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8.1 Uniform Laws

L(θ, θ∗) = Ex∼p(·|θ∗)`(x, θ) (8.1)

Ln(θ, θ∗) =
1

n

n∑
i=1

`(xi, θ) (8.2)

Empirical Risk Minimization (ERM) is what we actually minimize using samples

θ̂ ∈ arg inf
θ∈Θ0⊆Θ

Ln(θ, θ∗) (8.3)

Our “gold standard” is the optimum w.r.t. the true expectation:

θ0 ∈ arg inf
θ∈Θ0⊆Θ

L(θ, θ∗) (8.4)

To compare these two quantities, we will look at the excess:

E(θ̂, θ0) = L(θ̂, θ∗)− L(θ0, θ
∗) (8.5)

= L(θ̂, θ∗)− Ln(θ̂, θ∗)︸ ︷︷ ︸
T1

+Ln(θ̂, θ∗)− Ln(θ0, θ
∗)︸ ︷︷ ︸

T2

+Ln(θ0, θ
∗)− L(θ0, θ

∗)︸ ︷︷ ︸
T3

(8.6)

We know T2 ≤ 0 by definition of θ̂ being optimal for Ln.

We can bound T3 directly using a tail bound:

Ln(θ0, θ
∗)− L(θ0, θ

∗) =
1

n

n∑
i=1

`(xi, θ0)− E[`(xi, θ0)] (8.7)

For T3 we assumed the xi were iid, so each `(xi, θ) was independent. For T1, θ̂ depends on xi, each `(xi, θ̂)
is dependent. Thus, we cannot directly apply the tail bounds we derived in the last lecture.

Ln(θ̂, θ∗)− L(θ̂, θ∗) =
1

n

n∑
i=1

`(xi, θ̂)− Ex∼p(·|θ∗)[`(x, θ̂)] (8.8)

≤ sup
θ∈Θ0

∣∣∣∣∣
n∑
i=1

`(xi, θ)− E[`(xi, θ)]

∣∣∣∣∣ , δn (8.9)

Noting that we can also bound T3 ≤ δn, we obtain the following bound on the excess:

E(θ̂, θ0) ≤ 2δn (8.10)
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8.1.1 Uniform Laws

We’ll begin by defining xθ as a random variable drawn from pθ(·). We are interested in the deviation between
the sample mean 1

n

∑n
i=1 x

θ
i and its expectation, E[xθ]. In particular, we are interested in the maximum

deviation between these quantities, as we vary θ:

sup
θ
| 1
n

n∑
i=1

xθi − E[xθ]| (8.11)

8.1.2 Uniform Laws for CDFs

One early application of uniform laws was to cumulative density functions (CDFs):

F (t) , P (x ≤ t) = E[1(x ∈ (−∞, t))] (8.12)

We now define the empirical CDF as

Fn(t) ,
1

n

n∑
i=1

1(xi ≤ t) (8.13)

For a fixed t, the Law of Large Numbers tells us that the empirical CDF converges to the true CDF as n
goes to infinity:

Fn(t)
a.s.→ F (t) (8.14)

But we are really interested in the CDF converges simultaneously for all t.

Theorem 8.1 (Glivenko-Cantelli) This theorem tells us that CDFs converge uniformly

‖Fn − F‖∞
a.s.→ 0 (8.15)

where ‖F −G‖∞ , supt∈R ‖F (t)−G(t)‖

However, the Glivenko-Cantelli theorem does not tell us about uniform convergence of other quantities.
Now, we will prove a generalization of the Glivenko-Cantelli theorem (that will include the result we want
to ERM). We consider iid samples xi ∼ P, where each sample belongs to some set: xi ∈ X . We consider a
set of functions F defined over the set X . We are interested in the following deviation:

sup
f∈F

∣∣∣∣∣∣∣
1

n

n∑
i=1

f(xi)︸ ︷︷ ︸
zf

−E[f(x)]

∣∣∣∣∣∣∣ (8.16)

The Glivenko-Cantelli theorem was a special case, where we considered the following set of functions:

F = {1(x ∈ (−∞, t]) ; t ∈ R} (8.17)

For ERM, we consider another set of functions:

F = {`(·, θ) ; θ ∈ Θ} (8.18)

Definition: We define the distance ‖ · ‖F as the maximum absolute value over functions in F :

