
Investigating Latent Space and Conditional
Generation of Variational Autoencoder

Koyoshi Shindo and Xueying Ding

Why Conditional Generation

➢ Unconditional generation is arguably not very useful in real life: if one needs a
random image, why not just sample it from the dataset?

➢ Such approach would less likely work for conditional generation, especially
when more attributes are specified.

Challenges with Conditional Generation Using VAE

➢ Challenge 1: VAE suffers from the
trade-off between high-quality
reconstruction and realistic
samples.

➢ Challenge 2. Conditional VAE
needs to be retrained when new
attributes are specified.

➢ We can solve both challenges
with an emphasis on the latent
space of VAE.

Engel et al ‘17, https://arxiv.org/abs/1711.05772

https://arxiv.org/abs/1711.05772

Challenge 1. Trade-off between Reconstruction and Samples

manifold dimension ambient dimension VAE with 𝜅-dimension latent space

➢ If r = d, VAE can both reconstruct well and recover manifold density, no
trade-off.

➢ If r < d, VAE can reconstruct well but may not recover manifold density,
source of trade-off.

Dai et al ‘19, https://arxiv.org/abs/1903.05789

https://arxiv.org/abs/1903.05789

Challenge 1. Trade-off between Reconstruction and Samples

part of ELBO encoder variance number of low-noise latent dimension

➢ Smallest possible is .
➢ If 𝜅 > r, optimal VAE will learn r low-noise latent dimensions and fill in random

Gaussian noise for the remaining (𝜅 - r) dimensions to minimize
➢ This means the latent space of VAE does not lie on any lower

dimensional manifolds.

Dai et al ‘19, https://arxiv.org/abs/1903.05789

encoder mean

Hyperparameter of VAE

https://arxiv.org/abs/1903.05789

Challenge 1. Trade-off between Reconstruction and Samples

➢ Referred to as “2-Stage VAE”.

Dai et al ‘19, https://arxiv.org/abs/1903.05789

manifold dim = ambient dim

https://arxiv.org/abs/1903.05789

Challenge 1. Trade-off between Reconstruction and Samples

Dai et al ‘19, https://arxiv.org/abs/1903.05789

https://arxiv.org/abs/1903.05789

Challenge 1. Trade-off between Reconstruction and Samples

Dai et al ‘19, https://arxiv.org/abs/1903.05789

VAE 2-Stage VAE

https://arxiv.org/abs/1903.05789

Challenge 2. Expensive Retraining of CVAE

Engel et al ‘17, https://arxiv.org/abs/1711.05772

➢ Idea: training generative models on images is expensive, but training
generative models on latent vectors is not as expensive.

https://arxiv.org/abs/1711.05772

Challenge 2. Expensive Retraining of CVAE

Engel et al ‘17, https://arxiv.org/abs/1711.05772

➢ Train a CGAN on latent vectors z
separately.

➢ Use 96✕ ~ 2884✕ fewer
FLOPs/iteration with equally good
performance.

CGAN

Not necessary, 2-Stage
VAE solves this issue

https://arxiv.org/abs/1711.05772

Challenge 2. Expensive Retraining of CVAE

Engel et al ‘17, https://arxiv.org/abs/1711.05772

https://arxiv.org/abs/1711.05772

Final Model Architecture

Dai et al ‘19, https://arxiv.org/abs/1903.05789 ; Engel et al ‘17, https://arxiv.org/abs/1711.05772

➢ Challenge 1: Trade-off between reconstruction and samples
➢ Challenge 2: Expensive retraining of CVAE

https://arxiv.org/abs/1903.05789
https://arxiv.org/abs/1711.05772

Thank you

Differentiable SAT Solver
Haoping Bai and Jianing Yang

Motivation: Deep Learning + Logical Inference

Traditional SAT problem Differentiable SAT problemSolved by SAT algorithms

Solved by Deep Learning classifiers

Problem Definition

● SAT:

● Max SAT:

The above may NOT be satisfiable
-> Find the configuration of variables such that max # of clauses turn to be True.

Configuration of variables:

Differentiable Continuous Relaxation

● Relax the binary variables to smooth and continuous parameterization

● Semidefinite Programing (SDP) Relaxation (Goemans-Williamson, 1995):

Satisfiability Solving as a Layer

Applications & Experiments

MNIST Sudoku (original paper)

CNN: 0%

SATNet: 63.2%

Applications & Experiments

Game Map Generation
(constraints on edges)

Constrained Shortest Path

References
● SATNet: Bridging deep learning and logical reasoning using a differentiable

satisfiability solver (https://arxiv.org/pdf/1905.12149.pdf)

https://arxiv.org/pdf/1905.12149.pdf

A modern theory of generalization for deep learning

Cinnie Hsiung Allen Zhu

1

Overparameterized networks can fit random labels

●
●

Big Idea

information content

2

Cross entropy loss

Optimal regularization

3

●
●

Generalized IB Lagrangian

4

●
●

5

transition from overfitting to underfitting

●
●

6

7

Thank you!

8

Bayesian Discovery of Pairwise Interactions in
High Dimensions

Wuwei Lin

April 28, 2020

Introduction

Learn linear regression with augmented feature space

Φ(x) = [1, x1, .., xd , x1x2, f .., xd−1xd , x
2
1 , .., x

2
d]T , x ∈ Rd

y = θTΦ(x) + ε

Bayesian learning to find θ that satisfies:
I Sparsity: ||θ||0 ≤ s

I Strong hierarchy prior: θxixj 6= 0 iff θxi 6= 0, θxj 6= 0

Bayesian Learning

Our priors can be modeled as:

τ ∼ p(τ)

σ2 ∼ p(σ2)

θ|τ ∼ N (0,Στ)

y (n)|x (n), θ, σ2 ∼ N (θTΦ(x (n)), σ2)

Estimating or sampling posterior Ep(θ|D)[f (θ)] directly is difficult
Additionally sample p(τ |D) with MCMC, which requires computing
p(D|τ, σ2): computing posterior Gaussian requires O(d2N2 + N3)
time

Re-parameterize with Gaussian Process

Our Bayesian model follows the weight-space view of Gaussian
Process

τ ∼ p(τ)

g |τ ∼ GP(0, kτ), kτ (x , x ′) = Φ(x)TΣτΦ(x ′)

σ2 ∼ p(σ2)

y (n)|x (n), g , σ2 ∼ N (g(x (n)), σ2)

Theorem 1: g(·) = θTΦ(·) in distribution
Theorem 2: For any diagonal Στ , kτ can be written as a weighted
sum of polynomial kernels of the form kpoly (x , x ′) = (xT x ′ + c)d ,
which is O(d) in time

Kernel Interaction Trick

Now we have efficient sampling of p(τ |D), we want to compute
Ep(θ|D,τ)[f (θ)]

To learn θxi , choose i-th unit vector ei = [0, 0, ..., 1, 0, 0]T

g(ei) = θxi + θx2
i

g(−ei) = −θxi + θx2
i

We can recover θxi as:

θxi =
1
2

(g(ei)− g(−ei))

We can find the top k main effects in this way, and then compute
their pairwise interactions. Total number of possible iterations is
Θ(k2), smaller than Θ(d2).

