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Why Conditional Generation

➢ Unconditional generation is arguably not very useful in real life: if one needs a 
random image, why not just sample it from the dataset?

➢ Such approach would less likely work for conditional generation, especially 
when more attributes are specified.



Challenges with Conditional Generation Using VAE

➢ Challenge 1: VAE suffers from the 
trade-off between high-quality 
reconstruction and realistic 
samples.

➢ Challenge 2. Conditional VAE 
needs to be retrained when new 
attributes are specified.

➢ We can solve both challenges 
with an emphasis on the latent 
space of VAE.

Engel et al ‘17, https://arxiv.org/abs/1711.05772

https://arxiv.org/abs/1711.05772


Challenge 1. Trade-off between Reconstruction and Samples

manifold dimension ambient dimension VAE with 𝜅-dimension latent space

➢ If r = d, VAE can both reconstruct well and recover manifold density, no 
trade-off.

➢ If r < d, VAE can reconstruct well but may not recover manifold density, 
source of trade-off.

Dai et al ‘19, https://arxiv.org/abs/1903.05789

https://arxiv.org/abs/1903.05789


Challenge 1. Trade-off between Reconstruction and Samples

part of ELBO encoder variance number of low-noise latent dimension

➢ Smallest possible    is   .
➢ If 𝜅 > r, optimal VAE will learn r low-noise latent dimensions and fill in random 

Gaussian noise for the remaining (𝜅 - r) dimensions to minimize 
➢ This means the latent space of VAE          does not lie on any lower 

dimensional manifolds.

Dai et al ‘19, https://arxiv.org/abs/1903.05789

encoder mean

Hyperparameter of VAE 

https://arxiv.org/abs/1903.05789


Challenge 1. Trade-off between Reconstruction and Samples

➢ Referred to as “2-Stage VAE”.

Dai et al ‘19, https://arxiv.org/abs/1903.05789

manifold dim = ambient dim

https://arxiv.org/abs/1903.05789


Challenge 1. Trade-off between Reconstruction and Samples

Dai et al ‘19, https://arxiv.org/abs/1903.05789

https://arxiv.org/abs/1903.05789


Challenge 1. Trade-off between Reconstruction and Samples

Dai et al ‘19, https://arxiv.org/abs/1903.05789

VAE 2-Stage VAE

https://arxiv.org/abs/1903.05789


Challenge 2. Expensive Retraining of CVAE

Engel et al ‘17, https://arxiv.org/abs/1711.05772

➢ Idea: training generative models on images is expensive, but training 
generative models on latent vectors is not as expensive.

https://arxiv.org/abs/1711.05772


Challenge 2. Expensive Retraining of CVAE

Engel et al ‘17, https://arxiv.org/abs/1711.05772

➢ Train a CGAN on latent vectors z 
separately.

➢ Use 96✕ ~ 2884✕ fewer 
FLOPs/iteration with equally good 
performance.

CGAN

Not necessary, 2-Stage 
VAE solves this issue

https://arxiv.org/abs/1711.05772


Challenge 2. Expensive Retraining of CVAE

Engel et al ‘17, https://arxiv.org/abs/1711.05772

https://arxiv.org/abs/1711.05772


Final Model Architecture

Dai et al ‘19, https://arxiv.org/abs/1903.05789 ; Engel et al ‘17, https://arxiv.org/abs/1711.05772

➢ Challenge 1: Trade-off between reconstruction and samples
➢ Challenge 2: Expensive retraining of CVAE

https://arxiv.org/abs/1903.05789
https://arxiv.org/abs/1711.05772
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Differentiable SAT Solver
Haoping Bai and Jianing Yang



Motivation: Deep Learning + Logical Inference

Traditional SAT problem Differentiable SAT problemSolved by SAT algorithms

Solved by Deep Learning classifiers



Problem Definition

● SAT: 

● Max SAT: 

The above may NOT be satisfiable 
-> Find the configuration of variables such that max # of clauses turn to be True.

Configuration of variables:



Differentiable Continuous Relaxation

● Relax the binary variables to smooth and continuous parameterization

● Semidefinite Programing (SDP) Relaxation (Goemans-Williamson, 1995):



Satisfiability Solving as a Layer



Applications & Experiments

MNIST Sudoku (original paper)

CNN: 0%

SATNet: 63.2%



Applications & Experiments

Game Map Generation 
(constraints on edges)

Constrained Shortest Path



References
● SATNet: Bridging deep learning and logical reasoning using a differentiable 

satisfiability solver (https://arxiv.org/pdf/1905.12149.pdf)

https://arxiv.org/pdf/1905.12149.pdf


A modern theory of generalization for deep learning

Cinnie Hsiung Allen Zhu
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Overparameterized networks can fit random labels

●
●

Big Idea

information content
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Cross entropy loss

Optimal regularization
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●
●

Generalized IB Lagrangian
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●
●
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transition from overfitting to underfitting

●
●
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Thank you!
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Bayesian Discovery of Pairwise Interactions in
High Dimensions

Wuwei Lin

April 28, 2020



Introduction

Learn linear regression with augmented feature space

Φ(x) = [1, x1, .., xd , x1x2, f .., xd−1xd , x
2
1 , .., x

2
d ]T , x ∈ Rd

y = θTΦ(x) + ε

Bayesian learning to find θ that satisfies:
I Sparsity: ||θ||0 ≤ s

I Strong hierarchy prior: θxixj 6= 0 iff θxi 6= 0, θxj 6= 0



Bayesian Learning

Our priors can be modeled as:

τ ∼ p(τ)

σ2 ∼ p(σ2)

θ|τ ∼ N (0,Στ )

y (n)|x (n), θ, σ2 ∼ N (θTΦ(x (n)), σ2)

Estimating or sampling posterior Ep(θ|D)[f (θ)] directly is difficult
Additionally sample p(τ |D) with MCMC, which requires computing
p(D|τ, σ2): computing posterior Gaussian requires O(d2N2 + N3)
time



Re-parameterize with Gaussian Process

Our Bayesian model follows the weight-space view of Gaussian
Process

τ ∼ p(τ)

g |τ ∼ GP(0, kτ ), kτ (x , x ′) = Φ(x)TΣτΦ(x ′)

σ2 ∼ p(σ2)

y (n)|x (n), g , σ2 ∼ N (g(x (n)), σ2)

Theorem 1: g(·) = θTΦ(·) in distribution
Theorem 2: For any diagonal Στ , kτ can be written as a weighted
sum of polynomial kernels of the form kpoly (x , x ′) = (xT x ′ + c)d ,
which is O(d) in time



Kernel Interaction Trick

Now we have efficient sampling of p(τ |D), we want to compute
Ep(θ|D,τ)[f (θ)]

To learn θxi , choose i-th unit vector ei = [0, 0, ..., 1, 0, 0]T

g(ei ) = θxi + θx2
i

g(−ei ) = −θxi + θx2
i

We can recover θxi as:

θxi =
1
2

(g(ei )− g(−ei ))

We can find the top k main effects in this way, and then compute
their pairwise interactions. Total number of possible iterations is
Θ(k2), smaller than Θ(d2).



