10-716: Advanced Machine Learning

Spring 2019

Lecture 8: February 12

Lecturer: Pradeep Ravikumar

Scribes: Benjamin Eysenbach, Ting Fung Lau, Zinan Lin

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

8.1 Uniform Laws

$$L(\theta, \theta^*) = \mathbb{E}_{x \sim p(\cdot | \theta^*)} \ell(x, \theta)$$
(8.1)

$$L_n(\theta, \theta^*) = \frac{1}{n} \sum_{i=1}^n \ell(x_i, \theta)$$
(8.2)

Empirical Risk Minimization (ERM) is what we actually minimize using samples

$$\hat{\theta} \in \arg \inf_{\theta \in \Theta_0 \subset \Theta} L_n(\theta, \theta^*) \tag{8.3}$$

Our "gold standard" is the optimum w.r.t. the true expectation:

$$\theta_0 \in \arg\inf_{\theta \in \Theta_0 \subset \Theta} L(\theta, \theta^*)$$
 (8.4)

To compare these two quantities, we will look at the excess:

$$E(\hat{\theta}, \theta_0) = L(\hat{\theta}, \theta^*) - L(\theta_0, \theta^*) \tag{8.5}$$

$$=\underbrace{L(\hat{\theta},\theta^*) - L_n(\hat{\theta},\theta^*)}_{T_1} + \underbrace{L_n(\hat{\theta},\theta^*) - L_n(\theta_0,\theta^*)}_{T_2} + \underbrace{L_n(\theta_0,\theta^*) - L(\theta_0,\theta^*)}_{T_2}$$
(8.6)

We know $T_2 \leq 0$ by definition of $\hat{\theta}$ being optimal for L_n .

We can bound T_3 directly using a tail bound:

$$L_n(\theta_0, \theta^*) - L(\theta_0, \theta^*) = \frac{1}{n} \sum_{i=1}^n \ell(x_i, \theta_0) - \mathbb{E}[\ell(x_i, \theta_0)]$$
(8.7)

For T_3 we assumed the x_i were iid, so each $\ell(x_i, \theta)$ was independent. For T_1 , $\hat{\theta}$ depends on x_i , each $\ell(x_i, \hat{\theta})$ is dependent. Thus, we cannot directly apply the tail bounds we derived in the last lecture.

$$L_n(\hat{\theta}, \theta^*) - L(\hat{\theta}, \theta^*) = \frac{1}{n} \sum_{i=1}^n \ell(x_i, \hat{\theta}) - \mathbb{E}_{x \sim p(\cdot | \theta^*)} [\ell(x, \hat{\theta})]$$

$$(8.8)$$

$$\leq \sup_{\theta \in \Theta_0} \left| \sum_{i=1}^n \ell(x_i, \theta) - \mathbb{E}[\ell(x_i, \theta)] \right| \triangleq \delta_n \tag{8.9}$$

Noting that we can also bound $T_3 \leq \delta_n$, we obtain the following bound on the excess:

$$E(\hat{\theta}, \theta_0) \le 2\delta_n \tag{8.10}$$

8.1.1 Uniform Laws

We'll begin by defining x^{θ} as a random variable drawn from $p_{\theta}(\cdot)$. We are interested in the deviation between the sample mean $\frac{1}{n}\sum_{i=1}^{n}x_{i}^{\theta}$ and its expectation, $\mathbb{E}[x^{\theta}]$. In particular, we are interested in the maximum deviation between these quantities, as we vary θ :

$$\sup_{\theta} \left| \frac{1}{n} \sum_{i=1}^{n} x_i^{\theta} - \mathbb{E}[x^{\theta}] \right| \tag{8.11}$$

8.1.2 Uniform Laws for CDFs

One early application of uniform laws was to cumulative density functions (CDFs):

$$F(t) \triangleq P(x \le t) = \mathbb{E}[\mathbb{1}(x \in (-\infty, t))] \tag{8.12}$$

We now define the *empirical* CDF as

$$F_n(t) \triangleq \frac{1}{n} \sum_{i=1}^n \mathbb{1}(x_i \le t)$$
(8.13)

For a fixed t, the Law of Large Numbers tells us that the empirical CDF converges to the true CDF as n goes to infinity:

$$F_n(t) \stackrel{\text{a.s.}}{\to} F(t)$$
 (8.14)

But we are really interested in the CDF converges simultaneously for all t.