Overparameterization in
Deep Generative Models

Saurabh Garg & Tanya Marwah

April 28th 2020

TEXT
● Zhang et. al. [2017] pointed out the paradox with overparameterization in

deep neural networks
○ Reasonably large neural network can fit random labels
○ Generalization puzzle: Even though they achieve good

generalization performance

2

Introduction

TEXT
● Zhang et. al. [2017] pointed out the paradox with overparameterization in

deep neural networks
○ Reasonably large neural network can fit random labels
○ Generalization puzzle: Even though they achieve good

generalization performance

● Since then, many attempts to resolve this:
○ Neural Tangent Kernel [Jacot et. al. 2018]

3

Introduction

TEXT
● Zhang et. al. [2017] pointed out the paradox with overparameterization in

deep neural networks
○ Reasonably large neural network can fit random labels
○ Generalization puzzle: Even though they achieve good

generalization performance

● Since then, many attempts to resolve this:
○ Neural Tangent Kernel [Jacot et. al. 2018]

○ Convergence to global minima for 2-layered network [Du et. al. 2018]

○ and many more ... 4

Introduction

● How does the generalization puzzle transfer in unsupervised learning of
generative models ?

Memorization Generalization

5

Motivation: Generative Models

?

● How does the generalization puzzle transfer in unsupervised learning of
generative models ?

Memorization Generalization

6

Motivation: Generative Models

Learning a constant function Learning an identity Map

TEXT

* Zhang et. al. Identity crisis: Memorization and generalization under extreme overparameterization. arXiv preprint arXiv:1902.04698
(2019).

7

 Generalization Puzzle: Example*
Training Samples
 (Just images of 7)

TEXT

* Zhang et. al. Identity crisis: Memorization and generalization under extreme overparameterization. arXiv preprint arXiv:1902.04698
(2019).

8

 Generalization Puzzle: Example*

Inputs for testing

TEXT

* Zhang et. al. Identity crisis: Memorization and generalization under extreme overparameterization. arXiv preprint arXiv:1902.04698
(2019).

9

 Generalization Puzzle: Example*

Inputs for testing

Training CNNs with increasing depth

TEXT

* Zhang et. al. Identity crisis: Memorization and generalization under extreme overparameterization. arXiv preprint arXiv:1902.04698
(2019).

10

 Generalization Puzzle: Example*

Increasing
depth

TEXT

* Zhang et. al. Identity crisis: Memorization and generalization under extreme overparameterization. arXiv preprint arXiv:1902.04698
(2019).

11

 Generalization Puzzle: Example*

Increasing
depth

Note as we
increase depth it
fails to learn an
identity map,

instead it learns
to memorize

Benefits of Jointly Training
Autoencoders: An Improved Neural

Tangent Kernel Analysis*

*Nguyen et. al. Benefits of Jointly Training Autoencoders: An Improved Neural Tangent Kernel Analysis. arXiv preprint arXiv:1911.11983
(2019).

TEXTKey Takeaways from the Paper [find better heading]

13

 Key Takeaways

Under a linearization assumption, an Autoencoder’s reconstruction for a given input
can be written down as a linear combination of the training samples weighted by

kernel scores.

TEXTKey Takeaways from the Paper [find better heading]

14

 Key Takeaways

Under a linearization assumption, an Autoencoder’s reconstruction for a given input
can be written down as a linear combination of the training samples weighted by

kernel scores.

Study the gradient dynamics of a two layer autoencoder and obtain a bound on the
number of hidden neurons (i.e., level of over-parameterization) required to achieve
linear convergence of gradient descent, starting from random initialization, to global

optimality.

TEXT

15

Problem Setup

Two Layer Autoencoder defined as,

Where A = [a1, …, am] and W = [w1, …, wm]
and wi ~ N(0, I) and ai ~ Unif{-1,1}

TEXT

16

Problem Setup

Two Layer Autoencoder defined as,

Where A = [a1, …, am] and W = [w1, …, wm]
and wi ~ N(0, I) and ai ~ Unif{-1,1}

Loss Function: MSE

TEXT

17

Main Result 1: Inductive Bias

Under a linearization assumption, an autoencoder when trained with multiple samples
the closer the new test input x is to the span of the training data X, the more its

reconstruction concentrates around the seen points.

TEXT

18

Main Result 2: Parameter Bounds

Weak Training: Only train the encoder, # parameters should be greater than

TEXT

19

Main Result 2: Parameter Bounds

Joint Training: Only train the encoder, # parameters should be greater than

TEXT

20

Main Result 2: Parameter Bounds

Joint Training: Only train the encoder, # parameters should be greater than

A significant Improvement from the Weak Training case.

Bayesian Hyperparameter Optimization

Ruochi Zhang, Hongyu Zheng

Background / Setup

2

§ Hyperparameter tuning is usually treated as “black art” and human labor intensive.

§ Given an algorithm with tunable hyperparameters, with a fixed budget (ex. # of

attempts), find the best hyperparameter for running the algorithm

§ Prior methods (evolutionary algorithms etc) uses local / near-term information.

§ By modeling hyperparameter tuning as an exploration in a nonparametric Bayesian

setup, we can utilize global / full information from past attempts.

Approach / Analysis

3

§ Let 𝑓 be the algorithm we evaluate, and 𝑥 be a hyperparameter.

§ Gaussian process: 𝑓 𝑥 ∼ 𝐺𝑃(0, 𝑘 𝑥, 𝑥!) induces posterior 𝑓 𝑥 𝐷) ∼ 𝑁(𝜇 𝑥 , 𝜎"(𝑥))

§ Determine next attempt: maximize acquisition function

§ Expected Improvement: 𝑎 𝑥, 𝐷 = 𝔼#∼% &,(max(0, 𝑓 − 𝑓∗)

§ Confidence Upper Bound: 𝑎 𝑥, 𝐷 = 𝜇 + 𝜅𝜎 for (2-sided) confidence 2Φ 𝜅 − 1

§ Theoretical analysis based on regret minimization: instantaneous regret approaches

0 = obtains optimal solution asymptotically

Experiment 1: Branin function

4

§ A highly nonconvex function

§ argmax*,+ − 𝑓(𝑥, 𝑦)

§ 𝑥 ∈ −5,10 , 𝑦 ∈ 0,15 , 𝜎, ∼ 𝑁 0, 0.1"

§ All optimization methods can evaluate on the

function for 50 times

§ The two Bayesian method consistently

outperforms the random grid search

𝑓 𝑥, 𝑦 = 𝑦 −
5.1
4𝜋!

𝑥! +
5
𝜋
𝑥 − 6

!

+ 10 1 −
1
8𝜋

cos 𝑥 + 10 + 𝜎"

n_trial

Be
st
va
lu
es

Warm-up optimization

Experiment 2: Neural network classification on MNIST

5

§ Fit an MLP model to make classification on MNIST (1 epoch)

§ Parameters to optimize:

§ Number of hidden layers (0 - 4)

§ Number of neurons in the hidden layer (64 - 256)

§ Dropout rate (0.5 - 1.0)

§ Learning rate (0.001 – 0.1)

§ The accuracy on the test set is used as the evaluation metric

§ All optimization methods can evaluate on the function for 20 times

§ The first 10 trial (warm-up) are the same

n_trial

Be
st
va
lu
es

Warm-up optimization

Summary

6

§ We implemented two types of Bayesian optimization method (Expected
Improvement and Confidence Upper Bound)

§ We tested these two methods on two tasks: optimizing a highly non-convex function

and tuning hyperparameters for a neural network

§ We observed that the Bayesian optimization method consistently outperforms the

baseline model

Thank you!

Efficiency of Q-learning for solving Markov Decision Processes

Dhruv Malik & Vishwak Srinivasan

What is Reinforcement learning (RL)?

Reinforcement learning is the problem faced by an agent that must learn
behavior through trial-and-error interactions with a dynamic environment.