Overparameterization in 
Deep Generative Models

Saurabh Garg &  Tanya Marwah

April 28th 2020



TEXT
● Zhang et. al. [2017]  pointed out the paradox with overparameterization in 

deep neural networks
○ Reasonably large neural network can fit random labels
○ Generalization puzzle: Even though they achieve good 

generalization performance 
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TEXT
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TEXT
● Zhang et. al. [2017]  pointed out the paradox with overparameterization in 

deep neural networks
○ Reasonably large neural network can fit random labels
○ Generalization puzzle: Even though they achieve good 

generalization performance 

● Since then, many attempts to resolve this:
○ Neural Tangent Kernel [Jacot et. al. 2018]

○ Convergence to global minima for 2-layered network [Du et. al. 2018]

○ and many more ... 4

Introduction 



● How does the generalization puzzle transfer in unsupervised learning of 
generative models ?

 
Memorization Generalization

5

Motivation: Generative Models

?



● How does the generalization puzzle transfer in unsupervised learning of 
generative models ?

 
Memorization Generalization
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Motivation: Generative Models

Learning a constant function Learning an identity Map



TEXT

* Zhang et. al.  Identity crisis: Memorization and generalization under extreme overparameterization. arXiv preprint arXiv:1902.04698 
(2019).

7

    Generalization Puzzle:  Example* 
Training Samples
      (Just images of 7) 



TEXT

* Zhang et. al.  Identity crisis: Memorization and generalization under extreme overparameterization. arXiv preprint arXiv:1902.04698 
(2019).
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    Generalization Puzzle:  Example* 

Inputs for testing



TEXT

* Zhang et. al.  Identity crisis: Memorization and generalization under extreme overparameterization. arXiv preprint arXiv:1902.04698 
(2019).
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    Generalization Puzzle:  Example* 

Inputs for testing

Training CNNs with increasing depth 



TEXT

* Zhang et. al.  Identity crisis: Memorization and generalization under extreme overparameterization. arXiv preprint arXiv:1902.04698 
(2019).
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    Generalization Puzzle:  Example* 

Increasing 
depth 



TEXT

* Zhang et. al.  Identity crisis: Memorization and generalization under extreme overparameterization. arXiv preprint arXiv:1902.04698 
(2019).
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    Generalization Puzzle:  Example* 

Increasing 
depth 

Note as we 
increase depth it 
fails to learn an 
identity map, 

instead it learns 
to memorize



Benefits of Jointly Training 
Autoencoders: An Improved Neural 

Tangent Kernel Analysis*

*Nguyen et. al. Benefits of Jointly Training Autoencoders: An Improved Neural Tangent Kernel Analysis. arXiv preprint arXiv:1911.11983 
(2019).



TEXTKey Takeaways from the Paper [find better heading]
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 Key Takeaways

Under a linearization assumption, an Autoencoder’s reconstruction for a given input 
can be written down as a linear combination of the training samples weighted by 

kernel scores. 
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 Key Takeaways

Under a linearization assumption, an Autoencoder’s reconstruction for a given input 
can be written down as a linear combination of the training samples weighted by 

kernel scores. 

Study the gradient dynamics of a two layer autoencoder and obtain a bound on the 
number of hidden neurons (i.e., level of over-parameterization) required to achieve 
linear convergence of gradient descent, starting from random initialization, to global 

optimality.



TEXT
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Problem Setup

Two Layer Autoencoder defined as,

Where A = [a1, …, am] and W = [w1, …, wm] 
and wi ~ N(0, I) and ai ~ Unif{-1,1}



TEXT
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Problem Setup

Two Layer Autoencoder defined as,

Where A = [a1, …, am] and W = [w1, …, wm] 
and wi ~ N(0, I) and ai ~ Unif{-1,1}

Loss Function: MSE



TEXT
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Main Result 1: Inductive Bias 

Under a linearization assumption, an autoencoder when trained with multiple samples 
the closer the new test input x is to the span of the training data X, the more its 

reconstruction concentrates around the seen points.



TEXT
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Main Result 2: Parameter Bounds

Weak Training: Only train the encoder, # parameters should be greater than
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Main Result 2: Parameter Bounds

Joint Training: Only train the encoder, # parameters should be greater than



TEXT
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Main Result 2: Parameter Bounds

Joint Training: Only train the encoder, # parameters should be greater than

A significant Improvement from the Weak Training case. 



Bayesian Hyperparameter Optimization

Ruochi Zhang, Hongyu Zheng



Background / Setup

2

§ Hyperparameter tuning is usually treated as “black art” and human labor intensive.

§ Given an algorithm with tunable hyperparameters, with a fixed budget (ex. # of 

attempts), find the best hyperparameter for running the algorithm

§ Prior methods (evolutionary algorithms etc) uses local / near-term information.

§ By modeling hyperparameter tuning as an exploration in a nonparametric Bayesian 

setup, we can utilize global / full information from past attempts.



Approach / Analysis

3

§ Let 𝑓 be the algorithm we evaluate, and 𝑥 be a hyperparameter.

§ Gaussian process: 𝑓 𝑥 ∼ 𝐺𝑃(0, 𝑘 𝑥, 𝑥! ) induces posterior 𝑓 𝑥 𝐷) ∼ 𝑁(𝜇 𝑥 , 𝜎"(𝑥))

§ Determine next attempt: maximize acquisition function

§ Expected Improvement: 𝑎 𝑥, 𝐷 = 𝔼#∼% &,( max(0, 𝑓 − 𝑓∗)

§ Confidence Upper Bound: 𝑎 𝑥, 𝐷 = 𝜇 + 𝜅𝜎 for (2-sided) confidence 2Φ 𝜅 − 1

§ Theoretical analysis based on regret minimization: instantaneous regret approaches 

0 = obtains optimal solution asymptotically



Experiment 1: Branin function

4

§ A highly nonconvex function

§ argmax*,+ − 𝑓(𝑥, 𝑦)

§ 𝑥 ∈ −5,10 , 𝑦 ∈ 0,15 , 𝜎, ∼ 𝑁 0, 0.1"

§ All optimization methods can evaluate on the

function for 50 times

§ The two Bayesian method consistently

outperforms the random grid search

𝑓 𝑥, 𝑦 = 𝑦 −
5.1
4𝜋!

𝑥! +
5
𝜋
𝑥 − 6

!

