detecting 

edges but less accurate



Improvement

▪ Aiming at minimizing score can help relaxing 

faithfulness assumption

▪ Adding direction rules used in the constraint-based 

algorithm into FGES
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Analyze Pairwise Comparison Data

Data: Pairwise comparison among items
e.g. Wins and losses among tennis players

Goal: Rank the items correspondingly
e.g. Rank the players according to their game record
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The Model

n items: 1, 2, ..., n

Underlying complete ordering π∗ : [n]→ [n]
π∗(i) < π∗(j) means i is better than j

Matrix of underlying comparison probability M∗ ∈ Rn×n:

M∗ij = P(i beats j)

Observation: Y ∈ Rn×n, in which

Yij = I(i beats j) ∼ Ber(M∗ij )

Goal: Estimate M∗ using Y
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Related Work: Parametric Model

”Scores” for each item: w∗1 ,w
∗
2 , ...,w

∗
n

Assumption: M∗ij = F (w∗i − w∗j )

CPAR : The set of all parametric matrices

Bradley-Terry-Luce(BTL) model: F = sigmoid function

Thurstone model: F = standard normal CDF

Estimation method: MLE of w∗

Limitation: Fit poorly to real-world data due to strict single-factor
assumption
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Stochastically Transitive Models

Shah, Balakrishnan, Guntuboyina, Wainwright, 2015: Stochastically
Transitive Models for Pairwise Comparisons: Statistical and
Computational Issues

Strong Stochastic Transitivity(SST) condition: if π∗(i) < π∗(j), then
for any k 6= i , j , M∗ik ≥ M∗jk
Parametric model as a special case
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Algorithm: Singular Value Thresholding (SVT)

Singular Value Decomposition(SVD) of Y : Y = UDV>

Soft thresholding of singular values: Tλn(D) = max(D − λn, 0)

Estimator: M̂λn = UTλn(D)V>

Error bound: Take λn = 2.1
√
n, then with high probability,

MSE (M̂λn ,M
∗) ≤ Cn−1/2
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Experiments and Results

Data Generating models:
1. Thurstone model: M∗ij = Φ(w∗i − w∗j )

2. High SNR model:
∣∣∣M∗ij − 1

2

∣∣∣ ≥ γ
Estimation method:
1. Thurstone model + MLE
2. Singular Value Thresholding
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Introduction

● Recent work by (Kool et al., 2018) applied attention-based 
REINFORCE to learn generalizable heuristics efficiently for 
combinatorial optimization problems such as Travelling Salesman 
Problem(TSP)

● Reinforcement Learning algorithm makes the attention-based model’s 
training unstable and sample 



Question we focused

• Can we leverage supervised data based on non-learning methods to 
guide the training process of attention-based model?

• Specifically, can genetic algorithm (GA) that gives incrementally 
better solutions make such guidance even easier?



Theoretical Contribution (Lipschitz)
● Why GA can guide RL model? Pirotta, M.,2015

● the Lipschitz continuity properties for Markov Decision Processes to safely 
speed up policy-gradient algorithms



Theoretical Contribution (Lipschitz)
● Goal: Both the expected return of a policy and its gradient are Lipschitz 

continuous w.r.t. policy parameters.

● L(θ-θ’) < K |θ-θ’|, where K is some constant, L is some proper loss, θ and θ’ 
are the parameters of successive iterations.



Theoretical Contribution (Lipschitz)
Assumptions:

1. the Lipschitz continuity of the (parameterized) state-transition model, the 
reward function, and the policies considered in the learning process.

mild assumptions in realistic setup



Theoretical Contribution (Lipschitz)
Assumptions:

2. the Lipschitz gradient of (parameterized) policy logarithm



Theoretical Contribution (Lipschitz)
Main results:

where κ is the Kantorovich distance.



Theoretical Contribution (Policy Gradient)
By policy gradient theorem, the loss gradient of REINFORCE (Kool et al. 2018):

Supervised Model Loss based on KL-Divergence:

    (which is consistent with REINFORCE loss)

Incremental GA-guided training (i: epoch number):

(Distribution obtained from GA results)



Experimental Results



Experimental Results
First epoch result:



Experimental Results
Second epoch result:



Experimental Results
Third epoch result:



Experimental Results
Fourth epoch result:



Experimental Results
● Promising results we obtained so far

Loss relatively low considering the GA training size

Efficiency monotonically increases w.r.t epochs

● Challenge we encountered so for

Original REINFORCE has much larger training size while we have to 
generate our own GA data



Conclusions
● Theoretically, under mild assumptions, RL policy model has Lipschitz 

property; GA-based solution incrementally gets closer to optimum. Thus, 
GA-based supervision can effectively guide the training of attention-based 
policy model.

● The above theoretical results is proved by some primary experimental results
● Robustness of the GA-based guidance requires larger training sets and 

parameter tunings; better loss design in the supervised stage is needed
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Towards Understanding the 
State of Sparsity of Deep Neural 

Networks
Ting-Wu Chin



Why sparse neural networks?

• Deploying deep neural networks onto resource-constrained devices 
often requires model compression

• Sparsifying the weights of neural networks is a popular approach for 
model compression

• Goal: understand the state of sparsity of deep neural networks 



Methods for group sparsity
Lasso / Trimmed Lasso

(Wen et al. 2016; Yun et al. 2019)
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Statistical analysis for Lasso and Trimmed-Lasso

Lasso Trimmed Lasso
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Problem Setting

In each episode j = 1, ..., J we interact with unknown task 𝜃 ∈ ϴ 

● Finite set of tasks ϴ = {𝜃1, …,  𝜃M}
● Each 𝜃 ∈ ϴ is a K-armed bandit specified by 𝜃 = {𝜃1, …, 𝜃K}

Objective: minimize cumulative regret over tasks



Problem Setting

In each episode j = 1, ..., J we interact with unknown task 𝜃 ∈ ϴ 

● Finite set of tasks ϴ = {𝜃1, …,  𝜃M}
● Each 𝜃 ∈ ϴ is a K-armed bandit specified by 𝜃 = {𝜃1, …, 𝜃K}

Objective: minimize cumulative regret over tasks

We present 2 algorithms which achieve better performance than UCB: 

● mUCB: ϴ is known
● tUCB: ϴ is unknown



Notation

μi(𝜃) - mean reward of arm i in task 𝜃

μ*(𝜃) - mean reward of optimal arm in task 𝜃

i*(𝜃) - optimal arm of task 𝜃

Δi(𝜃) - optimality gap of arm i in task 𝜃

ɣi(𝜃, 𝜃’) - difference in arm i reward between tasks 𝜃, 𝜃’



mUCB
Assume we know ϴ a priori, and have unknown task 𝜃 ∈ ϴ.  

Input: models ϴ and timesteps T
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Compute confidence band for each arm 
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Input: models ϴ and timesteps T

For t = 1, …, T: 

Compute estimates          of each arm i

Compute confidence band for each arm 

Build set of compatible models

Let    be the task with highest overall reward    



mUCB
Assume set of tasks ϴ is known, and have unknown task 𝜃 ∈ ϴ.  

Input: models ϴ and timesteps T

For t = 1, …, T: 

Compute estimates          of each arm i

Compute confidence band for each arm 

Build set of compatible models

Let    be the task with highest overall reward    

Pull and observe reward



mUCB: Regret

where



mUCB: Regret

where

For all arms i, arm gap is at least the optimality gap:

→ mUCB has better upper bound



tUCB
We do not know set of tasks ϴ, and for each episode j have unknown 𝜃j ∈ ϴ.  

Input: # tasks M, # arms K, episodes J, timesteps T

For episodes j = 1, …, J: 

Compute MoM estimate of tasks so far ϴj = {𝜃1, …, 𝜃j} using Robust 
Tensor Power Method (Anandkumar et al. 2013)

Run mUCB on estimated models ϴj 



tUCB: Regret
● Cumulative pseudoregret is never worse than UCB
● After a certain episode j, tUCB has the same performance as mUCB and 

improvement over UCB



mUCB and tUCB Are Never Worse than UCB



Regret of tUCB approaches mUCB



10716 Project
Danlei Zhu



Introduction



Introduction



Uniform Bounds

Given n independent samples (x_i, y_i) (from some distribution P) and f* be the optimal 
bayes classifier, we have below the uniform bound



Uniform Bounds



Validity of some kernels
Given Nadaraya-Watson estimator (Nadaraya, 1964)

Where K is singular kernel such as 



Validity of some kernels
(Belkin et al, 2018) MSE decays to 0 at a rate of 

Belkin, M., Rakhlin, A., & Tsybakov, A. B. (2018). 
Does data interpolation contradict statistical 
optimality?. arXiv preprint arXiv:1806.09471.