Markov Decision Processes (MDPs)

We model this problem using an MDP. An MDP consists of

I S , a set of states

I A: a set of actions that one can take at a state

I T : S ×A → {Pa(·|s) : (s, a) ∈ (S ,A)}: a transition function mapping
state-action pairs to probability distribution over next states

I R : S ×A → [0, rmax]: a reward function mapping state-action pairs to
scalar rewards

I γ < 1: a discount factor that decreases the amount of reward receives
over time

A policy π : S → A is a function that returns the action to be taken at a given
state.

Goal

In modern RL, we assume that the transition distributions and reward function
are unknown. Instead, we are only given oracle access to samples of rewards.
The goal is to find the policy π∗ that maximizes expected sum of discounted
rewards.

π∗ ∈ argmax
π

E

[
∞∑
t=0

γtR(st , π(st))
∣∣s0 = s, π(s0) = a

]
︸ ︷︷ ︸

θπ(s,a)

The function θπ(s, a) maps state-action pairs to their value under policy π is
called the Q-value function.

Classic theory on MDPs have shown that when the transition and reward
functions are known, the optimal deterministic policy can be found by
computing the fixed point of the Bellman operator B:

B(θ)(s, a) := R(s, a) + γEs′∼Pa(·|s)

[
max
a′∈A

θ(s ′, a′)

]
However, in modern RL we assume that the transitions and rewards are
unknown.

Q-learning for (Synchronous) RL

Synchronous Q-learning: at each timestep t = 1, 2, . . . and for each
state-action pair (s, a), we observe sample states s ′ drawn from the distribution
Pa(·|s), and the corresponding rewards.

The goal of Q-learning is learn the quantity θπ
∗

, which immediately gives the
optimal policy. It does so by attempting to mimic the action of the Bellman
operator B. Since the transitions and rewards are unknown, and the oracle only
gives samples of states and rewards, it uses the empirical version of the
Bellman operator, denoted as B̂.

This gives rise to the following algorithm. For a choice of stepsizes {λk}∞k=0,
the iterates {θk}k≥1 satisfy the recursion:

θk+1 = (1− λk)θk + λk B̂k(θk)

Past Work

Azar et al. [2013] show that the minimax rate in this setting requires at least

Ω
(

r2max
ε2
|S||A|
(1−γ)3 log

(
|S||A|
δ

))
≡ Ω

(
1

(1−γ)3

)
samples. However, the algorithms

that have been shown to achieve this rate are not the standard Q-learning
algorithm.

Moreover, Wainwright [2019a] shows that the classical Q-learning algorithm

cannot achieve this rate, since it can require at least Ω
(

1
(1−γ)4

)
samples. A

natural question is then whether there is a simple variant of Q-learning that
can achieve this rate.

Variance reduced Q-learning vs. Original Q-learning

To close the gap between minimax lower and upper bounds, Wainwright
[2019b] proposes a new algorithm called variance reduced Q-learning.

The key difference between these algorithms is the way in which we perform
the update:

Original Q-learning update Variance reduced Q-learning update

θk+1 = (1− λk)θk + λk B̂k(θk) θk+1 = (1− λk)θk

+λk

{
B̂k(θk)− B̂k(θ̄) + B̃N(θ̄)

}
where θ̄ is the result obtained after every M iterations and B̃k(θ) is a form of
rolling average.

One can immediately draw parallels to update made in SVRG [Johnson and
Zhang, 2013] in the form of a control variate.

References

Mohammad Gheshlaghi Azar, Rémi Munos, and Hilbert J Kappen. Minimax
pac bounds on the sample complexity of reinforcement learning with a
generative model. Machine learning, 91(3):325–349, 2013.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using
predictive variance reduction. In Advances in neural information processing
systems, pages 315–323, 2013.

Martin J. Wainwright. Stochastic approximation with cone-contractive
operators: Sharp `∞-bounds for q-learning, 2019a.

Martin J. Wainwright. Variance-reduced q-learning is minimax optimal, 2019b.

Nonparametric
Stochastic Volatility

Yan Gao
10716 Project Presentation

Bandi, Federico M., and Roberto Renò. "Nonparametric stochastic volatility." Econometric Theory 34.6 (2018): 1207-1255.

Price-Volatility System
• W: independent, standard Brownian motions; J: independent Poisson jump

processes; f: monotonically non-decreasing transformation of variance;
• Nested and generalized system. Different f and assumptions.
• Two-step work:

1. Estimate spot variance by localizing a high-frequency estimate of
integrated variance robust to the presence of price jumps.
2. Use the resulting spot variance estimates to identify the parameters in
the price-volatility system.
• The second stage requires controlling the estimation error introduced by

the first-step spot variance estimates.

Main Contribution
• Use non-parametric kernel methods to estimate the price-volatility

system’s infinitesimal moments, and then derive parameters.

Main Contribution
• Use non-parametric kernel methods to estimate the price-volatility

system’s infinitesimal moments, and then derive parameters.

Modified Bounded Domain

• where !𝜎! is a positive constant, 0 ≤ %𝜎"! ≤ !𝜎!

• For any fixed 𝜎"!, %𝜎"! is arbitrarily close to 𝜎"! for a sufficiently large !𝜎!

• The modified process has a bounded domain and can be made
arbitrarily close to the original system by letting σ2 be sufficiently large.

Moments and Parameters Estimates
• Moments 𝜃#$!",&(𝑥) of the bounded process %𝜎"! (for a sufficiently

large !𝜎!)
• When

Simulation
• S&P500, 1,000 replications, 5,000 days, mimicking 10-second

observations sampled over a 1-hour time interval; Epanechnikov
kernel for all infinitesimal moments;

Eraker, B., M. Johannes, & N. Polson (2003) The impact of jumps in volatility and returns. Journal of Finance 58, 1269–1300.

Reference
• Bandi, Federico M., and Roberto Renò. "Nonparametric stochastic volatility." Econometric

Theory 34.6 (2018): 1207-1255.
• Federico M Bandi and Thong H Nguyen. On the functional estimation of jump–diffusion

models. Journal of Econometrics, 116(1-2):293–328, 2003.
• Michael Johannes. The statistical and economic role of jumps in continuous-time interest

rate models. The Journal of Finance, 59(1):227–260, 2004.
• Darrell Duffie, Jun Pan, and Kenneth Singleton. Transform analysis and asset pricing for affine

jump-diffusions. Econometrica, 68(6):1343–1376, 2000.
• Bjørn Eraker, Michael Johannes, and Nicholas Polson. The impact of jumps in volatility and

returns. The Journal of Finance, 58(3):1269–1300, 2003.
• Eric Jacquier, Nicholas G Polson, and Peter E Rossi. Bayesian analysis of stochastic volatility

models. Journal of Business & Economic Statistics, 20(1):69–87, 2002.

Thanks

• Yan Gao
• 10716 Project Presentation

• Bandi, Federico M., and Roberto Renò.
"Nonparametric stochastic volatility." Econometric
Theory 34.6 (2018): 1207-1255.