+ 10 1 −
1
8𝜋

cos 𝑥 + 10 + 𝜎"

n_trial

Be
st
va
lu
es

Warm-up optimization



Experiment 2: Neural network classification on MNIST

5

§ Fit an MLP model to make classification on MNIST (1 epoch)

§ Parameters to optimize:

§ Number of hidden layers (0 - 4)

§ Number of neurons in the hidden layer (64 - 256)

§ Dropout rate (0.5 - 1.0)

§ Learning rate (0.001 – 0.1)

§ The accuracy on the test set is used as the evaluation metric

§ All optimization methods can evaluate on the function for 20 times

§ The first 10 trial (warm-up) are the same

n_trial

Be
st
va
lu
es

Warm-up optimization



Summary

6

§ We implemented two types of Bayesian optimization method (Expected 
Improvement and Confidence Upper Bound)

§ We tested these two methods on two tasks: optimizing a highly non-convex function

and tuning hyperparameters for a neural network

§ We observed that the Bayesian optimization method consistently outperforms the

baseline model



Thank you!



Efficiency of Q-learning for solving Markov Decision Processes

Dhruv Malik & Vishwak Srinivasan



What is Reinforcement learning (RL)?

Reinforcement learning is the problem faced by an agent that must learn
behavior through trial-and-error interactions with a dynamic environment.



Markov Decision Processes (MDPs)

We model this problem using an MDP. An MDP consists of

I S , a set of states

I A: a set of actions that one can take at a state

I T : S ×A → {Pa(·|s) : (s, a) ∈ (S ,A)}: a transition function mapping
state-action pairs to probability distribution over next states

I R : S ×A → [0, rmax]: a reward function mapping state-action pairs to
scalar rewards

I γ < 1: a discount factor that decreases the amount of reward receives
over time

A policy π : S → A is a function that returns the action to be taken at a given
state.



Goal

In modern RL, we assume that the transition distributions and reward function
are unknown. Instead, we are only given oracle access to samples of rewards.
The goal is to find the policy π∗ that maximizes expected sum of discounted
rewards.

π∗ ∈ argmax
π

E

[
∞∑
t=0

γtR(st , π(st))
∣∣s0 = s, π(s0) = a

]
︸ ︷︷ ︸

θπ(s,a)

The function θπ(s, a) maps state-action pairs to their value under policy π is
called the Q-value function.

Classic theory on MDPs have shown that when the transition and reward
functions are known, the optimal deterministic policy can be found by
computing the fixed point of the Bellman operator B:

B(θ)(s, a) := R(s, a) + γEs′∼Pa(·|s)

[
max
a′∈A

θ(s ′, a′)

]
However, in modern RL we assume that the transitions and rewards are
unknown.



Q-learning for (Synchronous) RL

Synchronous Q-learning: at each timestep t = 1, 2, . . . and for each
state-action pair (s, a), we observe sample states s ′ drawn from the distribution
Pa(·|s), and the corresponding rewards.

The goal of Q-learning is learn the quantity θπ
∗

, which immediately gives the
optimal policy. It does so by attempting to mimic the action of the Bellman
operator B. Since the transitions and rewards are unknown, and the oracle only
gives samples of states and rewards, it uses the empirical version of the
Bellman operator, denoted as B̂.

This gives rise to the following algorithm. For a choice of stepsizes {λk}∞k=0,
the iterates {θk}k≥1 satisfy the recursion:

θk+1 = (1− λk)θk + λk B̂k(θk)



Past Work

Azar et al. [2013] show that the minimax rate in this setting requires at least

Ω
(

r2max
ε2
|S||A|
(1−γ)3 log

(
|S||A|
δ

))
≡ Ω

(
1

(1−γ)3

)
samples. However, the algorithms

that have been shown to achieve this rate are not the standard Q-learning
algorithm.

Moreover, Wainwright [2019a] shows that the classical Q-learning algorithm

cannot achieve this rate, since it can require at least Ω
(

1
(1−γ)4

)
samples. A

natural question is then whether there is a simple variant of Q-learning that
can achieve this rate.



Variance reduced Q-learning vs. Original Q-learning

To close the gap between minimax lower and upper bounds, Wainwright
[2019b] proposes a new algorithm called variance reduced Q-learning.

The key difference between these algorithms is the way in which we perform
the update:

Original Q-learning update Variance reduced Q-learning update

θk+1 = (1− λk)θk + λk B̂k(θk) θk+1 = (1− λk)θk

+λk

{
B̂k(θk)− B̂k(θ̄) + B̃N(θ̄)

}
where θ̄ is the result obtained after every M iterations and B̃k(θ) is a form of
rolling average.

One can immediately draw parallels to update made in SVRG [Johnson and
Zhang, 2013] in the form of a control variate.



References

Mohammad Gheshlaghi Azar, Rémi Munos, and Hilbert J Kappen. Minimax
pac bounds on the sample complexity of reinforcement learning with a
generative model. Machine learning, 91(3):325–349, 2013.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using
predictive variance reduction. In Advances in neural information processing
systems, pages 315–323, 2013.

Martin J. Wainwright. Stochastic approximation with cone-contractive
operators: Sharp `∞-bounds for q-learning, 2019a.

Martin J. Wainwright. Variance-reduced q-learning is minimax optimal, 2019b.



Nonparametric 
Stochastic Volatility

Yan Gao
10716 Project Presentation

Bandi, Federico M., and Roberto Renò. "Nonparametric stochastic volatility." Econometric Theory 34.6 (2018): 1207-1255.



Price-Volatility System 
• W: independent, standard Brownian motions; J: independent Poisson jump 

processes; f: monotonically non-decreasing transformation of variance; 
• Nested and generalized system. Different f and assumptions.
• Two-step work:

1. Estimate spot variance by localizing a high-frequency estimate of 
integrated variance robust to the presence of price jumps. 
2. Use the resulting spot variance estimates to identify the parameters in 
the price-volatility system. 
• The second stage requires controlling the estimation error introduced by 

the first-step spot variance estimates. 



Main Contribution
• Use non-parametric kernel methods to estimate the price-volatility 

system’s infinitesimal moments, and then derive parameters.  



Main Contribution
• Use non-parametric kernel methods to estimate the price-volatility 

system’s infinitesimal moments, and then derive parameters.  



Modified Bounded Domain

• where !𝜎! is a positive constant, 0 ≤ %𝜎"! ≤ !𝜎!

• For any fixed 𝜎"!, %𝜎"! is arbitrarily close to 𝜎"! for a sufficiently large !𝜎!

• The modified process has a bounded domain and can be made 
arbitrarily close to the original system by letting σ2 be sufficiently large. 



Moments and Parameters Estimates 
• Moments 𝜃#$!",&(𝑥) of the bounded process %𝜎"! (for a sufficiently 

large !𝜎!)
• When



Simulation
• S&P500, 1,000 replications, 5,000 days, mimicking 10-second 

observations sampled over a 1-hour time interval; Epanechnikov
kernel for all infinitesimal moments; 

Eraker, B., M. Johannes, & N. Polson (2003) The impact of jumps in volatility and returns. Journal of Finance 58, 1269–1300.