Validity of some kernels
(Belkin et al, 2018)  

● Asymptotic MSE for interpolating 1-Nearest-Neighbor with triangulation 
scales like O(1/d), d is the dimension of data. (asymptotic excess risk for 
classification is exponentially small in d)

● Weighted & Interpolated Nearest Neighbor(WiNN) MSE converges at rate 

Belkin, M., Hsu, D. J., & Mitra, P. (2018). Overfitting 
or perfect fitting? risk bounds for classification and 
regression rules that interpolate. In Advances in 
neural information processing systems (pp. 
2300-2311).



What about interpolating general methods?

1. What does empirical knowledge tell us?

2. Dependence of generalization on model complexity?



Double Descent Curve Dependence of generalization on model complexity?

Belkin, M., Hsu, D., & Xu, J. (2019). Two models of 
double descent for weak features. arXiv preprint 
arXiv:1903.07571.
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Conventional Q learning
Value function      : 

the expected sum of future 
discounted rewards induced by 
the policy π

Intrinsic Problem?



Problem of value function: Expectation
- Consider a simple dice game:

- Return is actually a random variable, may be multi-modal
- Using expectation (i.e. value function) is not fully representative 



Stochasticity in Value Distribution
Consider value distribution instead:

Randomness:

- Immediate reward
- Stochastic dynamics 
- Stochastic policy 



- Distributional Bellman Equation for value distribution Z:

-
- Distributional Bellman Operator

- Recall: Traditional Bellman Equation for value function

Distributional Q learning

Contraction? 



Theories of Contraction (I) - Wasserstein Metric 
To study contraction, we introduce the maximal form of Wasserstein metric:

where Wasserstein distance in 1D distribution by inverse CDF:



Theories of Contraction (II) - Policy Evaluation
Recall: Distributional Bellman operator 

Theorem: it’s a contraction in maximal form of Wasserstein metric. [1]

Iterate      will converge to unique fixed point   

Hints of proof: discount rate shrinks the support size 



Theories of Contraction (III) - Control

Theorem: If optimal policy is unique, then iterate                           converge to      

Proposition: Optimality operator is not a contraction. [1]

Intuition: Optimality operator preserves the mean      , but in general there exist 
many optimal value distributions.

Distributional Bellman Optimality operator:



Approximate Distributional RL
How to represent value distributions? 

How to apply it to Deep RL?

- Categorical Distribution: 
- Categorical DQN [1]

- Inverse CDF for specific quantiles: 
- Quantile Regression DQN [2] 



Categorical DQN
- Categorical Distribution

- Fixed support
- Project target value distribution onto the support

- By linear interpolation
- Contraction in Cramer distance [3]
- From DQN to Categorical DQN:

- Difference in network’s output

shrink

shift projection / 
interpolation

transition



Quantile Regression DQN
- From Categorical to Quantile:

- Cat: Fixed Support and Learned Probabilities
- Quant: Fixed Probabilities and Learned Support

- Use quantile regression loss to learn many quantiles
- Contraction in Wasserstein distance [2] 
- From DQN to Quantile Regression DQN:

- Difference in network’s output

x

loss



Visualization of value distribution
Pong: about to hit the ball

Go-up
Go-down Go-up has left-skewed value distribution 

(high confidence) apart from larger mean. 

Seaquest: about to hit the fish 

uncertain affirmative



How to utilize value distribution?
- We only use the mean of value distribution finally?
- Distributional RL has some non-trivial advantages:

- Richer representation 
- Training: lower-variance gradient
- Risk-aware: risk-averse/seeking agent
- Exploration: uncertainty
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Problem Overview

● Consists of Generator (G) and Discriminator (D)
● Generator transforms latent 𝑧 into data space 𝓧
● Discriminator trained to provide guidance to G
● Adversarial training can be highly unstable

○ Vanishing gradients
○ Mode collapse
○ Memorization

Image src: 
Paired 3D Model Generation with Conditional Generative Adversarial Networks (left figure of GAN)
Generative Adversarial Nets (right figure of distribution matching)

Goal of a generator is to model true 
distribution (black dotted) with a 
generated distribution (green) by 
transforming a latent (black solid) 



Original GAN objective (Goodfellow 2014)

- Suffers from vanishing gradient when discriminator is too good / generator is 
poor

- Obvious when we take derivative with respect to generator weights 

- Optimal Discriminator:



Modified GAN objective (Goodfellow 2014)

- Discriminator uses the original loss:

- Generator modified to maximize:

- Slightly better derivative (when generator is poor). 
Still not ideal.

- Optimal Discriminator:



Least Squares GAN (Mao 2017)

- Penalizes data which are on 
the correct side of, but far 
from the discriminator 
boundary

Sigmoid Cross-entropy Least Squares



Wasserstein GAN (Arjovsky 2017)

- Implements Wasserstein metric to measure 
discriminator performance

- Includes weight-clipping to keep parameter space 
compact and keep discriminator space Lipschitz

- Improves cases of mode collapse
- Well-defined derivatives solve vanishing gradients

WGAN-GP (Gulrajani 2017) adds weight norm penalty to 
replace weight clipping.

 + weight clipping



Empirical results and Conclusions
● Convolution GAN trained on 9k images of aligned cat images
● Original (Goodfellow 2014), Modified (Goodfellow 2014), LSGAN, WGAN, WGAN-GP
● 2e-4 lr used with Adam optimizer for first 3; 1e-4 used for WGAN & WGAN-GP
● Weights clipped to [-0.01, +0.01] for WGAN, λGP= 1 for WGAN-GP

W
G

A
N

-G
P 

 W
G

A
N

   
LS

G
A

N
   

 M
od
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rig

Orignal Modified LSGAN WGAN WGAN-GP

Time to train 37 min 37 min 38 min 38 min 59 min

FID score 376.6 397.9 21.35 24.74 27.57
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Meta-learning problem formulation

Goal: Learn a general algorithm that can learn predictive models for a range of
tasks (Learning to learn)

• distribution over tasks P(T )

• each task T with data generating distribution pT over X × Y is represented
by a task-specific training and test set pair (DTr

T , D
Tr
T ).

• loss function L : Y × Y → R.

• an algorithm A :
{
DTr

}
→M maps a task’s training set to a predictive

model in the model space

• meta-learning as finding a good algorithm through optimization:

Â ∈ arg min
A∈A

T∑
t=1

1

|DTe
t |

∑
(xTe,yTe)∈DTe

t

L(A(DTr
t )︸ ︷︷ ︸

a model

(xTe)

︸ ︷︷ ︸
a prediction

, yTe).
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Going probabilistic

Â ∈ arg min
A∈A

T∑
t=1

1

|DTe
t |

∑
(xTe,yTe)∈DTe

t

L(A(DTr
t )︸ ︷︷ ︸

a model

(xTe)

︸ ︷︷ ︸
a prediction

, yTe).

Potential Problems: When |DTr
t | is small, algorithm A only produces one

model estimate despite a high level of uncertainty in many possible model
explanations for the training data DTr

t .

Solution:
Make A a stochastic algorithm: given a training set DTr, A returns models
sampled from a distribution over the model space M.

Now this sounds like running a posterior inference:
sample models conditioned on the observations (DTr)!

3 / 7



Probabilistic setup

Probabilistic setup [1]
parameterized model class M =

{
mφ : φ ∈ Φ

}
• First, for each task t, sample the true task model parameter φt from a prior

distribution p(·; θ)
• Then, generate the task specific training DTr

t and test set DTe
t by sampling

inputs from a distribution over X and labelling them with model mφt

This is a latent variable problem because the underlying model φt is never
observed. We want to infer φt.