Towards Frequency-based Explanation for
Predictions from CNN-based classifiers

Varun Rawal, Zihao Ding

Background
Co

nv
ol

ut
io

na
l

N
eu

ra
l

N
et

w
or

k
 (C

N
N

)

Interpretability

Performance

Human-understandable
input features

Frequency components
decomposition

Powerful in classification

Vulnerability

Objective
1. Attack pre-trained CNN model with adversarial attacks

2. Analyze adversarial attacks in frequency domain

3. Generate robust dataset

4. Determine frequency vulnerability

● Update weights in the model

● Update input

CNN and adversarial attack

Performance of pre-trained VGG-Cifar10 model
under targeted/untargeted attack

● Attacking methods used:

L-BFGS; FGSM; PGD; CW

Frequency analysis
● Discrete cosine transform (DCT):

● DCT-2D:
○ dct(dct(a.T).T)

● Relative change (RCT):

Hypothesis 1: Low-frequency features are more robust
than the high-frequency features. RCT maps for different adversarial attacks

Robust Dataset in Frequency Domain

 Robust Non-Robust

DCT Analysis

Frequency attribution

Average Attribution scores for each frequency components on each subset of CIFAR-10 dataset. We compute the attribution scores on three ResNet models.
(Blue : natural, others : Robust)

Robust models tend to shift the attribution scores from the high frequency range to the low frequency range,
compared to the naturally trained models.

Hypothesis 2: A model is more vulnerable to the current
adversarial attacks if the relevant features towards the prediction
are not from low-frequency range.

Hierarchical Learning in Neural Networks

Understanding Neural Networks
Neural tangent kernel (NTK)

However

Can we provably separate the power of NNs and kernel methods?

3-layer Residual Networks

https://arxiv.org/abs/1905.10337

Hierarchical Learning

residual connections hierarchical learning

non-hierarchical

Hierarchical Function Class

Intuition

3-layer ResNet

● distribute the learning

●

●

Kernels

●

● F

GG

F

⊕

Main Result
Separation in learning efficiency.

1. 3-layer ResNets learn any hierarchical function up to generalization

error with sample complexity .

2. For any kernel method, there is some hierarchical function such that

achieving generalization error requires sample complexity .

Conceptual messages

● hierarchical learning

●

Going beyond 3 layers

https://arxiv.org/abs/2001.04413

Hierarchical Learning in deep networks
3-layer

L

L-1

Going deeper →

Hierarchical learning →

Concept Class
DenseNet skip connections

⨳ L → 2 L .

Main Result
Separation in learning efficiency

𝜀 sample complexity

● L

●

Conceptual messages

●

● Backward feature correction

Hierarchical learning: Backward Feature Correction

Joint training

●

Experiments

Summary

●

●

○

○

Thank you! ffd

References

https://arxiv.org/abs/1806.07572
https://arxiv.org/abs/1904.11955
https://arxiv.org/abs/1905.10337
https://arxiv.org/abs/2001.04413

Task Relatedness in Multi-task Learning

Helen Ren Ruohan Li

April 27, 2020

Helen Ren Ruohan Li Task Relatedness in Multi-task Learning April 27, 2020 1 / 7

Introduction

Introduction

Background
Multi-task learning (MTL) tries to jointly learn useful representation via multiple
related tasks to help improve the generalization performance of the tasks.

Successfully applied to solve data and annotation insufficiency problem.

Broad applications in spam filtering, face authentication etc.

Usually, multiple tasks share some commonalities.

Motivation
Any theoretical guarantees for the MTL’s success?

What kinds of tasks can be jointly learned?

How much information can be shared across multiple tasks?

Is there any guidelines on the sufficient sample size for each individual task?

Task relatedness between tasks is the key.

Helen Ren Ruohan Li Task Relatedness in Multi-task Learning April 27, 2020 2 / 7

Summary

Key Results

Shai et al. 2008: Mapping data generation mechanism
Sub-domain: ”One focus of interest”

Key assumption: Pairwise F-relatedness

Guarantee: Provided lower bound on sample size that depends on a generalized
VC-dimension parameter.

Helen Ren Ruohan Li Task Relatedness in Multi-task Learning April 27, 2020 3 / 7

Summary

Key Results

Baxter et al. 1997: Modeling inductive bias
Simultaneous MTL

The task relatedness can be considered as the existence of a sub-hypothesis
space/inductive hyper bias which contains the best hypothesis/bias for each task.

Mahmud et al. 2009: Information-based approach
Sequential Transfer Learning

Proposed universal measures of task relatedness from the Algorithmic Information
Theory perspective.

Developed universally optimal Bayesian transfer learning methods, which could
provide guidance to construct practical transfer learning algorithms.

Helen Ren Ruohan Li Task Relatedness in Multi-task Learning April 27, 2020 4 / 7

Experiments

Experiments

By Baxter’s theory, two tasks can be learned together when:

they have the same input space

they require a common set of low dimensional representations

they are included in a sub-hypothesis space that contains the optimal hypothesis

Helen Ren Ruohan Li Task Relatedness in Multi-task Learning April 27, 2020 5 / 7

Experiments

Experiments

Building Related Task Pair

Input: {X, y}Ni=1, where y = poly(X)

Model: linear regression with SGD

1000 training samples and 200 testing samples per task

Mean Square Error

Single Task Learning Multi-task Learning

Related Tasks
Task 1 3.7793 3.7416
Task 2 1.6277 1.5517

Unrelated Tasks
Task 1 3.4498 3.5025
Task 2 5.4768 5.6758

Helen Ren Ruohan Li Task Relatedness in Multi-task Learning April 27, 2020 6 / 7

Conclusion

Conclusion

Comparison of Representative Works

Sub-domain of MTL Assumption

Shai 2008 Learning for One Target Task F-Relatedness1

Baxter 1997 Simultaneous MTL True Prior in Common Set1

Mahmud 2009 Sequential Transfer Learning Semi-computability

Notion of Task Relatedness Relatedness Measurement

Shai 2008 Clearly Defined Discriminate Measurement
Baxter 1997 Generally Included N/A

Mahmud 2009 Clearly Defined Continuous Measurement

Generalization Guarantee Applications

Shai 2008 Sample Size Tasks w/ Slightly Domain Shifts
Baxter 1997 Sample Size Tasks w/ Common LDRs2

Mahmud 2009 Error Bound Most Learning Tasks

1Strong assumption.
2LDR stands for low dimensional representation.

Helen Ren Ruohan Li Task Relatedness in Multi-task Learning April 27, 2020 7 / 7

Conclusion

Thank You!

Helen Ren Ruohan Li Task Relatedness in Multi-task Learning April 27, 2020 7 / 7

GANs and Image Super
Resolution

John Fang & Niles Christensen

● GAN objective:

“On Unifying Deep Generative Models” (Hu et al. 2018)

● Wake-sleep algorithm:

“On Unifying Deep Generative Models” (Hu et al. 2018)

Insights:

● Shows mathematically that generator’s distribution pushed to the distribution
of the data

● Optimizing reverse-KL divergence: explains missing-mode phenomena

Wasserstein GANs (Arjovsky et al. 2017)

● Uses Wasserstein (Earth Mover’s) distance as loss

Image Super Resolution

Image from Dahl et al. 2017

Supervised Approaches
● SRGAN (Ledig et al. 2017) - a classic paper

○ “first framework capable of inferring photo-realistic natural images for 4× upscaling factors”

● Utilizes both adversarial loss and content less (using VGG19)

Unsupervised Approaches

Image from Yuan et al. 2018

Convergence of
Overparametrized Neural

Networks
George Cai Irene Li

Overview
● Convergence of training error [A Convergence Theory for Deep Learning via

Over-Parametrization]
○ Main Theorem - Convergence of SGD
○ Important Lemmas - Convex Geometry of Loss Landscape

● Generalization/Performance on Test set [Learning and Generalization in
Overparametrized Neural Networks, Going Beyond Two Layers]

2

Convergence of SGD

3

For overparametrized () feed-forward ReLU networks
If data is non-degenerate (and)

Then SGD finds training global minima (up to error) in

Iterations for -regression

*: n=number of training samples,
 m=number of hidden neurons
 L=number of layers

Main Theorem

Convergence of SGD

4

For overparametrized () feed-forward ReLU networks
If data is non-degenerate (and)

Then SGD finds training global minima (up to error) in

Iterations for -regression.