Theorem 8.1 (Glivenko-Cantelli) This theorem tells us that CDFs converge uniformly

$$||F_n - F||_{\infty} \stackrel{a.s.}{\to} 0 \tag{8.15}$$

where $||F - G||_{\infty} \triangleq \sup_{t \in \mathbb{R}} ||F(t) - G(t)||$

However, the Glivenko-Cantelli theorem does not tell us about uniform convergence of other quantities. Now, we will prove a generalization of the Glivenko-Cantelli theorem (that will include the result we want to ERM). We consider iid samples $x_i \sim \mathbb{P}$, where each sample belongs to some set: $x_i \in \mathcal{X}$. We consider a set of functions \mathcal{F} defined over the set \mathcal{X} . We are interested in the following deviation:

$$\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} \underbrace{f(x_i)}_{z_i^f} - \mathbb{E}[f(x)] \right|$$
 (8.16)

The Glivenko-Cantelli theorem was a special case, where we considered the following set of functions:

$$\mathcal{F} = \{ \mathbb{1}(x \in (-\infty, t]) ; t \in \mathbb{R} \}$$

$$(8.17)$$

For ERM, we consider another set of functions:

$$\mathcal{F} = \{\ell(\cdot, \theta) \; ; \; \theta \in \Theta\} \tag{8.18}$$

Definition: We define the distance $\|\cdot\|_{\mathcal{F}}$ as the maximum absolute value over functions in \mathcal{F} :

$$\|\mathbb{P}_n - \mathbb{P}\|_{\mathcal{F}} = \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^n f(x_i) - \mathbb{E}[f(x)] \right|$$
(8.19)

Definition: A set of functions \mathcal{F} is a *Glivenko-Cantelli Class* if the following result holds for all distributions \mathbb{P} :

$$\|\mathbb{P}_n - \mathbb{P}\|_{\mathcal{F}} \stackrel{\text{prob.}}{\to} 0 \tag{8.20}$$

We say that \mathcal{F} is a *strong* Glivenko-Cantelli Class if we have almost-sure convergence:

$$\|\mathbb{P}_n - \mathbb{P}\|_{\mathcal{F}} \stackrel{\text{a.s.}}{\to} 0 \tag{8.21}$$

Example: The set $\mathcal{F} = \{\mathbb{1}(x \in S) ; S \subseteq [0,1]\}$ is not a Glivenko-Cantelli Class. If we draw samples x from a continuous density.

$$\sup_{S \subseteq [0,1]} |\mathbb{E}_n[\mathbb{1}(x \in S)] - \mathbb{E}[\mathbb{1}(x \in S)]| = 1 \neq 0$$
(8.22)

Next, we will look at determining whether a function class is Glivenko-Cantelli. To do this, we will only look at the function evaluations, rather than the functions themselves:

$$\mathcal{F}(x_1^n) \triangleq \{ (f(x_1), f(x_2), ..., f(x_n)) ; f \in \mathcal{F} \} \subseteq \mathbb{R}^n$$
(8.23)

Intuitively, if the function only takes a few values, that it is more likely that the maximum deviation between the expected value and the empirical average will be small. We recall the definition of the *Rademacher Complexity*:

$$R(S) \triangleq \mathbb{E}_{\epsilon} \left[\sup_{a \in S} \left| \sum_{i=1}^{n} \epsilon_{i} a_{i} \right| \right]$$
 (8.24)

If the set S is small, then it is unlikely that we can find a vector $a \in S$ that has high correlation with the noise vector ϵ . As we increase the size of S, we expect that it will be more likely to find a vector in S with high correlation.