Naive Goal: find p(φt|DTr
t ) for each t through variational inference

• too many tasks to be scalable

• cannot use for a new task

Useful Goal: by amortized variational inference, find a parameterized function
mapping from a task’s training set DTr to the task’s approximate posterior
distribution p(φ|DTr) (very similar to what the stochastic algorithm A
mentioned before)
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Examples of Amortized VI approaches

• parametric approximate posterior distribution [2]
• let the approximate posterior distributions be chosen from the class of

Gaussian distributions
• find the amortized posterior mapping function f : {DTr} → PΦ through

optimizing ELBO

max
f

T∑
t=1

[
Eφ∼f(DTr) log p(D

Te
t , D

Tr
t |φ)]−KL(f(D

Tr
t ) ‖ p(·; θ))

]
• nonparametric approximate posterior distribution [3]

• Use n-step Stein Variational Gradient Descent (SVGD)[4] with kernel
function k : Φ× Φ→ R to produce samples from the posterior distribution

conditioned on DTr
t

• initialize M particles {ψ(0)
m }Mm=1 ⊂ Φ in the parameter space

• run SVGD for n steps:

ψ
(i+1)
m ← ψ

(i)
m + εi

 1

M

M∑
j=1

k(ψ
(i)
j , ψ

(i)
m )∇φtp(φt = ψ

(i)
j |D

Tr
t ) +∇

ψ
(i)
j

k(ψ
(i)
j , ψ

(i)
m )

 , ∀m ∈ [M ]

• no parametric form for the approximate posterior (directly produces samples
from it)

• learn the particle initializations {ψ(0)
m }

M
m=1 through a novel Chaser loss

5 / 7



Benefits gained
• the posterior distribution gives us uncertainty estimation

• allows us to conduct better active learning
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Introduction and Motivation

I Neural networks can display unpredictable behavior, which is
problematic in safety-critical applications.
I Lack of adversarial robustness
I Inability to verify requirements

I SMT techniques are used to solve these challenges, but they:
I do not scale well
I often require approximations or highly restrictive assumptions
I do not support non-linear arithmetic (e.g. sigmoid activations)

I Many approaches to improve performance are being explored
[1] [3] [4] [5] [6].

I Tree based models, such as random forests, are also applied in
safety-critical applications, but their formal verification is less
studied.

I Trees and voting-based tree ensembles can be represented with
SAT only.



Reluplex: An Efficient SMT Solver for Verifying Deep
Neural Networks [6]

Extends the simplex algorithm to support the non-convex ReLUs.

Key results:
I Reluplex is much faster than vanillia SMT for verifying DNNs
I Reluplex is sound and complete

(others are not, or assume strong conditions)
I Reluplex guarantees termination
I Verifying properties of DNNs with ReLUs is NP-Complete



Reluplex Experiments on ACAS-Xu
ACAS-Xu: Aircraft Collision Avoidance System (unmanned).
∼ 2GB lookup table obtained by solving MDP on a discrete space.

7 inputs:

I distance to intruder
I angle to intruder
I heading of intruder
I ownship speed

I intruder speed

I time until loss of vertical
separation

I previous advisory

5 outputs:
I clear of conflict
I weak right
I strong right
I weak left
I strong left



Reluplex Experiments on ACAS-Xu

Lookup table (2GB) is too large; compress with neural networks.

45 networks, 6 hidden layers & 300 ReLU each, ∼ 3MB.
Use Reluplex to verify or find counterexamples to:
I several policy design specifications

e.g. "If the intruder is directly ahead and is moving towards the ownship,
the score for COC will not be minimal."

I pointwise adversarial robustness
NN is δ-locally-robust at x iff ∀x′, ‖x− x′‖∞ ≤ δ =⇒ same prediction.



Verification of Tree-based Models

Discrete decision logic means we can use SAT instead of SMT to
accomplish the same verification tasks. This is much more scalable
than SMT.

Because trees are less prone to unpredictable behavior, their formal
verification is understudied; however, verification and adversarial
example generation are often desirable [2].

We offer a SAT framework for verifying tree-based models.
Currently, only vote-based ensembles are supported.

MAX-SAT offers additional capabilities.



Repeating the Reluplex Experiments with Trees and SAT

Case study: ACAS-Xu experiments for Reluplex neural net (3MB),
tree classifier (8MB), and tree regressor (34MB, WIP).

Time in seconds to verify ten properties:
Source Prop. 1 Prop. 2 Prop. 3 Prop. 4 Prop. 5

Reluplex TIMEOUT 82882 28156 12475 19355
Tree, classifier N/A N/A 0.0003 0.9423 4.015

Source Prop. 6 Prop. 7 Prop. 8 Prop. 9 Prop. 10
Reluplex 180288 TIMEOUT 40102 99634 19944

Tree, classifier 4.447 3.399 4.060 4.455 0.0002

Time to find or disprove adversarial example (5 trials, δ = 0.1):

Source min median max
Reluplex 2 863 14560

Tree, classifier 3.523 3.701 3.863



Conclusions
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Unsupervised Domain Adaptation

Amazon DSLR

Webcam

Problem: Build robust models using source data for 
mismatched source (labeled) and target (unlabeled) 

distributions.



Unsupervised Domain Adaptation

How do we achieve this?

Learn models in a domain-invariant feature space 

using geodesic flow kernel (GFK) and source 

dataset landmarks (most useful instances)



Geodesic Flow Kernel (GFK)

PS, PT : Basis of PCA subspaces for source and target datasets DS, DT respectively

ɸ(0) = PS and ɸ(1) = PT 

Z∞ = {ɸ(t)Tx : t ∈[0, 1]}

〈Zi
∞, Zj

∞〉= ∫0
1 (ɸ(t)Txi)

T(ɸ(t)Txj)dt = xi
TGxj

GFK G can be used to extract domain-invariant 

feature space!
Gong, B., Shi, Y., Sha, F., and Grauman, K. "Geodesic flow kernel for unsupervised domain adaptation." In CVPR, 2012



MMD-based Domain Adaptation

Three-step approach

1) Selection of source dataset landmarks using weighted 

MMD for different bandwidths (scaling factors)

2) Constructing the auxiliary tasks by moving landmarks from 

source to target dataset

3) Learning final class-discriminative optimized kernel from all 

auxiliary GFKs and landmarks (for different scaling factors).



MMD-based Domain Adaptation

Step1: Selection of source-domain landmark instances

● Learn source domain weights using weighted MMD.

MMD(DS, DT) = || 1/N ∑n𝝫(xn) - 1/M ∑m𝝫(xm) ||2𝓗
Optimal W = argminWWTKSSW - 2/M WTKST 

K(xi, xj) = exp(-(xi-xj)
TG(xi-xj)/𝝈

2
q)

● For each scaling factor 𝝈q, landmarks Lq are chosen to be 

high-weighted instances.



MMD-based Domain Adaptation

Step2: Constructing the auxiliary tasks by moving 

landmarks from source to target dataset

- For each scaling factor 𝝈q, learn GFK Gq using new pair of 

datasets

DSq = DS \ Lq and DTq = DT ⋃ Lq

KL(PS(X)||PTq(X)) ≤ KL(PS(X)||PT(X))



MMD-based Domain Adaptation

Step3: Learning final class-discriminative optimized kernel

- Learn convex combination of all kernels Gq

- Final kernel, F = ∑qwqGq s.t. ∑qwq = 1 and wq ≥ 0

- Use Lq labels to optimize learning of wq by minimizing 

prediction error on landmarks.



Experimental Results on Image Classification 
Datasets

Model A->W W->A D->W W->D A->D D->A
No adaptation 58.52 44.96 82.28 92.39 65.82 40.84

GFK 66.36 54.46 92.21 95.29 72.31 56
GFK+Landmarks 66.72 54.36 92.52 95.59 72.51 55.74

Classification metrics (F1Macro in %) reported for source -> target dataset pairs.
A: Amazon, W: Webcam and D: DSLR

Receiver Operating Characteristic (ROC) plot for 
laptop_computer class for A->W pair



Thank You!



From Gradient Tree 
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Gradient Tree Boosting

T is the # of leaf nodes for the tree. 
w is the leaf node values for the tree.  

● A tree based additive model that learns the residual produced from the previous base 
learner.    

● More concisely, 

Where, 

Learns Learns Learns 



● Loss function: 

Rule Of Leaf Splitting  
● XGBoost uses the first and the second order loss gradient before and after a leaf node split to 

evaluate the quality of the split. 
● The larger the evaluation Lsplit, the better the split is.   

● 𝞬 regulates # of leaf nodes. 𝝺 regulates the values of leaf nodes. 
● The gi and the hi are the 1st and the 2nd order loss gradients, resulting from the 2nd Taylor series 

approximation of the loss function.     

Note: gi and hi are constant since yi and
are all known. 