*: n=number of training samples,
 m=number of hidden neurons
 L=number of layers

Main Theorem

The polynomial dependence on L is possible because ReLU kills half of
the neurons, thus preventing exponential gradient explosion/vanishing

Convergence of SGD

5

For overparametrized () feed-forward ReLU networks
If data is non-degenerate (and)

Then SGD finds training global minima (up to error) in

Iterations for -regression.

*: n=number of training samples,
 m=number of hidden neurons
 L=number of layers

Main Theorem

The polynomial dependence on L is possible because ReLU kills half of
the neurons, thus preventing exponential gradient explosion/vanishing

In paper, the result is generalized to more scenarios:
1. Neural networks with different number of neurons per layer;
2. Other smooth losses such as cross entropy loss;
3. Other architectures such as ResNet, CNN, etc.

Important Lemmas: Convex Geometry
Lemma 1 (no critical point). If loss is large, then the gradient norm is also large.

Important Lemmas: Convex Geometry
Lemma 1 (no critical point). If loss is large, then the gradient norm is also large.

Lemma 2 (semi-smoothness). The objective is semi-smooth.

Important Lemmas: Convex Geometry
Lemma 1 (no critical point). If loss is large, then the gradient norm is also large.

Lemma 2 (semi-smoothness). The objective is semi-smooth.

If we apply the above semi-smoothness and gradient bound on for
every iteration t, we can derive the main theorem.

Important Lemmas: Convex Geometry

9

VGG19_bn trained on CIFAR10 with SGD training trajectory.
The orange vertical sticks represents parameter at current iteration.
The loss landscape is plotted along gradient direction and the most negative (least convex)
hessian eigenvector direction.

Epoch=5 Epoch=90 Epoch=160

Generalization: 2-Layer/3-Layer Neural Networks

10

Some notable target functions can be efficiently learned by
3-layer/2-layer ReLU neural networks using polynomially many samples.

Main Result

Generalization: 2-Layer/3-Layer Neural Networks

Target functions that contain 3-layer (resp. 2-layer) neural networks with smooth
activations can be efficiently learned up to additive error by 3-layer (resp.
2-layer) ReLU neural networks of size greater than a fixed polynomial in 1) the
size of the target network; 2) 1/ ; 3) ‘complexity’ of the activation function in the
target function using polynomially many samples.

11

Some notable target functions can be efficiently learned by
3-layer/2-layer ReLU neural networks using polynomially many samples.

Main Result

Fairness in Federated
Learning

Srinivasa Pranav

Federated Learning
• Example: next-word prediction

• p devices connected to the cloud

• Each device k has mk training samples
from a different distribution Dk

• Each device trains a neural network hk
locally and sends neural network
parameters

• Cloud combines neural network
parameters to minimize loss over
mixture of distributions Dk

• Cloud forces devices to use its
parameters

Picture from: Li, T., Sahu, A. K., Talwalkar, A., & Smith, V. (2019). Federated learning: Challenges, methods, and future directions. arXiv preprint
arXiv:1908.07873.

Agnostic Federated
Learning (AFL)

• We don’t really know the mixture
of distributions

• Replace specific mixture of
distributions with arbitrary convex
combination of distributions

• Agnostic to the true mixture
weights

• Good-intent Fairness

Mohri, M., Sivek, G. Suresh, A.T.. (2019). Agnostic Federated Learning. Proceedings of the
36th International Conference on Machine Learning, in PMLR 97:4615-4625

q-Fair Federated
Learning (q-FFL)

• AFL’s minimax-like notion of fairness
may be too strict

• Inspired by α-fairness in wireless
networks

• At each time step dynamically
reweight empirical loss (changing
objective function)

• More complicated parameter updates

• Trades off performance for fairness

Li, T., Sanjabi, M., Smith, V. (2019). Fair resource allocation in federated learning. arXiv preprint
arXiv:1905.10497

Analysis of Orthogonal Matching Pursuit for Sparse
Linear Regression

10-716 Spring 2020 Course Project
Vineet Jain, Chirag Pabbaraju

Sparse Linear Regression (SLR)
Model:

Objective:

Applications: Compressed sensing, bioinformatics, etc.

Goals in SLR

1. Support Recovery:

Find such that and is small

2. Generalization Error:

Find such that is small

Problem Setting
● Restricted Strong Convexity (RSC):

● Restricted Smoothness (RSS):

● Restricted Condition Number:

● The noise is sub-Gaussian with parameter

Orthogonal Matching Pursuit

Extract column of that has
maximum correlation with
residual

Solve least squares problem
with support

Update residual

Upper Bound: Support Recovery

For the problem setting described before, say we run OMP for
 iterations, then if:

1.

2.

Then we have full support recovery, that is and
 is small with high probability

Upper Bound: Generalization Error

For the setting described before, let be the output of OMP
after iterations, then if ,

with high probability

Upper Bound: Key idea

● If any support is unrecovered, then there is a large
additive decrease in objective

● support recovery will happen soon
● Recovery will small support small generalization error

Lower bound

There exists a matrix such that:

Noiseless Case: OMP has to indeed run for iterations to
recover support completely

Noisy Case: Even if OMP is run for iterations:

1) The support of OMP is disjoint from
2) The generalization error of OMP is large i.e. on the same

order as that in upper bound (upto log factors)

Lower bound: Key idea

● The matrix is constructed to have columns that are
average of the columns corresponding to with some
additional noise

● Since OMP is a greedy algorithm, it gets fooled in choosing
coordinates corresponding to these columns instead

Experiments

10-716 Final Project:
Influence and Normalizing Flow

Gopaljee Atulya (gatulya)
Sungjun Choi (sungjun2)

Normalizing Flow Models
Generative models where NLL can be minimized directly. Similar to GAN and VAE

Mold Priors/Proxy variables into target distribution using invertible transformations

Computation of Jacobian term is expensive, hence lot of research into NN
architectures that allow for faster computation of jacobian.

Flow models have been proved to approximate any target density provided
sufficient number of transformation layers.

Change of Variable with Function Composition

Affine coupling layer

Identity transformation on random variables 1:d

Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using real nvp. arXiv preprint arXiv:1605.08803.

Scaling and Translation on random variables d+1:D

Invert Forward Transformations

Fast Jacobian Determinant

Result: Affine Flow - Single Coupling Layer

Result: Inverse Flow - Single Coupling Layer

Influence Functions
Tool from semi-parametric statistics for analyzing robustness of models
(understanding how “influential” each training point is to the model)

Consider model parameters and test loss as functionals of data distribution

e.g. with data distribution F:

Mean:

Variance:

Influence Functions
To consider the “influence” of a single training point on parameters or the loss,
consider upweighting the point in the data distribution by small ɛ:

where

● F: data distribution, : Dirac-delta distribution at
● T: parameter functional

Influence Functions
It is known that influence functions can be linearly approximated as follows

Applying chain rule to Gâteaux derivative allows chaining to other quantities,
specifically the test loss:

(Koh & Liang, 2017)

Analysis with Influence Functions
Many applications introduced in (Koh & Liang, 2017):

● Analyzing model behavior for individual test points
● Generating adversarial test examples
● Fixing mislabeled examples

We aim to use influence functions to analyze normalizing flows in different parts of
the support and use the information to guide further training

Discussion and Potential for Novel Contribution
NF models have an Expressiveness vs Computation trade-off.