We now will look at the Rademacher complexity of the set of function evaluations. The empirical Rademacher complexity is

$$R\left(\frac{\mathcal{F}(x_1^n)}{n}\right) = \mathbb{E}_{\epsilon} \left[\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^n \epsilon_i f(x_i) \right| \right]$$
(8.25)

We can also look at the population Rademacher complexity by taking an expectation over the samples. This quantity is also called the Rademacher complexity of the function class \mathcal{F} :

$$R_n(\mathcal{F}) = \mathbb{E}_{x_1^n} \left[R\left(\frac{\mathcal{F}(x_1^n)}{n}\right) \right]$$
 (8.26)

Theorem 8.2 Let a function class \mathcal{F} that is b-uniformly bounded (i.e. $||f||_{\infty} \leq b$, $\forall f \in \mathcal{F}$) be given. Then, for all $n \geq 1, \delta \geq 0$, we have

$$\|\mathbb{P}_n - \mathbb{P}\|_{\mathcal{F}} \le 2R_n(\mathcal{F}) + \delta \tag{8.27}$$

with probability at least $1 - \exp(\frac{-n\delta^2}{2b^2})$.

An immediately corollary of this theorem is that if the Rademacher complexity $R_n(\mathcal{F})$ converges to zero, then the function class \mathcal{F} is a GC class.

Theorem 8.3 Let a b-uniformly bounded function class \mathcal{F} be given. Then, for all $n \geq 1, \delta \geq 0$, we have

$$\|\mathbb{P}_n - \mathbb{P}\|_{\mathcal{F}} \ge \frac{1}{2} R_n(\mathcal{F}) - \sup_{f \in \mathcal{F}} \frac{|\mathbb{E}[|f|]|}{2\sqrt{n}} - \delta$$
(8.28)

with probability at least $1 - \exp(\frac{-n\delta^2}{2h^2})$

Taken together, these results say that the Rademacher complexity gives us both upper and lower bounds for the maximum deviation. Thus, we need to find a way to bound the Rademacher complexity.

8.2 Polynomial Discrimination

Definition: A function class \mathcal{F} has polynomial discrimination on the order $v \geq 1$ if, for all $x_1^n \in \mathcal{X}^n$, we have the following bound on the cardinality of function evaluations:

$$\operatorname{card}(\mathcal{F}(x_1^n)) \le (n+1)^v \tag{8.29}$$

Note that $\mathcal{F}(x_1^n)$ is a set containing length-n vectors. We are counting the number of unique vectors in this set. For example, if each function $f \in \mathcal{F}$ is binary, then there are at most 2^n bit vectors, so

$$\operatorname{card}(\mathcal{F}(x_1^n)) \le 2^n \tag{8.30}$$

Noting that 2^n is exponential in n, not polynomial, we see that arbitrary binary functions are not polynomial discriminable.

Theorem 8.4 Let a function class \mathcal{F} that is polynomial discriminable with order v be given. Then we can bound the Rademacher complexity of \mathcal{F} as follows:

$$R_n(\mathcal{F}) \le 2 \left(\mathbb{E}_{x_1^n}[D(x_1^n)] \right) \sqrt{\frac{v \log(n+1)}{n}} \qquad \text{where} \qquad D(x_1^n) \triangleq \sup_{f \in \mathcal{F}} \sqrt{\frac{1}{n} \sum_{i=1}^n f^2(x_i)}$$
(8.31)

Example: Let's look at the class of CDFs, $\mathcal{F} = \{\mathbb{1}(x \in (-\infty, t]) ; t \in \mathbb{R}\}$. Let's further assume that our samples x_1^n are sorted:

$$x_1 \le x_2 \le \dots \le x_n \tag{8.32}$$

For a fixed t, we know that $\mathbb{1}(x \in (-\infty, t])$ will be 1 for small i and 0 for large i. Thus, there are n+1 possible values for the vector $\mathbb{1}(x_1^n \in (-\infty, t])$.