● Exact Greedy Algorithm for Split Finding
Calculate Lspit for each possible split of the given training sets. Then choose the argmax.
Not efficient and not suitable for distributed settings

● Approximation using the weighted quantile sketch

Split Finding Algorithm   

Sorted data points:

Try all possible splits
(Exact)

Only propose quantile splits
(Approximate)

● “weighted”

Weighted squared loss (weights are hi’s)

⅓ quantile splits
(unweighted)

⅓ quantile splits
(weighted)



Dataset: Supply chain demand data from our funding source
Experiments  

Base case: XGBoost (n_est = 30, max_dept = 6, reg_lambda = 1.0)
Condition Train MAE Test MAE Comment

Base 24.12 126.87 OPT

n_est=10 54.28 129.74 underfitting

n_est=60 12.57 127.42 overfitting

max_dept=5 35.96 130.94 Structure too coarse

max_dept=7 15.23 145.11 Structure too fine

Lambda=0.0 20.28 149.59 No regu

lambda=2.0 27.65 131.58 Over-regu

Features
(eg. customer sales, 
social sentiment... 

in total ~100)

Customer 
demands (scalar)



Double Descent in 
High-Dimensional 

Least-Squares 
(10-716 S20 Final Project)

Neil Xu



The classical bias-variance tradeoff



The classical bias-variance tradeoff



Deep learning does not adhere to the tradeoff

Fully connected 2 layer neural network on MNIST classification



Double descent



“Surprises in High-Dimensional Ridgeless Least 
Squares Interpolation”

Trevor Hastie (Stanford),  Andrea Montanari (Stanford), Saharon Rosset (Tel 
Aviv), Ryan J. Tibshirani (CMU)

Main contributions:

1. For high-dimensional least-squares regression, in the overparameterized 
regime (# of features > # of examples) the risk can have a global minimum.

2. This holds true in a nonlinear model as well i.e. when the features are 
generated by a two layer NN w/ random weights.



(signal-to-noise ratio)

Misspecification: only a subset of features 
are observed



Thanks!
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Traditional RL: Markov Decision Processes (MDPs)

2

State: s ∈ S
            (true location of robot, crocs, goal)

Actions: a ∈ A
    a ∈  (let, right, up, down)

Transition:
T(s, a, s’) = Pr(s’ | s, a) 

Reward: R(s, a):  +100 for reaching goal
                                      -100 for reaching croc

Policy:  π: S → A

*figures adapted from Lee Wee Sun, National University of Singapore



Traditional RL: Markov Decision Processes (MDPs)

3

Policy:  π: S → A  ?? ◎ Real autonomous agents seldom have 
access to the true state of the world. They 
need to make decisions based on partial 
observations.

◎ Partially Observable Markov Decision 
Processes (POMDPs) provide a nice 
framework that models observations of 
states, and policies as functions of 
observations.

State: s ∈ S
            (true location of robot, crocs, goal)

*figures adapted from Lee Wee Sun, National University of Singapore



Traditional RL: Markov Decision Processes (MDPs)

4

Observations: o ∈ Ω
      O(o, a, s’) = Pr (o|a, s’)

Policy:  π (o1,  …, ot) = a

State: s ∈ S
            (true location of robot, crocs, goal)

*figures adapted from Lee Wee Sun, National University of Singapore



Contributions

5

● Survey theoretical results and important proofs in POMDPs.

● Survey methods (exact and approximate) to solve POMDPs.

● Run experiments using state-of-the-art POMDP solvers on 
benchmark POMDP environments.



● POMDPs are much harder to solve them MDPs
[Papadimitriou & Tsitsiklis, 1987]
○ MDPs are known to be solvable in P, whereas POMDPs are PSPACE-complete.

Even less likely to be solved in poly-time than NP-complete problems.

● POMDPs are converted to belief MDPs to be solved optimally.
[Smallwood & Sondik, 1971]

6

Key Theoretical Results on POMDPs



Belief = probability distribution over states
● Belief is a sufficient statistic of the history of observations.

[Smallwood & Sondik, 1971]  Policy:  π : (b) = a where  b ∈ 𝒫 (S)

● Belief can be computed 
via Bayesian Estimation

● Even for finite {states, actions, observations}, belief space is uncountably infinite! How 
do we represent π : 𝒫 (S) → A ?

7

POMDP → Belief MDP

*figures adapted from Lee Wee Sun, National University of Singapore



● Represent belief policies as upper envelope of finite set of linear functions.

8

First exact algorithm to solve POMDPs

● Value iteration under this representation 
can exactly solve small POMDPs, but the 
number of alpha vectors grows 
exponentially!

[Sondik, 1978]

*figures adapted from Lee Wee Sun, National University of Singapore



● Remove alpha vectors that don’t form upper envelope for reachable beliefs
■ PBVI [Pineau, Gordon, Thrun, 2003]
■ HSVI [Smith &  Simmons, 2004]
■ Perseus [Spaan, Vlassis, 2005]
■ SARSOP [Kurniawati, Hsu, Lee, 2008]

9

Offline Approximation: Point-Based Methods

*figures adapted from Lee Wee Sun, National University of Singapore

● Theoretical results
○ Point-based VI gets sufficiently close to optimal value when 

sampling done over entire reachable belief space.
[Pineau, Gordon, Thrun, 2006]

○ POMDPs can be efficiently approximated when reachable 
belief space is small. [Hsu, Lee, Nan, 2007].



● POMCP: Monte-Carlo Planning in Large POMDPs [Silver, Veness, 2010]

10

Online Approximation: Monte-Carlo Methods

◎ Applies Monte-Carlo Tree Search (MCTS), where each node 
represents a history of past observations instead of state.

◎ Each node also stores visitation counts & value estimates.
◎ UCB1 is used to decide which action to take at each node, 

trading off exploration and exploitation.

◎ Only requires a black-box simulator of the environment. A 
particle filter is used to represent beliefs for each history. 
Particles (states) are sampled from the belief to perform 
simulation.

◎ Works very well in practice, often outperforming offline 
methods!



Tiger

11



Tiger

12



Results: Tiger

13

Average Cumulative Discounted Reward
(4 trials, 30 steps of policy)

SARSOP 16.81

QMDP 25.53

POMCPOW 
(extension of 

POMCP)
21.92



Results: 5x5 RockSample

Final 
Discounted 

Reward
Time Beliefs

SARSOP 33.772 0.07 69

14



Thanks!
Any questions?

15



Enhance the Bandgap Classifier 
for Organic Molecular Crystals 
with Batch Mode Active Learning

Bo Lei
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Xingyu Liu
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Science and Engineering



Problem

1

§ Band gap is an essential electronic property of organic 
semiconductors, those with relative smaller band gap 
(<1.5 eV) are preferred. However, obtaining this value 
is expensive. 

§ In order to limit the cost of calculating band gaps, 
training a band gap classifier using crystal structure 
information is getting popular. 



Problem

1

§ No sufficient training data with preferred class of small-gap materials. Less 
than 5% of dataset are target class. 

§ In order to improve the accuracy of band gap classifier, and efficiently utilize 
the computing resources, batch-mode active learning is implemented.



Batch-Mode Active Learning
§ Active learning is a method used to select the next unlabeled data to 

annotate, so that a better-performed model can be achieved more 
efficiently and economically.

§ However, single target selection is not practical as parallel annotation 
can be performed. 

§ Batch-mode active learning is proposed based on active learning to 
maximize the rate of model improvement. 



Batch-Mode Active Learning

§ Diversity and density measure
§ Uncertainty reduction with 

Fisher Information Matrix
§ Maximization of discriminative 

classification performance

Pool of Unannotated 
Structures U

Annotated 
Structures A

Active Learner

Band Gap 
Calculator

I. LearnII. Query K Structures S

III. Annotation/Calculation

IV. Deposit



Diversity and density measure
§ General Idea: maximize the difference between annotated structures and next 

batch of unlabeled structures



Uncertainty reduction with Fisher Information Matrix
§ General Idea: Search for a set of examples which can most efficiently reduce Fisher 

Information. Use Fisher information matrix to represents the uncertainty of a maximum
likelihood estimation.

§ In logistic regression settings:
§ Require efficient algorithm for

set search

§ The set of examples that can most efficiently reduce the uncertainty of classification 
model is found by minimizing the ratio between the two Fisher information matrices 



Maximization of discriminative classification performance
§ General Idea: Formulate active learning as an optimization problem. Maximize the log 

likelihood of labeled instances and minimize the uncertainty of unlabeled instances. Use
entropy to represent uncertainty.