NF models prefer modelling high density regions.

Influence functions can be used to select trainings sample to balance density
estimation.

References
Kingma, Durk P., and Prafulla Dhariwal. "Glow: Generative flow with invertible 1x1 convolutions." Advances in Neural Information
Processing Systems. 2018.

Huang, Chin-Wei, et al. "Neural autoregressive flows." arXiv preprint arXiv:1804.00779 (2018).

Dinh, Laurent, Jascha Sohl-Dickstein, and Samy Bengio. "Density estimation using real nvp." arXiv preprint arXiv:1605.08803 (2016).

Cook, R. Dennis, and Sanford Weisberg. Residuals and influence in regression. New York: Chapman and Hall, 1982.

Agarwal, Naman, Brian Bullins, and Elad Hazan. "Second-order stochastic optimization for machine learning in linear time." The
Journal of Machine Learning Research 18.1 (2017): 4148-4187.

Dinh, Laurent, David Krueger, and Yoshua Bengio. "Nice: Non-linear independent components estimation." arXiv preprint
arXiv:1410.8516 (2014).

Pang Wei Koh and Percy Liang. “Understanding black-box predictions via influence functions.” International Conference on Machine
Learning. 2017.

Gaussian Processes for
Bayesian Inference

Christopher Kottke

Cathy Su

Gaussian Process models are widely used for
Bayesian Learning

• GPs is collection of
random variables with a
joint Gaussian
distribution
• Applied to both

classification and
regression supervised
learning problems
• However, what about

adversarial examples?

Carl Edward Rasmussen. Gaussian processes for machine learning. MIT Press, 2006

Probabilistic local robustness guarantees put bound on GP
predictions  

• For the GP z(x), introduce new test points x*
• Probabilistic safety metric:

• Probabilistic invariance metric:

• We want to bound each of these metrics by using the
properties of linearity and symmetry of GPs

Cardelli, L., Kwiatkowska, M., Laurenti, L., & Patane, A. (2019). Robustness Guarantees for Bayesian Inference with Gaussian Processes.
Proceedings of the AAAI Conference on Artificial Intelligence, 33(Dudley 1967), 7759–7768. https://doi.org/10.1609/aaai.v33i01.33017759

Theorem 1: showing a tight upper bound on the
probabilistic safety metric

Cardelli, L., Kwiatkowska, M., Laurenti, L., & Patane, A. (2019). Robustness Guarantees for Bayesian Inference with Gaussian Processes.
Proceedings of the AAAI Conference on Artificial Intelligence, 33(Dudley 1967), 7759–7768. https://doi.org/10.1609/aaai.v33i01.33017759

Theorem 1: showing a tight upper bound on the
probabilistic safety metric

Cardelli, L., Kwiatkowska, M., Laurenti, L., & Patane, A. (2019). Robustness Guarantees for Bayesian Inference with Gaussian Processes.
Proceedings of the AAAI Conference on Artificial Intelligence, 33(Dudley 1967), 7759–7768. https://doi.org/10.1609/aaai.v33i01.33017759

Theorem 1: showing a tight upper bound on the
probabilistic safety metric

Cardelli, L., Kwiatkowska, M., Laurenti, L., & Patane, A. (2019). Robustness Guarantees for Bayesian Inference with Gaussian Processes.
Proceedings of the AAAI Conference on Artificial Intelligence, 33(Dudley 1967), 7759–7768. https://doi.org/10.1609/aaai.v33i01.33017759

Theorem 1: showing a tight upper bound on the
probabilistic safety metric

Cardelli, L., Kwiatkowska, M., Laurenti, L., & Patane, A. (2019). Robustness Guarantees for Bayesian Inference with Gaussian Processes.
Proceedings of the AAAI Conference on Artificial Intelligence, 33(Dudley 1967), 7759–7768. https://doi.org/10.1609/aaai.v33i01.33017759

Introduced metrics bound the sampled values obtained for 2d
GP dataset in simulation 

Cardelli, L., Kwiatkowska, M., Laurenti, L., & Patane, A. (2019). Robustness Guarantees for Bayesian Inference with Gaussian Processes.
Proceedings of the AAAI Conference on Artificial Intelligence, 33(Dudley 1967), 7759–7768. https://doi.org/10.1609/aaai.v33i01.33017759

Introduced metrics bound the sampled values obtained for 2d
GP dataset in simulation 

Cardelli, L., Kwiatkowska, M., Laurenti, L., & Patane, A. (2019). Robustness Guarantees for Bayesian Inference with Gaussian Processes.
Proceedings of the AAAI Conference on Artificial Intelligence, 33(Dudley 1967), 7759–7768. https://doi.org/10.1609/aaai.v33i01.33017759

Introduced metrics bound the sampled values obtained for 2d
GP dataset in simulation 

Cardelli, L., Kwiatkowska, M., Laurenti, L., & Patane, A. (2019). Robustness Guarantees for Bayesian Inference with Gaussian Processes.
Proceedings of the AAAI Conference on Artificial Intelligence, 33(Dudley 1967), 7759–7768. https://doi.org/10.1609/aaai.v33i01.33017759

Gaussian Process Optimization in the Bandit Setting:
No Regret and Experimental Design
Seeger et. al.

• Using a GP to optimize some outcome often incurs some
cost

• How can we select GP kernels and acquisition functions to
minimize this cost?

Information Gain GP Upper Confidence Bound
!" = #$%&#!

! ∈ ' ("− 1(!) !" = #$%&#!
! ∈ ')"− 1(!) + 2log(' "2*2 /(6+))("− 1(!)

Pure Exploration Exploration/Exploitation Tradeoff

Gaussian Process Optimization in the Bandit Setting:
No Regret and Experimental Design
Seeger et. al.

Under the GP-UCB acquisition function, we can bound the regret at
step T:

Kernel Linear RBF Matern
Regret Bound

Specific bounds are achieved for each kernel by upper bounding the
information gain at a given step for that kernel

Pr{,- ≤ 2.1- log(' "2*2/(6+)) /-} ≥ 1 − +

Open AI Mountain Car Test

Untrained

Solved

Using DDQN learning, we optimize
training hyperparameters for speed
and stability.
• Learning Rate
• Initial Exploration Rate
• Final Exploration Rate
• Exploration Rate Decay
• TD Discount Factor
• Target Network Update Frequency

• Expected Improvement
• Information Gain
• GP Upper Confidence Bound

Compared the following acquisition
functions

Sequential Normalizing
Flows for Model-Based
Reinforcement Learning

Raunaq Bhirangi, Ben Freed

Sequential Normalizing Flows for MBRL
● Goal: Model learning for an autonomous agent to predict future observations

and rewards conditioned on past observations, rewards, actions, and past &
future actions.

● Normalizing flow enables exact inference with complex, multi-modal
distributions, while RNN captures temporal dynamics.

Hafner et. al., 2020

Normalizing Flows

● Enable sampling from complex distributions by mapping samples
from a simple distribution through a complex invertible mapping

RNNs

● Output conditioned on previous sequence of inputs by via conditioning on
a hidden state

Sequential Normalizing Flows

Results on Sequential MNIST
● Task: generate sequence of MNIST digits [0,1,...,9].