Reference
• Bandi, Federico M., and Roberto Renò. "Nonparametric stochastic volatility." Econometric 

Theory 34.6 (2018): 1207-1255.
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Towards Frequency-based Explanation for 
Predictions from CNN-based classifiers

Varun Rawal, Zihao Ding
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Interpretability

Performance

Human-understandable
input features

Frequency components 
decomposition

Powerful in classification

Vulnerability



Objective
1. Attack pre-trained CNN model with adversarial attacks

2. Analyze adversarial attacks in frequency domain

3. Generate robust dataset

4. Determine frequency vulnerability



● Update weights in the model

● Update input

CNN and adversarial attack

Performance of pre-trained VGG-Cifar10 model 
under targeted/untargeted attack

● Attacking methods used:

L-BFGS; FGSM; PGD; CW



Frequency analysis
● Discrete cosine transform (DCT):

● DCT-2D:
○ dct(dct(a.T).T)

● Relative change (RCT):

Hypothesis 1: Low-frequency features are more robust
than the high-frequency features. RCT maps for different adversarial attacks



Robust Dataset in Frequency Domain

     Robust Non-Robust

DCT Analysis



Frequency attribution



Average Attribution scores for each frequency components on each subset of CIFAR-10 dataset. We compute the attribution scores on three ResNet models. 
(Blue : natural, others : Robust)

Robust models tend to shift the attribution scores from the high frequency range to the low frequency range,
compared to the naturally trained models.

Hypothesis 2: A model is more vulnerable to the current
adversarial attacks if the relevant features towards the prediction
are not from low-frequency range.



Hierarchical Learning in Neural Networks



Understanding Neural Networks
Neural tangent kernel (NTK)

However

Can we provably separate the power of NNs and kernel methods?



3-layer Residual Networks

https://arxiv.org/abs/1905.10337


Hierarchical Learning

residual connections hierarchical learning

non-hierarchical



Hierarchical Function Class



Intuition

3-layer ResNet

● distribute the learning

●

●

Kernels

●

● F

GG

F

⊕



Main Result
Separation in learning efficiency.

1. 3-layer ResNets learn any hierarchical function      up to             generalization 

error with sample complexity                           .

2. For any kernel method, there is some hierarchical function     such that 

achieving           generalization error requires sample complexity                .

Conceptual messages

● hierarchical learning

●



Going beyond 3 layers

https://arxiv.org/abs/2001.04413


Hierarchical Learning in deep networks
3-layer

L

L-1

Going deeper →

Hierarchical learning →



Concept Class
DenseNet  skip connections

⨳ L → 2 L .



Main Result
Separation in learning efficiency

𝜀 sample complexity

● L

●

Conceptual messages

●

● Backward feature correction



Hierarchical learning: Backward Feature Correction

Joint training

●



Experiments



Summary

●

●

○

○

Thank you!  ffd  
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Task Relatedness in Multi-task Learning

Helen Ren Ruohan Li
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Introduction

Introduction

Background
Multi-task learning (MTL) tries to jointly learn useful representation via multiple
related tasks to help improve the generalization performance of the tasks.

Successfully applied to solve data and annotation insufficiency problem.

Broad applications in spam filtering, face authentication etc.

Usually, multiple tasks share some commonalities.

Motivation
Any theoretical guarantees for the MTL’s success?

What kinds of tasks can be jointly learned?

How much information can be shared across multiple tasks?

Is there any guidelines on the sufficient sample size for each individual task?

Task relatedness between tasks is the key.

Helen Ren Ruohan Li Task Relatedness in Multi-task Learning April 27, 2020 2 / 7



Summary

Key Results

Shai et al. 2008: Mapping data generation mechanism
Sub-domain: ”One focus of interest”

Key assumption: Pairwise F-relatedness

Guarantee: Provided lower bound on sample size that depends on a generalized
VC-dimension parameter.

Helen Ren Ruohan Li Task Relatedness in Multi-task Learning April 27, 2020 3 / 7



Summary

Key Results

Baxter et al. 1997: Modeling inductive bias
Simultaneous MTL

The task relatedness can be considered as the existence of a sub-hypothesis
space/inductive hyper bias which contains the best hypothesis/bias for each task.

Mahmud et al. 2009: Information-based approach
Sequential Transfer Learning

Proposed universal measures of task relatedness from the Algorithmic Information
Theory perspective.

Developed universally optimal Bayesian transfer learning methods, which could
provide guidance to construct practical transfer learning algorithms.

Helen Ren Ruohan Li Task Relatedness in Multi-task Learning April 27, 2020 4 / 7



Experiments

Experiments

By Baxter’s theory, two tasks can be learned together when:

they have the same input space

they require a common set of low dimensional representations

they are included in a sub-hypothesis space that contains the optimal hypothesis

Helen Ren Ruohan Li Task Relatedness in Multi-task Learning April 27, 2020 5 / 7



Experiments

Experiments

Building Related Task Pair

Input: {X, y}Ni=1, where y = poly(X)

Model: linear regression with SGD

1000 training samples and 200 testing samples per task

Mean Square Error

Single Task Learning Multi-task Learning

Related Tasks
Task 1 3.7793 3.7416
Task 2 1.6277 1.5517

Unrelated Tasks
Task 1 3.4498 3.5025
Task 2 5.4768 5.6758

Helen Ren Ruohan Li Task Relatedness in Multi-task Learning April 27, 2020 6 / 7



Conclusion

Conclusion

Comparison of Representative Works

Sub-domain of MTL Assumption

Shai 2008 Learning for One Target Task F-Relatedness1

Baxter 1997 Simultaneous MTL True Prior in Common Set1

Mahmud 2009 Sequential Transfer Learning Semi-computability

Notion of Task Relatedness Relatedness Measurement

Shai 2008 Clearly Defined Discriminate Measurement
Baxter 1997 Generally Included N/A

Mahmud 2009 Clearly Defined Continuous Measurement

Generalization Guarantee Applications

Shai 2008 Sample Size Tasks w/ Slightly Domain Shifts
Baxter 1997 Sample Size Tasks w/ Common LDRs2

Mahmud 2009 Error Bound Most Learning Tasks

1Strong assumption.
2LDR stands for low dimensional representation.
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GANs and Image Super 
Resolution

John Fang & Niles Christensen



● GAN objective:

“On Unifying Deep Generative Models” (Hu et al. 2018)

● Wake-sleep algorithm:



“On Unifying Deep Generative Models” (Hu et al. 2018)

Insights:

● Shows mathematically that generator’s distribution pushed to the distribution 
of the data

● Optimizing reverse-KL divergence: explains missing-mode phenomena



Wasserstein GANs (Arjovsky et al. 2017)