§ Since label of S is unavailable, use the best f(S) score S can achieve over all possible label 
configurations yS. 

§ In practice, transfer to a linear programming problem and use optimization techniques. 



Thank You



Zejie Ai, Max Chen

SGD Variants: 
How are they better?



Agenda
● Vanilla SGD

● Limitations of Vanilla SGD

● SGD with Momentum

● Elastic Averaging SGD

● Evolutionary SGD



Vanilla SGD
● Performs a parameter update for each training example 

● SGD does away with the redundancy problem that Batch Gradient 

Descent (GD) suffers from

● Thus SGD is usually much faster than Batch GD and works well in the 

online setting



Limitations of Vanilla SGD
● SGD performs frequent updates with a high variance that might cause the 

loss function to fluctuate heavily 

● SGD has trouble navigating ravines, which are common around local 

optima

● SGD can be slow when the dataset gets large

● SGD may not be suitable for complex optimization problems 

○ e.g. non-linear, non-convex, non-smooth



SGD with Momentum
● Include a momentum term when updating the parameters

● The momentum term has a nice physical interpretation

● Under a similarity transformation, the system now simplifies to



● The Vanilla SGD update rule is a special case when setting m = 0. Then the 

solution is                               ,              

● In the general case, when m ≠ 0, the solution becomes                                         

as λi,{1,2}=                            

● The speed of convergence of the system is determined by the magnitude of 
the real parts of the eigenvalues λi’s

SGD with Momentum



Momentum Helps
Theorem: For positive m, μ and ki ,the inequality |Re (λi,1)| > |Re (λi,0)| holds, if 

and only if                   . Therefore the momentum term improves the rate of 

convergence.

The proof deals with ki’s by three cases: (0, µ2 / 4m], (µ2 / 4m, µ2 / 2m) and [µ2 / 
2m, +∞). 



Elastic Averaging SGD (EASGD)
● Vanilla SGD can be slow when the dataset gets large.

● Running SGD asynchronously is faster, but suboptimal communication 

between workers can lead to poor convergence.

● EASGD links the parameters of the workers of asynchronous SGD with a 

center variable stored by the parameter server, allowing more exploration 

in the parameter space.

○ This center variable is used as an anchor when updating the local models.



● Optimization Problem:

● Update Rule:

Elastic Averaging SGD (EASGD)
Center Variable



Distributed stochastic optimization for deep learning (thesis) - Scientific Figure on ResearchGate. 
https://www.researchgate.net/figure/The-big-picture-of-EASGD_fig1_302588432



Evolutionary SGD (ESGD)
● Combining gradient-free evolutionary algorithms (EAs) and SGD helps 

optimization on large, distributed networks.

○ EA are population-based so computation is intrinsically parallel.

● ESGD uses a model back-off and elitist strategy.

○ theoretical guarantee that the best model in the population will never 

degrade.



Evolutionary SGD (ESGD)
● Given a population of randomly initialized parameter vectors, ESGD 

searches for the ones which give the lowest empirical risks.

● The best offsprings are selected through m-elitist average fitness. 
○ the average fitness of the best       individuals from ranking them in ascending 

order



SGD
back-off

EA
m-elitist



Thanks!



Dimensionality 
Reduction

Jiaxian Sheng, Ye Yuan



Why Dimensionality Reduction
- Curse of dimensionality

- Understanding your data

- Visualization



Methods 



Components/ Factor Based
Algorithms Data Objective Need label Time complexity

PCA Linear subspace Minimize reconstruction error, 
maximize variance

No O(ND2+D3)

Kernel PCA Linear after projection Minimize error, maximize 
variance in projection space

No

LLE Non-linear Preserve local geometry No O(Dlog(k)Nlog(N) + 
DNk3 + DN2)

Independent 
Component 
Analysis

Each is mixture of 
independent components

Maximize projections' statistical 
independence

No O(D(D+1)NT)

LDA Multivariate normality, 
homoscedasticity, 
multicollinearity, 
independence

Find a linear combination of 
features that characterizes or 
separates two or more classes 
of objects or events

Yes max(O(ND2), O(D3))



Projection Based
Algorithms Data Objective Need label Time complexity

MDS Nonlinear Between-object distances are 
preserved as well as possible

No Classical MDS: 
O(N3) per step

Isomap Nonlinear, manifold Estimate the intrinsic 
geometry of a data manifold 
based on an estimate of 
neighbors

No O[Dlog(k)Nlog(N)] + 
O[N2(k+log(N))] + 
O(DN2)

t-SNE Nonlinear Similar objects are modeled 
by nearby points

No O(DN2)



Experiments
● MNIST(60,000 x 784), Fashion MNIST (60,000 x 784)
● Leukemia (72 x 7128)
● Metrics:

○ Trustworthiness & Continuity

○ Residual Variance
○ Classification Error Rate
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Problem Formulation

Best Arm Identification problem

Learner outputs arm Jn after n rounds
Minimize e(n) := P(Jn 6= k∗)

Adversarial Rewards (ADV)

Adversary chooses reward matrix g ∈ RK×n

Best arm k∗g = arg maxk∈[K ]

∑n
i=1 gk,i

Stochastic Rewards (STO)

Rewards sampled w/ mean vector µ ∈ RK

Best arm k∗µ = arg maxk∈[K ] µk

Best of Both Worlds (BOB)

Can a learner achieve optimal rates in both worlds?

Saket Dingliwal, Divyansh Pareek Carnegie Mellon University
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Theorem (Upper Bound for Adversarial Rewards)

Uniform Learner (Rule) [Abbasi-Yadkori et al., 2018] for all n,
given rewards g, outputs an arm with error

eADV (g)(n) ≤ K · exp

(
− 3n

28HUNIF (g)

)
Theorem (Upper Bound for Stochastic Rewards)

Sequential Halving [Karnin et al., 2013] for all n, for any stochastic
reward generating process µ, outputs an arm with error

eSTO(µ)(n) ≤ 3 logK · exp

(
− n

8HSR(µ) · logK

)

Saket Dingliwal, Divyansh Pareek Carnegie Mellon University
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Adversary easily fool Sequential Halving: choosing high
rewards for arm rejected in early phase : Should not Reject!

Pulling uniformly perform poorly in Stochastic: incur a large
variance of reward estimates of order K : Reduce Variance!

Theorem (Lower bound for BOB setting)

For any learner, if there exists a stochastic problem STO(µ), such
that for any reasonable n probability of error is upper bounded by

eSTO(µ)(n) ≤ 1

64
exp(− 2048n

HBOB(µ)
)

then there exists an adversarial problem g, that makes the learner
suffer a constant error ie eADV (g)(n) ≥ 1/16

Saket Dingliwal, Divyansh Pareek Carnegie Mellon University
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P1 algorithm: parameter free algorithm
Sort and rank arms at each step based on the estimate G̃·,t−1 in

descending order, where G̃k,t =
∑t

t′=1

g
k,t

′

p
k,t

′
1(It′ = k)

Pull arm with rank k with probability 1
k logK

, ∀k ∈ [K ]

Theorem (Upper Bound for P1)

For any stochastic problem STO(µ), for any adversarial problem
ADV (g), the probability of error of P1 in respective environments

eSTO(µ)(n) ≤ 2K 3n · exp(− n

128HP1(µ)
)

eADV (g)(n) ≤ K · exp

(
− 3n

40log(K )HUNIF (g)

)
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Experiments

Saket Dingliwal, Divyansh Pareek Carnegie Mellon University
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Motivation

● Statistical learning works well when the training and testing samples 

come from the same distribution.

● However, it is often the case that the distribution we sample from 

during training and testing are different. 

e.g. spam filtering, sentiment analysis.

● So it is important that 

1) We understand the behavior of our source-trained models on the 

target domain.

2) We develop methods that can do well on target domain when 

most of the data is from the source. 



Formal Setup

● Classification Task

● Input X from some domain D

● Output Y related to X by label function f

● A domain is the pair <D,f>

● Domain changes from training to testing

Source <DS,fS> to Target <DT,fT>

● Two questions:

○ When do source-trained classifiers perform well on target?

○ How do we mix source and target training to minimize target error?
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Empirical Results [from the paper]
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Setup

High level goal - learn a predictor that generalized to unseen
environments.

Assume that the data generating causal process remains the same. As
an example, consider the following:

X1 ← Gaussian(0, σ2),

Y ← X1 + Gaussian(0, σ2),

X2 ← Y + Gaussian(0, 1).