‖Pn − P‖F = sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(xi)− E[f(x)]

∣∣∣∣∣ (8.19)
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Definition: A set of functions F is a Glivenko-Cantelli Class if the following result holds for all distributions
P:

‖Pn − P‖F
prob.→ 0 (8.20)

We say that F is a strong Glivenko-Cantelli Class if we have almost-sure convergence:

‖Pn − P‖F
a.s.→ 0 (8.21)

Example: The set F = {1(x ∈ S) ; S ⊆ [0, 1]} is not a Glivenko-Cantelli Class. If we draw samples x from
a continuous density.

sup
S⊆[0,1]

|En[1(x ∈ S)]− E[1(x ∈ S)]| = 1 6= 0 (8.22)

Next, we will look at determining whether a function class is Glivenko-Cantelli. To do this, we will only look
at the function evaluations, rather than the functions themselves:

F(xn1 ) , {(f(x1), f(x2), ..., f(xn)) ; f ∈ F} ⊆ Rn (8.23)

Intuitively, if the function only takes a few values, that it is more likely that the maximum deviation between
the expected value and the empirical average will be small. We recall the definition of the Rademacher
Complexity :

R(S) , Eε

[
sup
a∈S

∣∣∣∣∣
n∑
i=1

εiai

∣∣∣∣∣
]

(8.24)

If the set S is small, then it is unlikely that we can find a vector a ∈ S that has high correlation with the
noise vector ε. As we increase the size of S, we expect that it will be more likely to find a vector in S with
high correlation.

We now will look at the Rademacher complexity of the set of function evaluations. The empirical Rademacher
complexity is

R

(
F(xn1 )

n

)
= Eε

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εif(xi)

∣∣∣∣∣
]

(8.25)

We can also look at the population Rademacher complexity by taking an expectation over the samples. This
quantity is also called the Rademacher complexity of the function class F :

Rn(F) = Exn
1

[
R

(
F(xn1 )

n

)]
(8.26)

Theorem 8.2 Let a function class F that is b-uniformly bounded (i.e. ‖f‖∞ ≤ b, ∀f ∈ F) be given. Then,
for all n ≥ 1, δ ≥ 0, we have

‖Pn − P‖F ≤ 2Rn(F) + δ (8.27)

with probability at least 1− exp(−nδ
2

2b2 ).

An immediately corollary of this theorem is that if the Rademacher complexity Rn(F) converges to zero,
then the function class F is a GC class.

Theorem 8.3 Let a b-uniformly bounded function class F be given. Then, for all n ≥ 1, δ ≥ 0, we have

‖Pn − P‖F ≥
1

2
Rn(F)− sup

f∈F

|E[|f |]|
2
√
n
− δ (8.28)

with probability at least 1− exp(−nδ
2

2b2 )

Taken together, these results say that the Rademacher complexity gives us both upper and lower bounds for
the maximum deviation. Thus, we need to find a way to bound the Rademacher complexity.
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8.2 Polynomial Discrimination

Definition: A function class F has polynomial discrimination on the order v ≥ 1 if, for all xn1 ∈ Xn, we
have the following bound on the cardinality of function evaluations:

card(F(xn1 )) ≤ (n+ 1)v (8.29)

Note that F(xn1 ) is a set containing length-n vectors. We are counting the number of unique vectors in this
set. For example, if each function f ∈ F is binary, then there are at most 2n bit vectors, so

card(F(xn1 )) ≤ 2n (8.30)

Noting that 2n is exponential in n, not polynomial, we see that arbitrary binary functions are not polynomial
discriminable.

Theorem 8.4 Let a function class F that is polynomial discriminable with order v be given. Then we can
bound the Rademacher complexity of F as follows:

Rn(F) ≤ 2
(
Exn

1
[D(xn1 )]

)√v log(n+ 1)

n
where D(xn1 ) , sup

f∈F

√√√√ 1

n

n∑
i=1

f2(xi) (8.31)

Example: Let’s look at the class of CDFs, F = {1(x ∈ (−∞, t]) ; t ∈ R}. Let’s further assume that our
samples xn1 are sorted:

x1 ≤ x2 ≤ · · · ≤ xn (8.32)

For a fixed t, we know that 1(x ∈ (−∞, t]) will be 1 for small i and 0 for large i. Thus, there are n + 1
possible values for the vector 1(xn1 ∈ (−∞, t]).