● Uses Wasserstein (Earth Mover’s) distance as loss



Image Super Resolution

Image from Dahl et al. 2017



Supervised Approaches
● SRGAN (Ledig et al. 2017) - a classic paper

○ “first framework capable of inferring photo-realistic natural images for 4× upscaling factors”

● Utilizes both adversarial loss and content less (using VGG19)



Unsupervised Approaches

Image from Yuan et al. 2018



Convergence of 
Overparametrized Neural 

Networks
George Cai   Irene Li



Overview
● Convergence of training error [A Convergence Theory for Deep Learning via 

Over-Parametrization]
○ Main Theorem - Convergence of SGD
○ Important Lemmas - Convex Geometry of Loss Landscape

● Generalization/Performance on Test set [Learning and Generalization in 
Overparametrized Neural Networks, Going Beyond Two Layers]

2



Convergence of SGD

3

For overparametrized (                                  )  feed-forward ReLU networks 
If data is non-degenerate (                    and                             )

Then SGD finds training global minima (up to error     ) in 

Iterations for     -regression

*: n=number of training samples,   
   m=number of hidden neurons
   L=number of layers

Main Theorem
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Convergence of SGD

5

For overparametrized (                                  )  feed-forward ReLU networks 
If data is non-degenerate (                    and                             )

Then SGD finds training global minima (up to error     ) in 

Iterations for     -regression.

*: n=number of training samples,   
   m=number of hidden neurons
   L=number of layers

Main Theorem

The polynomial dependence on L is possible because ReLU kills half of 
the neurons, thus preventing exponential gradient explosion/vanishing

In paper, the result is generalized to more scenarios:
1. Neural networks with different number of neurons per layer;
2. Other smooth losses such as cross entropy loss;
3. Other architectures such as ResNet, CNN, etc.



Important Lemmas: Convex Geometry
Lemma 1 (no critical point). If loss is large, then the gradient norm is also large.
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Important Lemmas: Convex Geometry
Lemma 1 (no critical point). If loss is large, then the gradient norm is also large.

Lemma 2 (semi-smoothness). The objective is semi-smooth.   

If we apply the above semi-smoothness and gradient bound on                            for 
every iteration t, we can derive the main theorem.



Important Lemmas: Convex Geometry

9

VGG19_bn trained on CIFAR10 with SGD training trajectory. 
The orange vertical sticks represents parameter at current iteration. 
The loss landscape is plotted along gradient direction and the most negative (least convex) 
hessian eigenvector direction. 

Epoch=5 Epoch=90 Epoch=160



Generalization: 2-Layer/3-Layer Neural Networks

10

Some notable target functions can be efficiently learned by 
3-layer/2-layer ReLU neural networks using polynomially many samples.

Main Result



Generalization: 2-Layer/3-Layer Neural Networks

Target functions that contain 3-layer (resp. 2-layer) neural networks with smooth 
activations can be efficiently learned up to additive error      by 3-layer (resp. 
2-layer) ReLU neural networks of size greater than a fixed polynomial in 1) the 
size of the target network; 2) 1/     ; 3) ‘complexity’ of the activation function in the 
target function using polynomially many samples.

11

Some notable target functions can be efficiently learned by 
3-layer/2-layer ReLU neural networks using polynomially many samples.

Main Result



Fairness in Federated 
Learning

Srinivasa Pranav



Federated Learning
• Example: next-word prediction

• p devices connected to the cloud

• Each device k has mk training samples 
from a different distribution Dk

• Each device trains a neural network hk
locally and sends neural network 
parameters

• Cloud combines neural network 
parameters to minimize loss over 
mixture of distributions Dk

• Cloud forces devices to use its 
parameters

Picture from: Li, T., Sahu, A. K., Talwalkar, A., & Smith, V. (2019). Federated learning: Challenges, methods, and future directions. arXiv preprint 
arXiv:1908.07873.



Agnostic Federated 
Learning (AFL)

• We don’t really know the mixture 
of distributions

• Replace specific mixture of 
distributions with arbitrary convex 
combination of distributions

• Agnostic to the true mixture 
weights

• Good-intent Fairness

Mohri, M., Sivek, G. Suresh, A.T.. (2019). Agnostic Federated Learning. Proceedings of the
36th International Conference on Machine Learning, in PMLR 97:4615-4625



q-Fair Federated 
Learning (q-FFL)

• AFL’s minimax-like notion of fairness 
may be too strict

• Inspired by α-fairness in wireless 
networks

• At each time step dynamically 
reweight empirical loss (changing 
objective function)

• More complicated parameter updates

• Trades off performance for fairness

Li, T., Sanjabi, M., Smith, V. (2019). Fair resource allocation in federated learning. arXiv preprint
arXiv:1905.10497



Analysis of Orthogonal Matching Pursuit for Sparse
Linear Regression

10-716 Spring 2020 Course Project
Vineet Jain, Chirag Pabbaraju



Sparse Linear Regression (SLR)
Model: 

Objective:

Applications: Compressed sensing, bioinformatics, etc.



Goals in SLR

1. Support Recovery:  

Find     such that                           and                  is small

2. Generalization Error:

Find     such that                           is small



Problem Setting
● Restricted Strong Convexity (RSC): 

● Restricted Smoothness (RSS):

● Restricted Condition Number:

● The noise      is sub-Gaussian with parameter 



Orthogonal Matching Pursuit

Extract column of     that has 
maximum correlation with 
residual 

Solve least squares problem 
with support 

Update residual



Upper Bound: Support Recovery

For the problem setting described before, say we run OMP for
    iterations, then if:

1.

2.

Then we have full support recovery, that is                          and
                 is small with high probability



Upper Bound: Generalization Error

For the setting described before, let      be the output of OMP 
after    iterations, then if                                       ,

with high probability



Upper Bound: Key idea

● If any support      is unrecovered, then there is a large 
additive decrease in objective

●                          support recovery will happen soon
● Recovery will small support         small generalization error



Lower bound

There exists a matrix       such that:

Noiseless Case: OMP has to indeed run for    iterations to 
recover support completely

Noisy Case: Even if OMP is run for                 iterations:

1) The support      of OMP is disjoint from     
2) The generalization error of OMP is large i.e. on the same 

order as that in upper bound (upto log factors)



Lower bound: Key idea

● The matrix       is constructed to have columns that are 
average of the columns corresponding to       with some 
additional noise

● Since OMP is a greedy algorithm, it gets fooled in choosing 
coordinates corresponding to these columns instead



Experiments





10-716 Final Project:
Influence and Normalizing Flow

Gopaljee Atulya (gatulya)
Sungjun Choi (sungjun2)



Normalizing Flow Models
Generative models where NLL can be minimized directly. Similar to GAN and VAE

Mold Priors/Proxy variables into target distribution using invertible transformations

Computation of Jacobian term is expensive, hence lot of research into NN 
architectures that allow for faster computation of jacobian.