Future Work
● Incorporate reward prediction and action conditioning
● Incorporate policy optimization pipeline that uses trained model to derive a

policy that optimizes predicted future rewards

Forecasting seasonals and non linear
shared trends with ESNN

Cristian Challu

1

● Deep Learning applications on time series forecasting have been limited.

● On the 2018 M4 forecasting competition [1] the first place was a novel multivariate

hybrid ML-time series model called

Exponential Smoothing Recurrent Neural Network (ESRNN)

Background

2

[1] Makridakis, Spyros, Evangelos Spiliotis, and Vassilios Assimakopoulos. "The M4 Competition: Results, findings, conclusion
and way forward." International Journal of Forecasting 34.4 (2018): 802-808.

The hybrid model learns a shared function trend for the time series. This
makes the assumption that this information is common across series and
estimating them using all the series is beneficial [2].

[2] Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. The M4 competition:100,000 time series and 61 forecasting
methods. International Journal of Forecasting, 2019.

Holt-Winters

Trends

ESRNN model

1. Implement the ESRNN model in PyTorch.

2. Extend the model with different ML components.

3. Study the reason and conditions for the success of the ESRNN model.

Goals of this project

4

● First public ESRNN implementation in

PyTorch.

○ Sklearn fashion, has general fit and

predict methods.

○ Released in PyPI on 04/20,

with 1,100+ downloads so far.

○ 300x speedup vs original C++

implementation (Dynet)

Implementation

5

● I extended the model with Temporal Convolutional Neural networks to the:

Exponential Smoothing Convolutional Neural Network (ESCNN)

Implementation

6
[3] Bai, Shaojie, J. Zico Kolter, and Vladlen Koltun. "An empirical evaluation of generic convolutional and recurrent networks for
sequence modeling." arXiv preprint arXiv:1803.01271 (2018).

Performance of ESRNN and ESCNN

7

Performance of ESRNN and ESCNN by dataset of the M4 competition

Overall Weighted Average (OWA):

● Multiplicative decomposition of time series.

 where is the trend, the level and the seasonality

● Models such as ESRNN estimate future local trends based on previous local trends

 , where is a local trend of length d.

Similarity of local trends

8

Is function 𝑭 across time series the same or similar?

For each serie , compute the set which contains local

consecutive local trends.

Similarity of local trends

9

● Similarity test of 𝑭 between two series:

Is function 𝑭 across time series the same or similar?

Empirical results: simulated data

10

 Similarity Test vs Error of ESNN

Similarity test proposed vs error and improvement of the ESRNN over an univariate ES model.

The data was simulated controlling for the shared information between time series.

Similarity Test vs Improvement of

ESNN over univariate ES

ST ST

Empirical results: M4 data

11

Similarity test proposed vs improvement (relative MAPE) of the ESRNN over an univariate Naive2 model.

Different sets of time series where randomly selected from two categories of data (Demographics and Finance), varying the proportion

sampled from each category.

Similarity Test vs Improvement of ESNN over Naive2

1. Novel useful test of asynchronous shared local trends.

2. Empirical correlation between test and relative performance of ESRNN.

3. Potential applications:

a. Model selection

b. Improve models by incorporating the test for clustering

c. Anomaly detection

Contribution and Future Work

12

Multi-Agent Adversarial Inverse Reinforcement
Learning1

Matt Battifarano

Department of Civil and Environmental Engineering
10-716 Advanced Machine Learning: Theory and Methods

Carnegie Mellon University

28 April 2020

1L. Yu, J. Song, and S. Ermon, “Multi-agent adversarial inverse
reinforcement learning”, in Proceedings of the 36th International Conference on
Machine Learning, vol. 97, Sep. 2019, pp. 7194–7201. [Online]. Available:
http://proceedings.mlr.press/v97/yu19e.html.

1 / 10

http://proceedings.mlr.press/v97/yu19e.html

What is it?

Reinforcement
Learning

Environment Dynamics
P(statet+1 | statet , action)

Reward
(state, action) → $

Rational Policy
π(action | state)

A Rational policy
is one that maximizes the expected reward.

2 / 10

What is it?

Multi-Agent
Adversarial
Reinforcement

Learning

Environment Dynamics
P(statet+1 | statet , actions)

Rewards
(state, actions) → $n

Rational Policy
π(actions | state)

A Rational Policy
is one in which no agent can increase their reward by
unilaterally altering their own policy.

3 / 10

What is it?

Multi-Agent
Adversarial
Inverse

Reinforcement
Learning

Environment Dynamics
P(statet+1 | statet , actions)

Rewards
(state, actions) → $n

Observations
{(actions, statet)}

Multi-Agent Adversarial Inverse Reinforcement Learning:
I recover each agents reward function,
I given observations of expert behavior and the environment

dynamics.
4 / 10

Why do we care?

I Many real-world systems can be understood as the result of a
set agents competing and/or cooperating to achieve
their own goals.

I It is often very difficult to measure the reward function of
each agent directly.

I It is often comparatively simple to measure states and
actions.

I Useful to rationalize a set of observed behaviors.

5 / 10

Example: A routing game

I We observe the GPS traces of vehicles on a road network.
I Assume that each driver observes road network (state) and

attempts to select their route (action) to maximize their own
expected utility.

I Goal: find the parameters of the reward function rθ(s, a),
which best rationalizes the observed gps traces.

6 / 10

How does it work?

Key Challenges
I Characterize the joint trajectory distribution induced by the

reward parameters.
I Handle bounded rationality of the observed trajectories.

7 / 10

How does it work?
Key Ideas
I Logistic Stochastic Best Response Equilibrium (LSBRE):

each agent, in turn, optimizes their stochastic policy2 with all
other actions fixed. Repeat until convergence. (Think Gibbs
sampling)

I Each agent’s conditional policy is the softmax over their value
function: higher value actions are selected with higher
probability

Thm 1 The trajectory distribution of the conditional policies in
LSBRE are close (in KL) to a distribution exponential in the
sum of rewards.

Thm 2 Approximate the joint likelihood by the pseudolikelihood and
the psuedolikelihood (via theorem 1) by the sum of rewards
with an (intractable) partition function.

2McKelvey and Palfrey, “Quantal response equilibria for normal form
games”; McKelvey and Palfrey, “Quantal response equilibria for extensive form
games”. 8 / 10

How does it work?

Implementation
I Use a generative adversarial3 framework to simultaneously

estimate the partition function and the reward function.
I The generators estimate the partition function (optimal

policy) for each agent in order to produce realistic trajectories
I The discriminator, estimates the reward function for each

agent, which it used to evaluate how realistic a given
trajectory is.

3Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, and
Bengio, “Generative adversarial nets”; Ziebart, Maas, Bagnell, and Dey,
“Maximum entropy inverse reinforcement learning.”

9 / 10

Thank You!

References
L. Yu, J. Song, and S. Ermon, “Multi-agent adversarial inverse reinforce-
ment learning”, in Proceedings of the 36th International Conference on Ma-
chine Learning, vol. 97, Sep. 2019, pp. 7194–7201. [Online]. Available: http:
//proceedings.mlr.press/v97/yu19e.html.

R. D. McKelvey and T. R. Palfrey, “Quantal response equilibria for normal form
games”, Games and economic behavior, vol. 10, no. 1, pp. 6–38, 1995.

——,“Quantal response equilibria for extensive form games”, Experimental eco-
nomics, vol. 1, no. 1, pp. 9–41, 1998.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets”, in Advances in neural
information processing systems, 2014, pp. 2672–2680.