Multiple environments are generated by intervening on different
subsets of variables (say X1 in one and X2 in another).

Using data from from several environments, generalize to unseen all
unseen environments.

Amrit Singhal (amritsin)Shantanu Gupta (shantang)10-716 Project Invariant Risk Minimization (IRM) Spring 2020 2 / 9



The IRM Objective

Invariant Predictor - one that ignores spurious correlations across
environments.

Let Φ : X → H be a data representation. A classifer w : H → Y is
invariant if w ∈ arg minw̃ Re(w̃ ◦ Φ)∀e ∈ E .

This can be phrased as the following constrained optimization
problem (also known as IRM):

min
Φ,w

∑
e∈Etr

Re(w ◦ Φ)

subject to w ∈ arg min
w ′

Re(w ′ ◦ Φ), ∀e ∈ Etr.

Impractical to optimize the objective directly.

Amrit Singhal (amritsin)Shantanu Gupta (shantang)10-716 Project Invariant Risk Minimization (IRM) Spring 2020 3 / 9



IRMv1

A relaxation of the IRM objective (known as IRMv1) is proposed:

min
Φ

∑
e∈Etr

Re(Φ)︸ ︷︷ ︸
ERM

+λ ‖∇w |w=1.0R
e(w · Φ)‖2︸ ︷︷ ︸

invariance penalty

,

where Φ becomes the invariant predictor, w = 1.0 is a scalar fixed
dummy classifier and λ ∈ [0,∞) is a hyperparameter.

Φ can be a non-linear predictor.

The IRMv1 objective can be optimized using gradient based methods.

Amrit Singhal (amritsin)Shantanu Gupta (shantang)10-716 Project Invariant Risk Minimization (IRM) Spring 2020 4 / 9



Obtaining IRMv1

Convert the hard constraints in IRM to a penalty D(w ,Φ, e) in the
loss. This penalty should capture how well w minimizes the
environment risk.

In the case of linear classifiers w , the authors propose the penalty

Dlin(w ,Φ, e) = ‖EX e [Φ(X e)TΦ(X e)]w − EX e ,Y e [Φ(X e)TY e ]‖2

We can write the predictor w ◦ Φ = (w ◦Ψ) ◦ (Ψ−1 ◦ Φ). So, keeping
the predictor w ◦ Φ to be the same, we can fix w to any constant w̃
and perform optimisation over just Φ.

More generally, rewrite the penalty as
D(w = 1.0,Φ, e) = ‖∇w |w=1.0R

e(w .Φ)‖2.

Amrit Singhal (amritsin)Shantanu Gupta (shantang)10-716 Project Invariant Risk Minimization (IRM) Spring 2020 5 / 9



Generalisation for IRM

IRM gives us invariant predictors with low error across all training
environments. What about all environments?

We need that our training environments have ”sufficient” diversity.

For linear case, this is formalised by requiring the training
environments to be in a linear general position, which basically limits
the extent to which the training environments can be co-linear.

This constraint is not very restrictive, as the set that doesn’t satisfy
this condition has a measure zero.

Theorem

A representation Φ of rank r leads to an invariant predictor across all
training environments, lying in a linear general position of rank r , iff the
predictor is invariant across all environments.

Amrit Singhal (amritsin)Shantanu Gupta (shantang)10-716 Project Invariant Risk Minimization (IRM) Spring 2020 6 / 9



Causation as invariance

Invariance is promoted as the main feature of causation.

Show that a predictor is invariant across all unseen environment if
and only if it uses the direct causal parents of Y as input.

The other variables are responsible for spurious correlations that
hinder generalization.

Amrit Singhal (amritsin)Shantanu Gupta (shantang)10-716 Project Invariant Risk Minimization (IRM) Spring 2020 7 / 9



Experiments

MSE on Synthetic Data (Linear case)

Dataset ERM Validation IRM Validation
Fully observed 3.067 2.112

Partially observed 4.719 4.212
Heteroskedastic 3.489 3.130

In our experiments, we found that IRM did not work well with many
spurious correlations.

Accuracy on MNIST dataset

Setup Training Acc. Testing Acc.
IRM, Colored MNIST 0.7036 0.6678

ERM, colored MNIST 0.8742 0.1681

ERM, Grayscale MNIST 0.7358 0.7302

Amrit Singhal (amritsin)Shantanu Gupta (shantang)10-716 Project Invariant Risk Minimization (IRM) Spring 2020 8 / 9



Thank You

Amrit Singhal (amritsin)Shantanu Gupta (shantang)10-716 Project Invariant Risk Minimization (IRM) Spring 2020 9 / 9



Augmented
Generative
Adversarial
Networks

Augmenting Generative Adversarial Networks
through Application-Specific Knowledge

Maxwell B. Wang

MD/PhD Student



Augmented
Generative
Adversarial
Networks

GANs are great but...

GANs have seen incredible progress in generating samples
with similar statistics from a given dataset

Being CNNs, they require large datasets to train



Augmented
Generative
Adversarial
Networks

GANs are great but...

GANs have seen incredible progress in generating samples
with similar statistics from a given dataset

Being CNNs, they require large datasets to train



Augmented
Generative
Adversarial
Networks

Motivating Example
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Goal

Hypothesis

Can we improve GAN performance in the low-sample size
regime by incorporating application-specific knowledge/features
into the training process?
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Augmented GAN Architecture
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Assessment

Simulated data from a probability distribution inspired by
radiation beam physics

OpenKBP Challenge of Radiation Planning: 200 CT
images w/ marked tumors and vulnerable organs
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A-DNN: From Additive Model 

to Additive Dense Neural Network

Yuning Wu1

1Carnegie Mellon University



Background & Questions

● Most current research focus on performance of neural networks. In many cases, 
architecture of neural network is assigned (# of nodes, # of layers, etc.), and logic behind 
such assignment is unclear.

● Current neural networks are static and un-adaptive.

● Research on general additive models (GAM) has proposed a more flexible schema in 
both model structure and learning update (back-fitting).



Key Research Points

● Apply methods and philosophy of additive models to neural networks, current scope 
being dense neural net.

● Expand notion of “additive” into neural nets’ structural additivity, i.e., how to “grow” a 
neural network from void using building blocks like unit node and layer, instead of 
arbitrarily assigning or tuning for a final static structure.

● Performance and efficiency evaluation of such additive model design schema.



Research Progress

● Design and testing of proposed additive model schema.

● Theoretical 
○ Adaptation of theoretical background in GAM into the designed schema.

● Experimental
○ Classical regression scenarios.
○ AutoML experiments.



Thank you.
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Optimal decision making of inspection and maintenance in networkLin

Assumptions:

A networked system composed of 
binary components.

𝑃𝑖 is the probability of 
malfunctioning component 𝑖;

The system’s state is also binary:             
it works only if there is an intact 
path from origin to sink.

𝑃𝑠 is the system’s failure probability.

Exploration of networked systems

Management of transportation and 
energy networks can be improved by
placing sensors and installing 
monitoring systems.

2

O S

𝑠𝑖 = ቊ
0 if work.
1 if not work.

, 𝑃𝑖 = ℙ 𝑠𝑖 = 0

Question: Identify metric 𝑀 so that 
𝑀𝑖 > 𝑀𝑗 if it is more appropriate 

inspecting component 𝑗.



Optimal decision making of inspection and maintenance in networkLin

Methods:

1. Partially Observable Markov 
Decision Process model

2. Bayesian prior-posterior analysis 
based on Knowledge Gradient

Exploration of networked systems

3

O S
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Partially Observable Markov Decision Process model

4

Belief transition for 𝑐1

𝑠𝑡+1
inspection repair deteriorate

…

episode t episode t+1

𝐴𝑡
𝐼 𝐴𝑡

𝑅

𝑠𝑡
′′𝑠𝑡

′𝑠𝑡

0 1

1

𝑐1

𝑐2

Failure probability of 𝑐1

Fa
ilu

re
 p

ro
b

ab
ili

ty
 o

f 

𝑠𝑡

original belief 𝑐1 damaged
𝑐1 intact
(or repaired)

deteriorate under doing nothing

Belief on system’s state: 
𝑏𝑡 𝑠𝑡 = 𝑃 𝑠𝑡

𝑏𝑡 𝑏𝑡
′𝑏𝑡

′

𝑏𝑡+1
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Belief Markov Decision Process model

5

Value functions:

𝑉(𝑏𝑡) is the value at the beginning of each 
step, before inspection;

𝑊(𝑏𝑡
′) is the value of the state 𝑠𝑡

′ after 
inspection and before repairing.