Flow models have been proved to approximate any target density provided 
sufficient number of transformation layers.



Change of Variable with Function Composition



Affine coupling layer

Identity transformation on random variables 1:d

Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using real nvp. arXiv preprint arXiv:1605.08803.

Scaling and Translation on random variables d+1:D



Invert Forward Transformations

Fast Jacobian Determinant



Result: Affine Flow - Single Coupling Layer



Result: Inverse Flow - Single Coupling Layer



Influence Functions
Tool from semi-parametric statistics for analyzing robustness of models
(understanding how “influential” each training point is to the model)

Consider model parameters and test loss as functionals of data distribution

e.g. with data distribution F:

Mean:

Variance:



Influence Functions
To consider the “influence” of a single training point     on parameters or the loss,
consider upweighting the point in the data distribution by small ɛ:

where

● F: data distribution,      : Dirac-delta distribution at
● T: parameter functional



Influence Functions
It is known that influence functions can be linearly approximated as follows

Applying chain rule to Gâteaux derivative allows chaining to other quantities,
specifically the test loss:

(Koh & Liang, 2017)



Analysis with Influence Functions
Many applications introduced in (Koh & Liang, 2017):

● Analyzing model behavior for individual test points
● Generating adversarial test examples
● Fixing mislabeled examples

We aim to use influence functions to analyze normalizing flows in different parts of 
the support and use the information to guide further training



Discussion and Potential for Novel Contribution
NF models have an Expressiveness vs Computation trade-off.

NF models prefer modelling high density regions.

Influence functions can be used to select trainings sample to balance density 
estimation.



References
Kingma, Durk P., and Prafulla Dhariwal. "Glow: Generative flow with invertible 1x1 convolutions." Advances in Neural Information 
Processing Systems. 2018.
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Gaussian Processes for 
Bayesian Inference

Christopher Kottke 

Cathy Su



Gaussian Process models are widely used for 
Bayesian Learning

• GPs is collection of 
random variables with a 
joint Gaussian 
distribution 
• Applied to both 

classification and 
regression supervised 
learning problems 
• However, what about 

adversarial examples?

Carl Edward Rasmussen. Gaussian processes for machine learning. MIT Press, 2006



Probabilistic local robustness guarantees put bound on GP 
predictions  

• For the GP z(x), introduce new test points x* 
• Probabilistic safety metric:  

• Probabilistic invariance metric: 

• We want to bound each of these metrics by using the 
properties of linearity and symmetry of GPs

Cardelli, L., Kwiatkowska, M., Laurenti, L., & Patane, A. (2019). Robustness Guarantees for Bayesian Inference with Gaussian Processes. 
Proceedings of the AAAI Conference on Artificial Intelligence, 33(Dudley 1967), 7759–7768. https://doi.org/10.1609/aaai.v33i01.33017759



Theorem 1: showing a tight upper bound on the 
probabilistic safety metric

Cardelli, L., Kwiatkowska, M., Laurenti, L., & Patane, A. (2019). Robustness Guarantees for Bayesian Inference with Gaussian Processes. 
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Introduced metrics bound the sampled values obtained for 2d 
GP dataset in simulation 

Cardelli, L., Kwiatkowska, M., Laurenti, L., & Patane, A. (2019). Robustness Guarantees for Bayesian Inference with Gaussian Processes. 
Proceedings of the AAAI Conference on Artificial Intelligence, 33(Dudley 1967), 7759–7768. https://doi.org/10.1609/aaai.v33i01.33017759



Introduced metrics bound the sampled values obtained for 2d 
GP dataset in simulation 

Cardelli, L., Kwiatkowska, M., Laurenti, L., & Patane, A. (2019). Robustness Guarantees for Bayesian Inference with Gaussian Processes. 
Proceedings of the AAAI Conference on Artificial Intelligence, 33(Dudley 1967), 7759–7768. https://doi.org/10.1609/aaai.v33i01.33017759



Introduced metrics bound the sampled values obtained for 2d 
GP dataset in simulation 

Cardelli, L., Kwiatkowska, M., Laurenti, L., & Patane, A. (2019). Robustness Guarantees for Bayesian Inference with Gaussian Processes. 
Proceedings of the AAAI Conference on Artificial Intelligence, 33(Dudley 1967), 7759–7768. https://doi.org/10.1609/aaai.v33i01.33017759



Gaussian Process Optimization in the Bandit Setting:  
No Regret and Experimental Design 
Seeger et. al.

• Using a GP to optimize some outcome often incurs some 
cost  

• How can we select GP kernels and acquisition functions to 
minimize this cost?

Information Gain GP Upper Confidence Bound
!" = #$%&#!

! ∈ '  ("− 1(!) !" = #$%&#!
! ∈ '  )"− 1(!) + 2log( ' "2*2 /(6+))("− 1(!)

Pure Exploration Exploration/Exploitation Tradeoff



Gaussian Process Optimization in the Bandit Setting:  
No Regret and Experimental Design 
Seeger et. al.

Under the GP-UCB acquisition function, we can bound the regret at 
step T:

Kernel Linear RBF Matern
Regret Bound

Specific bounds are achieved for each kernel by upper bounding the 
information gain at a given step for that kernel

Pr{,- ≤ 2.1- log( ' "2*2/(6+)) /-} ≥ 1 − +



Open AI Mountain Car Test

Untrained

Solved

Using DDQN learning, we optimize 
training hyperparameters for speed 
and stability.
• Learning Rate 
• Initial Exploration Rate 
• Final Exploration Rate 
• Exploration Rate Decay 
• TD Discount Factor 
• Target Network Update Frequency

• Expected Improvement 
• Information Gain 
• GP Upper Confidence Bound

Compared the following acquisition 
functions



Sequential Normalizing 
Flows for Model-Based 
Reinforcement Learning

Raunaq Bhirangi, Ben Freed



Sequential Normalizing Flows for MBRL
● Goal: Model learning for an autonomous agent to predict future observations 

and rewards conditioned on past observations, rewards, actions, and past & 
future actions.

● Normalizing flow enables exact inference with complex, multi-modal 
distributions, while RNN captures temporal dynamics.

Hafner et. al., 2020



Normalizing Flows

● Enable sampling from complex distributions by mapping samples 
from a simple distribution through a complex invertible mapping



RNNs

● Output conditioned on previous sequence of inputs by via conditioning on 
a hidden state 



Sequential Normalizing Flows



Results on Sequential MNIST
● Task: generate sequence of MNIST digits [0,1,...,9].



Future Work
● Incorporate reward prediction and action conditioning
● Incorporate policy optimization pipeline that uses trained model to derive a 

policy that optimizes predicted future rewards



Forecasting seasonals and non linear 
shared trends with ESNN

Cristian Challu

1



● Deep Learning applications on time series forecasting have been limited.