B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, “Maximum entropy in-
verse reinforcement learning.”, in AAAI, Chicago, IL, USA, vol. 8, 2008, pp. 1433–
1438.

10 / 10

http://proceedings.mlr.press/v97/yu19e.html
http://proceedings.mlr.press/v97/yu19e.html

Constrained Clustering

Euxhen Hasanaj, Dennis Li

Carnegie Mellon University

Introduction

Feature Based Clustering:

I Pointwise semi-supervision
I User provides labels for a subset of the data

I Pairwise semi-supervision
I Must-Link constraints
I Cannot-Link constraints

Idea 1: Modified EM

Must-Link Constraints

I Modify the E-step to only consider assignments Y that
comply with the given constraint

γ(t+1) = EY|X,Θ(t),EML
[LL(Θ;X,Y,EML)]

I Expected log likelihood:

E
Y|X,Θ(t),EML

[LL(Θ; X,Y, EML)]

=
G∑

g=1

C∑
c=1

∑
xi∈Xc

log p(xi | g,Θ) · p(Yc = g | Xc ,Θ(t)) +
G∑

g=1

C∑
c=1

logα(t)
g · p(Yc = g | Xc ,Θ(t))

Must-Link Constraints: M-step

I To get the update rules differentiate
EY|X,Θ(t),EML

[LL(Θ;X,Y,EML)] to get [1]:

α
(t+1)
g =

1

C

C∑
c=1

p(Yc = g | Xc ,Θ(t))

µ
(t+1)
g =

∑C
c=1 X c p(Yc = g | XcΘ(t)) |Xc |∑C
c=1 p(Yc = g | Xc ,Θ(t)) |Xc |

Σ(t+1)
g =

∑C
c=1 Σ

(t+1)
cg p(Yc = g | Xc ,Θ(t)) |Xc |∑C

c=1 p(Yc = g | Xc ,Θ(t)) |Xc |

I Constrained EM is essentially treating every chunklet as a
single point, but weighted according to the number of points
in that chunklet.

Cannot-Link Constraints

I Must-link constraints satisfy transitivity:

(a, b) ∈ML, (b, c) ∈ML → (a, c) ∈ML

I Cannot-link constraints do not satisfy transitivity:

(a, b) ∈ CL, (b, c) ∈ CL 6→ (a, c) ∈ CL

Cannot-Link Constraints

I Likelihood:

p(X,Y | Θ,ECL) =
1

Z

L∏
i=1

(1− I(yai = ybi))
N∏

n=1

p(yn | Θ) p(xn | yn,Θ)

I Can be described by a Markov network with potentials
p(yn | Θ), p(xn | yn,Θ) and 1− I(yai = ybi).

I Calculating the posteriors p(Y | X,Θ(t),ECL) and the updated
α requires calculating Z .
I Have O(n) cannot-link constraints and use inference

algorithms such as Pearl’s junction tree algorithm.

Combine Must-Link and Cannot-Link Constraints

I Extend Cannot-Link likelihood equation with new potentials
for the must-link constraints.

I Use a single Markov network with likelihood function [1]:

p(X,Y | Θ,EML,ECL)

=
1

Z

C∏
c=1

I(yXC
)

L∏
i=1

(1− I(yai = ybi))
N∏

n=1

p(yn | Θ) p(xn | yn,Θ)

Idea 2: EM with Posterior Constraints

I Typically EM maximizes an auxiliary lower bound:

L(Θ; X,Y) = E

log
∑
Y

q(Y | X)
p(X,Y; Θ)

q(Y | X)

 ≥ E

∑
Y

q(Y | X) log
p(X,Y; Θ)

q(Y | X)

 = F (q,Θ).

which can be made tight by maximizing over q.
I Posterior constraints: p(Y | X,Θ) ∈ Q(X), constraint set Q

I E.g., Cannot-Link: posterior satisfies E[zag + zbg] ≤ 1.

I Differences:
I Variational EM: constrain to a smaller tractable subspace Q in

the original intractable space
I Here: we assume the original space is tractable, imposing

constraints on posteriors to enforce semantics not captured by
the simpler model

EM with Posterior Constraints

I Instead of penalizing p directly, penalize the distance from p
to Q. Can show that this can be achieved by restricting q to
be in Q instead:

q(t+1) = arg maxq∈QF (q,Θ(t)) =arg minq∈QKL(q(Y | X) || p(Y | X,Θ(t))

such that E[f (X,Y)] ≤ b.

Downside: no longer guaranteed that the local maxima of the
constrained problem are local maxima of the log-likelihood.

EM with Posterior Constraints

Proposition 1 [2]
The local maxima of F (q,Θ), subject to q(Y | X) ∈ Q(X) are local maxima of

E[log p(X; Θ))]− E [KL(Q(X) || p(Y | X,Θ))] .

I Trades off likelihood and distance to the desired posterior subspace

I KL projection onto Q can be solved via its dual

arg maxλ≥0

(
λTb− log

∑
Y

p(Y | X,Θ) exp{λT f (X,Y)}
)

I Can be solved using projected GD.

Experiments

Figure: MNIST. Homogeneity-Score. Figure: GE. Homogeneity-Score.

Figure: MNIST. UMAP visualization. Figure: GE. UMAP visualization.

Sources

N. Shental, A. Bar-Hillel, T. Hertz, and D. Weinshall,
“Computing Gaussian mixture models with EM using
equivalence constraints,” Advances in Neural Information
Processing Systems, 2004.

J. V. Graça and B. Taskar, “Expectation Maximization and
Posterior Constraints,” NIPS 2007, Advances in Neural
Information Processing Systems 20, pp. 569–576, 2008.

Constraint vs Score: What's the
tradeoff?

---a basic survey of Bayesian network learning algorithm

Shuyan Wang

Causal Graph
and Algorithm

▪ X is a cause of Y if intervening/manipulating the state

of X changes the distribution of Y

▪ Directed acyclic graph (DAG) are often used to

represent causal relations

▪ Constraint-based and score-based algorithms

searching causal graphs

▪ Guarantee of Consistency: Markov Condition and

Faithfulness Assumption

Markov
Condition

Faithfulness
Assumption

Meek
Conjecture

Meeks
Conjecture

Score-based

- Starting with an empty graph

- add edges/dependencies that improves the score

mostly

- if adding edges does not improve score anymore,

remove edges that improves the score mostly

Simulation

▪ Linear

▪ Gaussian

▪ 20 variables

▪ Average degree:4, 8, 12

▪ Constraint-based:FCI

▪ Score-based:FGES

▪ Combination: GFCI

Simulation Uses
Linear Gaussian

Model
Data(X,Y,Z) ~ P(X,Y,Z) ~ X=a1 Z + a1Y +e

20 variables
with ave.

degree of 4

FCI

FGES

GFCI

Adjancency
Precision &

Recall

▪ Precision – percentage of edges in the output graph that

are in the true graph

▪ Recall – percentage of edges in the true graph are in

the output graph

Adjancency
Precision &

Recall

Arrow Head
Precison &

Recall

▪ Precision – percentage of edges in the output graph

pointing at the correct direction that are in the true

graph

▪ Recall – percentage of edges in the true graph are in

the output graph pointing at the correct direction

Arrow Head
Precison &

Recall

Summary

▪ Constraint-based algorithm produces fewer extra

edges and is more accurate about the direction of the

edges

▪ Score-based algorithm are more sensitive detecting

edges but less accurate

Improvement

▪ Aiming at minimizing score can help relaxing

faithfulness assumption

▪ Adding direction rules used in the constraint-based

algorithm into FGES