Bellman Equations:

𝑊 𝑏𝑡
′ = min

𝐴𝑡
𝑅
[𝐶 𝐴𝑡

𝑅 + 𝛾 𝑉(𝑏𝑡+1)]

𝑉 𝑏𝑡+1 = min
𝐴𝑡
𝐼
𝔼 𝑊(𝑏𝑡+1

′ )

estimation via SARSOP method.

𝑉(𝑏𝑡) 𝑊(𝑏𝑡
′)

𝑠𝑡+1
inspection repair deteriorate

…

episode t episode t+1

𝐴𝑡
𝐼 𝐴𝑡

𝑅

𝑠𝑡
′′𝑠𝑡

′𝑠𝑡

𝑉(𝑏𝑡+1)

𝑐1

𝑐2
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Successive Approximation of the Reachable Space under 
Optimal Policies: SARSOP

• SARSOP was first introduced to solve robotic tasks: navigation, grasping, target 
tracking, etc.

• Key idea is to sample a representative set of points from the belief space and use it 

as an approximate representation of the space.

SARSOP iterates over main functions:

1. SAMPLE

2. BACKUP

3. PRUNE

6

Kurniawati, H., Hsu, D. and Lee, W.S., 2008, June. Sarsop: Efficient 
point-based pomdp planning by approximating optimally reachable 
belief spaces. In Robotics: Science and systems (Vol. 2008).
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Successive Approximation of the Reachable Space under 
Optimal Policies: SARSOP

7

Kurniawati, H., Hsu, D. and Lee, W.S., 2008, June. Sarsop: Efficient 
point-based pomdp planning by approximating optimally reachable 
belief spaces. In Robotics: Science and systems (Vol. 2008).

𝑐1

𝑐2

Ratio between the costs CF/𝐶𝑅𝑖 = 5

Deterioration rate 𝛿1 = 𝛿2 = 1%
Inspection type 1 and type 2 error rate are both 0.01

INSPECT 𝑐1

INSPECT 𝑐2

Inspect the more 
vulnerable component

Inspect the more 
reliable component
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Bayesian prior-posterior analysis with Knowledge 
Gradient Method

8

Basic principle:
Assume you can make only one measurement, after which you have to 
make a final choice (the implementation decision).

What choice would you make now to maximize the expected value of the 
implementation decision?

1 2 3 4 5








Change in estimate 

of value of option 

5 due to 

measurement.  

Change which produces a 

change in the decision.

 , 1max ( , ( )) max ( , )KG n n n

x y yE F y K x F y K += −

Powell, W.B. and Ryzhov, I.O., 
2012. Optimal learning (Vol. 841). 
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Bayesian prior-posterior analysis with Knowledge 
Gradient Method

Assume that all components have a Bayesian prior as: 𝑝𝑖 ∼ 𝐵𝑒𝑡𝑎(𝛼𝑖
0, 𝛽𝑖

0)

At state 𝑠𝑛 = (𝛼𝑛, 𝛽𝑛), the true failure probability 𝑝𝑖 ∼ 𝐵𝑒𝑡𝑎(𝛼𝑖
𝑛, 𝛽𝑖

𝑛)

The inspection 𝑥𝑛 gives outcome 𝑊𝑥𝑛
𝑛+1 |𝑠𝑛 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑥𝑛)

Since Beta is a conjugate prior for the Bernoulli, the posterior belief on 𝑝 𝑥𝑛 :

𝑝𝑥𝑛 | 𝑠
𝑛,𝑊𝑥𝑛

𝑛+1 ∼ 𝐵𝑒𝑡𝑎(𝛼𝑥𝑛 +𝑊𝑥𝑛
𝑛+1, 𝛽𝑥𝑛 + 1 −𝑊𝑥𝑛

𝑛+1)

Different value function form:

1. 𝑉𝑛 𝑠𝑛 = max
𝑖

𝛼𝑖

𝛼𝑖+𝛽𝑖
, which can be interpreted as to identify the most vulnerable 

component in a system. Then:

• If 𝐶𝑥𝑛
𝑛 ≤

𝛼𝑥𝑛
𝑛

𝛼𝑥𝑛
𝑛 +𝛽𝑥𝑛

𝑛 +1
or 𝐶𝑥𝑛

𝑛 ≥
𝛼𝑥𝑛
𝑛 +1

𝛼𝑥𝑛
𝑛 +𝛽𝑥𝑛

𝑛 +1
, 𝜈𝑥𝑛

𝐾𝐺,𝑛 = 0;

• If 
𝛼𝑥𝑛
𝑛

𝛼𝑥𝑛
𝑛 +𝛽𝑥𝑛

𝑛 +1
≤ 𝐶𝑥𝑛

𝑛 ≤
𝛼𝑥𝑛
𝑛

𝛼𝑥𝑛
𝑛 +𝛽𝑥𝑛

𝑛 , 𝜈𝑥𝑛
𝐾𝐺,𝑛 =

𝛽𝑥𝑛
𝑛

𝛼𝑥𝑛
𝑛 +𝛽𝑥𝑛

𝑛 (𝐶𝑥𝑛
𝑛 −

𝛼𝑥𝑛
𝑛

𝛼𝑥𝑛
𝑛 +𝛽𝑥𝑛

𝑛 +1
);

• If 
𝛼𝑥𝑛
𝑛

𝛼𝑥𝑛
𝑛 +𝛽𝑥𝑛

𝑛 ≤ 𝐶𝑥𝑛
𝑛 ≤

𝛼𝑥𝑛
𝑛 +1

𝛼𝑥𝑛
𝑛 +𝛽𝑥𝑛

𝑛 +1
, 𝜈𝑥𝑛

𝐾𝐺,𝑛 =
𝛼𝑥𝑛
𝑛

𝛼𝑥𝑛
𝑛 +𝛽𝑥𝑛

𝑛 (
𝛼𝑥𝑛
𝑛 +1

𝛼𝑥𝑛
𝑛 +𝛽𝑥𝑛

𝑛 +1
− 𝐶𝑥𝑛

𝑛 );
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Motivation

Model-based RL (MB-RL) algorithms are empirically known to be
sample efficient (Nagabandi et al.’17, Kurutach et al.’17) but their
theoretical understanding is limited.
We analyze a framework for MB-RL from Luo et al.1 that guarantees
monotonic convergence to a local maximum of the reward.

1Algorithmic Framework for Model-based Deep Reinforcement Learning with Theoretical Guarantees, Yuping
Luo and Huazhe Xu and Yuanzhi Li and Yuandong Tian and Trevor Darrell and Tengyu Ma, ICLR, 2019

30th April 2020 2 / 10



Notations and Preliminaries

We assume the standard RL set up for continuous state and action space
Value Function

V π,M(s) = E
St+1∼M(·|St ,At )

∀t≥0,At∼π(·|St)

[ ∞∑
t=0

γtR(St ,At)|S0 = s
]

where, V π,M(s) is value function at state s under the estimated
dynamical model, M is the estimated dynamical model, and Π is a
family of parameterized policies.
State distribution induced by policy

ρπ = (1− γ)
∞∑
t=0

γt · pSπt
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Challenges in Model Based RL

What loss to use for learning a dynamical model?