● On the 2018 M4 forecasting competition [1] the first place was a novel multivariate 

hybrid ML-time series model called

Exponential Smoothing Recurrent Neural Network (ESRNN) 

Background

2

[1] Makridakis, Spyros, Evangelos Spiliotis, and Vassilios Assimakopoulos. "The M4 Competition: Results, findings, conclusion 
and way forward." International Journal of Forecasting 34.4 (2018): 802-808.



The hybrid model learns a shared function trend for the time series. This 
makes the assumption that this information is common across series and 
estimating them using all the series is beneficial [2].

[2] Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. The M4 competition:100,000 time series and 61 forecasting 
methods. International Journal of Forecasting, 2019.

Holt-Winters

Trends

ESRNN model



1. Implement the ESRNN model in PyTorch.

2. Extend the model with different ML components.

3. Study the reason and conditions for the success of the ESRNN model.

Goals of this project

4



● First public ESRNN implementation in 

PyTorch. 

○ Sklearn fashion, has general fit and 

predict methods.

○ Released in PyPI on 04/20, 

with 1,100+ downloads so far.

○ 300x speedup vs original C++ 

implementation (Dynet)

Implementation

5



● I extended the model with Temporal Convolutional Neural networks to the:

Exponential Smoothing Convolutional Neural Network (ESCNN)

Implementation

6
[3] Bai, Shaojie, J. Zico Kolter, and Vladlen Koltun. "An empirical evaluation of generic convolutional and recurrent networks for 
sequence modeling." arXiv preprint arXiv:1803.01271 (2018).



Performance of ESRNN and ESCNN

7

Performance of ESRNN and ESCNN by dataset of the M4 competition

Overall Weighted Average (OWA):



● Multiplicative decomposition of time series.

       where          is the trend,        the level and        the seasonality

● Models such as ESRNN estimate future local trends based on previous local trends

                                        , where                               is a local trend of length d.

Similarity of local trends

8

Is function 𝑭 across time series the same or similar?



For each serie      , compute the set                               which contains local 

consecutive local trends. 

Similarity of local trends

9

● Similarity test of 𝑭 between two series:

Is function 𝑭 across time series the same or similar?



Empirical results: simulated data

10

       Similarity Test vs Error of ESNN

Similarity test proposed vs error and improvement of the ESRNN over an univariate ES model. 

The data was simulated controlling for the shared information between time series. 

Similarity Test vs Improvement of 

ESNN over univariate ES

ST ST



Empirical results: M4 data

11

Similarity test proposed vs improvement (relative MAPE) of the ESRNN over an univariate Naive2 model. 

Different sets of time series where randomly selected from two categories of data (Demographics and Finance), varying the proportion 

sampled from each category.

Similarity Test vs Improvement of ESNN over Naive2



1. Novel useful test of asynchronous shared local trends.

2. Empirical correlation between test and relative performance of ESRNN.

3. Potential applications:

a. Model selection

b. Improve models by incorporating the test for clustering

c. Anomaly detection

Contribution and Future Work

12



Multi-Agent Adversarial Inverse Reinforcement
Learning1

Matt Battifarano

Department of Civil and Environmental Engineering
10-716 Advanced Machine Learning: Theory and Methods

Carnegie Mellon University

28 April 2020

1L. Yu, J. Song, and S. Ermon, “Multi-agent adversarial inverse
reinforcement learning”, in Proceedings of the 36th International Conference on
Machine Learning, vol. 97, Sep. 2019, pp. 7194–7201. [Online]. Available:
http://proceedings.mlr.press/v97/yu19e.html.

1 / 10
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What is it?

Reinforcement
Learning

Environment Dynamics
P(statet+1 | statet , action)

Reward
(state, action) → $

Rational Policy
π(action | state)

A Rational policy
is one that maximizes the expected reward.

2 / 10



What is it?

Multi-Agent
Adversarial
Reinforcement

Learning

Environment Dynamics
P(statet+1 | statet , actions)

Rewards
(state, actions) → $n

Rational Policy
π(actions | state)

A Rational Policy
is one in which no agent can increase their reward by
unilaterally altering their own policy.

3 / 10



What is it?

Multi-Agent
Adversarial
Inverse

Reinforcement
Learning

Environment Dynamics
P(statet+1 | statet , actions)

Rewards
(state, actions) → $n

Observations
{(actions, statet)}

Multi-Agent Adversarial Inverse Reinforcement Learning:
I recover each agents reward function,
I given observations of expert behavior and the environment

dynamics.
4 / 10



Why do we care?

I Many real-world systems can be understood as the result of a
set agents competing and/or cooperating to achieve
their own goals.

I It is often very difficult to measure the reward function of
each agent directly.

I It is often comparatively simple to measure states and
actions.

I Useful to rationalize a set of observed behaviors.

5 / 10



Example: A routing game

I We observe the GPS traces of vehicles on a road network.
I Assume that each driver observes road network (state) and

attempts to select their route (action) to maximize their own
expected utility.

I Goal: find the parameters of the reward function rθ(s, a),
which best rationalizes the observed gps traces.

6 / 10



How does it work?

Key Challenges
I Characterize the joint trajectory distribution induced by the

reward parameters.
I Handle bounded rationality of the observed trajectories.

7 / 10



How does it work?
Key Ideas
I Logistic Stochastic Best Response Equilibrium (LSBRE):

each agent, in turn, optimizes their stochastic policy2 with all
other actions fixed. Repeat until convergence. (Think Gibbs
sampling)

I Each agent’s conditional policy is the softmax over their value
function: higher value actions are selected with higher
probability

Thm 1 The trajectory distribution of the conditional policies in
LSBRE are close (in KL) to a distribution exponential in the
sum of rewards.

Thm 2 Approximate the joint likelihood by the pseudolikelihood and
the psuedolikelihood (via theorem 1) by the sum of rewards
with an (intractable) partition function.

2McKelvey and Palfrey, “Quantal response equilibria for normal form
games”; McKelvey and Palfrey, “Quantal response equilibria for extensive form
games”. 8 / 10



How does it work?

Implementation
I Use a generative adversarial3 framework to simultaneously

estimate the partition function and the reward function.
I The generators estimate the partition function (optimal

policy) for each agent in order to produce realistic trajectories
I The discriminator, estimates the reward function for each

agent, which it used to evaluate how realistic a given
trajectory is.

3Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, and
Bengio, “Generative adversarial nets”; Ziebart, Maas, Bagnell, and Dey,
“Maximum entropy inverse reinforcement learning.”

9 / 10



Thank You!
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Constrained Clustering

Euxhen Hasanaj, Dennis Li

Carnegie Mellon University



Introduction

Feature Based Clustering:

I Pointwise semi-supervision
I User provides labels for a subset of the data

I Pairwise semi-supervision
I Must-Link constraints
I Cannot-Link constraints



Idea 1: Modified EM

Must-Link Constraints

I Modify the E-step to only consider assignments Y that
comply with the given constraint

γ(t+1) = EY|X,Θ(t),EML
[LL(Θ;X,Y,EML)]

I Expected log likelihood:

E
Y|X,Θ(t),EML

[LL(Θ; X,Y, EML)]

=
G∑

g=1

C∑
c=1

∑
xi∈Xc

log p(xi | g,Θ) · p(Yc = g | Xc ,Θ(t)) +
G∑

g=1

C∑
c=1

logα(t)
g · p(Yc = g | Xc ,Θ(t))



Must-Link Constraints: M-step

I To get the update rules differentiate
EY|X,Θ(t),EML

[LL(Θ;X,Y,EML)] to get [1]:

α
(t+1)
g =

1

C

C∑
c=1

p(Yc = g | Xc ,Θ(t))

µ
(t+1)
g =

∑C
c=1 X c p(Yc = g | XcΘ(t)) |Xc |∑C
c=1 p(Yc = g | Xc ,Θ(t)) |Xc |

Σ(t+1)
g =

∑C
c=1 Σ

(t+1)
cg p(Yc = g | Xc ,Θ(t)) |Xc |∑C

c=1 p(Yc = g | Xc ,Θ(t)) |Xc |

I Constrained EM is essentially treating every chunklet as a
single point, but weighted according to the number of points
in that chunklet.



Cannot-Link Constraints

I Must-link constraints satisfy transitivity:

(a, b) ∈ML, (b, c) ∈ML → (a, c) ∈ML

I Cannot-link constraints do not satisfy transitivity:

(a, b) ∈ CL, (b, c) ∈ CL 6→ (a, c) ∈ CL



Cannot-Link Constraints

I Likelihood:

p(X,Y | Θ,ECL) =
1

Z

L∏
i=1

(1− I(yai = ybi ))
N∏

n=1

p(yn | Θ) p(xn | yn,Θ)

I Can be described by a Markov network with potentials
p(yn | Θ), p(xn | yn,Θ) and 1− I(yai = ybi ).

I Calculating the posteriors p(Y | X,Θ(t),ECL) and the updated
α requires calculating Z .
I Have O(n) cannot-link constraints and use inference

algorithms such as Pearl’s junction tree algorithm.



Combine Must-Link and Cannot-Link Constraints

I Extend Cannot-Link likelihood equation with new potentials
for the must-link constraints.

I Use a single Markov network with likelihood function [1]:

p(X,Y | Θ,EML,ECL)

=
1

Z

C∏
c=1

I(yXC
)

L∏
i=1

(1− I(yai = ybi ))
N∏

n=1

p(yn | Θ) p(xn | yn,Θ)



Idea 2: EM with Posterior Constraints

I Typically EM maximizes an auxiliary lower bound:

L(Θ; X,Y) = E

log
∑
Y

q(Y | X)
p(X,Y; Θ)

q(Y | X)

 ≥ E

∑
Y

q(Y | X) log
p(X,Y; Θ)

q(Y | X)

 = F (q,Θ).

which can be made tight by maximizing over q.
I Posterior constraints: p(Y | X,Θ) ∈ Q(X), constraint set Q

I E.g., Cannot-Link: posterior satisfies E[zag + zbg ] ≤ 1.

I Differences:
I Variational EM: constrain to a smaller tractable subspace Q in

the original intractable space
I Here: we assume the original space is tractable, imposing

constraints on posteriors to enforce semantics not captured by
the simpler model



EM with Posterior Constraints

I Instead of penalizing p directly, penalize the distance from p
to Q. Can show that this can be achieved by restricting q to
be in Q instead:

q(t+1) = arg maxq∈QF (q,Θ(t)) =arg minq∈QKL(q(Y | X) || p(Y | X,Θ(t))

such that E[f (X,Y)] ≤ b.

Downside: no longer guaranteed that the local maxima of the
constrained problem are local maxima of the log-likelihood.



EM with Posterior Constraints

Proposition 1 [2]
The local maxima of F (q,Θ), subject to q(Y | X) ∈ Q(X) are local maxima of

E[log p(X; Θ))]− E [KL(Q(X) || p(Y | X,Θ))] .

I Trades off likelihood and distance to the desired posterior subspace

I KL projection onto Q can be solved via its dual

arg maxλ≥0

(
λTb− log

∑
Y

p(Y | X,Θ) exp{λT f (X,Y)}
)

I Can be solved using projected GD.



Experiments

Figure: MNIST. Homogeneity-Score. Figure: GE. Homogeneity-Score.

Figure: MNIST. UMAP visualization. Figure: GE. UMAP visualization.
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Constraint vs Score: What's the 
tradeoff? 

---a basic survey of Bayesian network learning algorithm

Shuyan Wang



Causal Graph 
and Algorithm

▪ X is a cause of Y if intervening/manipulating the state 

of X changes the distribution of Y

▪ Directed acyclic graph (DAG) are often used to 

represent causal relations

▪ Constraint-based and score-based algorithms 

searching causal graphs

▪ Guarantee of Consistency: Markov Condition and 

Faithfulness Assumption



Markov 
Condition



Faithfulness 
Assumption



Meek 
Conjecture



Meeks 
Conjecture



Score-based 

- Starting with an empty graph 

- add edges/dependencies that improves the score 

mostly

- if adding edges does not improve score anymore, 

remove edges that improves the score mostly  



Simulation

▪ Linear

▪ Gaussian

▪ 20 variables

▪ Average degree:4, 8, 12

▪ Constraint-based:FCI

▪ Score-based:FGES

▪ Combination: GFCI



Simulation Uses 
Linear Gaussian 

Model
Data(X,Y,Z) ~ P(X,Y,Z) ~ X=a1 Z + a1Y +e



20 variables 
with ave.

degree of 4



FCI



FGES



GFCI



Adjancency
Precision & 

Recall

▪ Precision – percentage of edges in the output graph that 

are in the true graph

▪ Recall – percentage of edges in the true graph are in 

the output graph



Adjancency
Precision & 

Recall



Arrow Head
Precison & 

Recall

▪ Precision – percentage of edges in the output graph 

pointing at the correct direction that are in the true 

graph

▪ Recall – percentage of edges in the true graph are in 

the output graph pointing at the correct direction



Arrow Head
Precison & 

Recall



Summary

▪ Constraint-based algorithm produces fewer extra 

edges and is more accurate about the direction of the 

edges

▪ Score-based algorithm are more sensitive detecting 

edges but less accurate



Improvement

▪ Aiming at minimizing score can help relaxing 

faithfulness assumption

▪ Adding direction rules used in the constraint-based 

algorithm into FGES