Existing Approach: Mean Squared Error

||M(s, a)− s ′||22

Issue: Not variant to change of representation
Proposed: Good loss for M ≈ error for predicting future rewards

|V π,M − V π,M∗|

30th April 2020 4 / 10



Plan

Upper bound the reward discrepancy and use it as a loss function

|Vπ,M − V π,M∗ | ≤ E(s,a,s′ )∼π,M∗
[
|V π,M(M(s, a))− V π,M(s ′)|︸ ︷︷ ︸

Loss function for learning M

]
Cons: Requires samples from environment M∗ to estimate loss
Pros: Invariant to state representation

Modified Discrepancy Bound Design
∀π close to πref,
|V π,M − V π,M∗ | ≤ E(s,a,s′ )∼πref,M∗

[
|V π,M(M(s, a))− V π,M(s ′)|︸ ︷︷ ︸

Discrepancy bound Dπref (M,π)

]
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Meta-Algorithm for Model-based RL

Algorithm 1: Meta-Algorithm for Model-based RL
Input: Initial policy π0. Discrepancy bound D and distance function d

for k = 0 to T do

πk+1,Mk+1 = arg max
π∈Π,M∈M

V π,M − Dπk ,δ(M, π) (1)

s.t. d(π, πk) ≤ δ
end for
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Convergence Guarantee

Theorem

Suppose that M∗ ∈M and the optimization problem in equation (1) is
solvable at each iteration. Then, Algorithm 1 produces a sequence of policies
π0, . . . , πT with monotonically increasing values:

V π0,M∗ ≤ V π1,M∗ ≤ . . . ≤ V πT ,M
∗

(2)

Moreover, as k →∞, the value V πk ,M
∗

converges to some V π̄,M∗ , where π̄
is a local maximum of V π,M∗ in domain Π.
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Empirical Results

We analyzed Stochastic Lower Bound Optimization (SLBO) algorithm
which is a practical implementation of the proposed algorithmic
framework
No Squared loss in model training is found to be crucial
SLBO achieves near-optimal reward using model-based RL with a
single model
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Empirical Results

SLBO achieves state-of-the-art performance with under 1 million
samples

Figure: Total reward on Half-cheetah for SLBO and Model-based TRPO
(MB-TRPO) plotted averaged over 3 runs for 20k steps. The dotted line is the
mean and the shaded areas indicate the variance.
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Key Takeaways

Learn dynamical model via iterative optimization of the discrepancy
bound
Proposed framework ensures monotonic convergence to a local
maximum of the reward
No use of confidence interval for uncertainty estimation. It is implicit in
the error bound.
Joint optimization of M and π extends optimism-in-face-of-uncertainty
principle to non-linear dynamic models.
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A Comparative Analysis of
Manifold Learning Algorithms

Jerry Ding
Carnegie Mellon University
Pittsburgh, April 27 2020



Manifold Learning

• Given data X such that
– In other words, the data lies on a d-dimensional manifold 

immersed in D-dimensional space
• Want to learn the manifold structure and recover Y

– At least up to a continuous & invertible change of coordinates
• Used primarily for visualization, we'll assume d = 2 or 3



Manifold Learning Algorithms

• Isomap
– Run a graph search on k-nearest neighbors to estimate 

geodesic distances between all pairs of points
• Geodesic means “shortest path lying on the manifold”

– Use MDS on distance matrix to estimate coordinates

• LLE
– Fit local linear combination of each point to k-nearest neighbors
– Reconstruct points in d-dim space to minimize the reconst. error, 

subject to zero mean and identity covariance





Round 1: Embedding Quality

• Isomap aims to find:
1. Approximation of true geodesic distance between points
2. Points in Euclidean space that minimizes the stress, i.e. 

difference between true distances and embedding's distances
• MDS finds the globally optimal solution to #2
• Even with perfect distance estimates from #1, final output 

distances may still be inaccurate due to curvature and 
topology, since the output lives in Euclidean space!



Result for Isomap
• From the paper “Graph Approximations to Geodesics on 

Embedded Manifolds” by Bernstein et al.
• If radius of curvature r0 & branch distance s0 is nonzero, and 

manifold is geodesically convex
– i.e. manifold is compact and has no “cut-out” holes

• Then the geodesic distance estimates are consistent
• Experimental tests confirm the error bounds by creating manifolds 

with specific values of r0, s0



s0 = 1.3

r0 = 0.5

Using radius=0.50, separation=1.30, scale=1.00, closed=1, 
count=10000, dims=2

**** Experiment 0 ****

** Theoretical results: **
delta must be at least 0.160974
epsilon must be between 0.643897 and 1.300000
Separation ensures lambda_1 <= 0.694985

* With the epsilon rule: *
epsilon = 1.161206 seems like a reasonable choice
The distances will be accurate within multiplicative factors 
(0.445493, 1.554507)

* With the k rule: *
k needed to be between 290 and 417
k = 348 seems like a reasonable choice
The distances will be accurate within multiplicative factors 
(0.445903, 1.689295)

** Test results: **

* With the epsilon rule: *
1.000000 dm <= ds <= 1.000601 dm
0.829387 ds <= dg <= 1.000000 ds
0.829387 dm <= dg <= 1.000403 dm

* With the k rule: *
1.000000 dm <= ds <= 1.001932 dm
0.855209 ds <= dg <= 1.000000 ds
0.855209 dm <= dg <= 1.001234 dm



Result for LLE

• From the paper “Manifold Learning: The Price of 
Normalization” by Goldberg et al.

• If the manifold has very different lengths along different 
dimensions, then a whole class of manifold learning 
algorithms (which includes LLE) will fail

• Simplest illustration: a sufficiently wide rectangle
– Failure result: algorithm favors one-dimensional output even 

though the intrinsic dimensionality is 2





Round 2: Algorithm complexity

• For Isomap, graph search cost usually dominates
– Using Dijkstra's algorithm: O(n^2 (k + log n))
– Using Floyd-Warshall's algorithm: O(n^3)

• Could be faster in practice with large k

• For LLE, cost of steps are:
– Finding nearest neighbors, O(n^2 D) when  n << 2^D

• Can be significantly less with approximate nearest neighbors alg.
– Computing local weights, O(n (D k^2 + k^3))
– Reconstruction problem, O(n^2)



A new approach

• Proposed algorithm (Jigsaw Isomap):
– Use divide & conquer alg. to partition data into tiles

•O(n log n (k + log n))
– Embed each tile + its neighbors with PCA

•O(n D), when choosing # of points per tile to be small
– For each tile, assemble neighboring tiles to form a view

•O(n m^3) with avg m tiles in view, likely cheaper due to matrix sparsity

• Avoids graph search between all pairs of points
• Visualize curvature / topology by hopping between views



Embedding view Latitude & longitude of central tile

The viewport travels in a loop around the starting red tile. The overall rotation of 
the viewport at the end is an effect of the sphere's curvature

Sphere GIF: https://www.shorturl.at/tzLM4
Plane GIF: https://www.shorturl.at/hrDQ9
Hyperbolic plane GIF: https://www.shorturl.at/tCGKO

Demo: points on a sphere



Final comparison table
Isomap LLE Jigsaw Isomap

Embedding quality Consistent distance est.
Optimal reconstruction

Fails with trivial cases Consistent distance est.

Attempt to preserve 
geodesic distances

Yes, direct No Yes, indirect

Runtime complexity Slow (super-quadratic) Fast (kNN + quadratic) Fast (kNN + sub-quadratic)

Curvature artifacts Distortion near boundary Distortion near boundary Viewport rotation

Topology artifacts Self-intersection in output Self-intersection in output Upper limit on viewport size



Thank you!



Understanding How Complex 
Models Make Predictions

Tianming Zhou (tianming), Dongshunyi Li (dongshul)



Motivation - who is most at risk for COVID-19? 

> 65 years old

Female or male

Has high blood 
pressure? 

Has mutation in some 
genes? 

Has diabetes?

... 

A complicated 
model (e.g 
DNN)

High risk or 
not

How do we know which feature contributing most to high risk? 



Related methods 
● LIME (Ribeiro et al. 2016) 
● DeepLIFT (Shrikumar et al, 2016; 2017)
● Layer-Wise Relevance Propagation 
● SHAP (Lundberg & Lee, 2017)



SHAP as a unified framework 
● Local methods: explain a prediction f on a single input x
● Each feature in x is either observed or missing

● The marginal contribution of feature i to f(x) depends on the states of other 
features, i.e., whether other features are observed/missing

● φi: The average marginal contribution of feature i after all combinations of 
other features’ states are considered

Contribution 
of feature i

Whether feature i 
is observed



Main results

● Proved the uniqueness and derived the analytical form of the Shapley 
value 
○ In the context of feature explanation
○ Expand to other interpretation 

● Implemented a SHAP algorithm adapted to multi-class tasks
● Experimentally validated the reasoning provided by Shapley value 



Uniqueness & Analytical Form
● Local accuracy: the contributions of all features sum to f(x)
● Symmetry: the contribution of feature i is independent of its feature index, i
● Strong monotonicity: if the marginal contribution of feature i to f(x) is always 

greater than that to f’(x), then feature i contributes more to f(x) to f’(x)

● The way to allocate contribution to features that satisfies the above 3 
properties is unique



Setup for the prediction task 

● Implemented a CNN model  for MNIST prediction 

● One-versus-rest auROC for any digit (>= 99.99%)



Experiment results 

● Generate super-pixels based on the original 28*28 pixels

● What super-pixels (marginally) contributing to being predict as 3?
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