
10-716: Advanced Machine Learning Spring 2019

Lecture 4: January 24
Lecturer: Pradeep Ravikumar Scribes: Menglan Ji, Terrance Liu, Elan Rosenfeld

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

4.1 Minimax Analysis

Minimax analysis can be used to choose actions. In this model, we have two players, nature and the ML
person. Natures chooses an action first, the ML person second. However, this does not mean the ML person
gets to see the choice of nature.

V = inf
a∈A

sup
θ∈Θ

L(θ, a) ≥ sup
θ∈Θ

inf
a∈A

L(θ, a) = V (4.1)

In strategy V , nature first chooses θ and then the ML person chooses a, without seeing θ. It is a conservative
choice of action. Because the ML person doesn’t know nature’s choice, it must look at the worst case choice
of nature. In other words, θ is not fixed. This is why V ≥ V .

While Equation 4.1 is about deterministic choices, it is also applicable to randomized choices.

sup
θ∈Θ

L(θ, a) = sup
π∈Π

L(π, a)

where Π is the set of distributions over θ. If we fix a, then the supremum is a single θ, and the distribution
is a point mass at θ. If there are multiple θs, then the distribution has mass at all θs.

inf
δ∗
L(θ, δ∗) = inf

a
L(θ, a)

for a particular choice of θ. Using randomized choices doesn’t change the value of the game.

The minimax strategy is δm ∈ arg inf
δ∗

sup
θ
L(θ, δ∗). This is actionable, so we can solve the problem, but it

is not as easy as Bayesian estimators, which focus on each x individually.

The maximin strategy is πm ∈ arg sup
π∈Π

L(π, δ∗). Here, nature maximizes the loss incurred.

Theorem 4.1 Suppose π∗0 , δ∗0 such that L(θ, δ∗0) ≤ L(π∗0 , a) ∀θ ∈ Θ, a ∈ A. Then, δ∗0 is minimax for the
ML person, and π∗0 is maximin for nature.

Proof:

V = inf
δ∗

sup
π∈Π

L(π, δ∗) ≤ sup
π∈Π

L(π, δ∗0) ≤ inf
a∈A

L(π∗0 , a) ≤ sup
π∈Π

inf
a∈A

L(π∗0 , a) = V

Because V ≤ V , the inequalities are all equalities. Thus, δ∗0 is the supremum and π∗0 is the infimum.

This is not constructive, but can be used to verify that an estimator is minimax.
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4.2 Equalizer Rules

One method for determining a minimax decision rule is to search for an equalizer rule.

Theorem 4.2 If δ∗0 is Bayes with respect to prior π over Θ, and π is least favorable with respect to δ∗0 , i.e.
R(θ, δ∗0) ≤ r(π, δ∗0), then δ∗0 is minimax.

Proof:

V = inf
δ∗

sup
θ
R(θ, δ∗)

≤ sup
θ
R(θ, δ∗0)

≤ r(π, δ∗0) upper bounded by Bayes risk

= inf
δ
γ(π0, δ) precondition that δ∗0 is Bayes wrt π

≤ sup
π

inf
δ
r(π0, δ) π0 is least favorable prior

≤ V

Theorem 4.3 Suppose δ∗0 is a decision rule s.t.

1. R(θ, δ∗0) = C ∀θ ∈ Θ

2. δ∗0 is Bayes w.r.t. some prior π over Θ

Then δ∗0 is minimax.

Proof: Let us choose π∗ s.t. δ∗0 is Bayes w.r.t π∗. Then the Bayes risk is given by

r(π∗, δ∗0) = Eπ∗∼Θ[R(θ, δ∗0)]

= Eπ∗∼Θ[C]

= C

Therefore, we have that R(θ, δ∗0) = C = r(π∗, δ∗0) =⇒ R(θ, δ∗0) ≤ r(π∗, δ∗0), i.e. π∗ is a least favorable prior.
Using Theorem 4.2, we conclude that δ∗0 is minimax.

In some cases, focusing solely on the worst-case risk is not appropriate.

Example Consider Figure 4.1, which plots the risk R(θ, δi) against values of θ. In plot on the left, minimax
analysis would prefer the line in red, given that the worst-case risk is lower. Now suppose for certain values
for θ, we increase R(θ, δi) by some constant. Intuitively, it would not make sense for our decision rule
preferences to change if the information changed is common to both choices of δi. However, as shown on the
plot on the right, the decision rule denoted by the red plot now has a larger worst-case risk.

Example Suppose the table of possible states of nature θ and actions a, with their respective losses L(θ, a),
are as follows:
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Figure 4.1: Minimax analysis

a1 a2

θ1 10 10.01
θ2 8 -8

Looking at the worst cases

sup
θ
L(θ, a2) = 10.01

sup
θ
L(θ, a1) = 10

so we would pick a1. However

L(θ1, a1) ≈ L(θ1, a2)

L(θ2, a1) >> L(θ2, a2)

so we would actually prefer a2. However, the minimax rule would choose a1.

Example Suppose θ ∈ (0, 1),A = [0, 1]. Think it as a biased coin, flipped n times, so X ∼ Bin(n, θ). We

will use the scaled loss capped at 2, L(θ, a) = min{ (θ−a)2

θ2 , 2}.

The minimax rule is δm(x) = 0, because it achieves the lowest risk.

If we look at δ0(x) = 0, we can see that L(θ, δ0(x)) = 1, and we take any other δ 6= δ0. Let

c = min
x∈Bδ

δ(x) > 0

where Bδ = {x : δ(x) 6= 0} is nonempty because δ 6= δ0. We have L(θ, δ(x)) = 2 ∀θ < c
1+
√

2
. The reason is

that we are measuring relative error, and δ(x) does not take values smaller than c. For θ < c
1+
√

2
, we have

R(θ, δ) = EXL(θ, δ(x))

=
∑
x∈Bδ

L(θ, δ(x)) +
∑
x/∈Bδ

L(θ, δ(x))

=
∑
x∈Bδ

2f(x | θ) +
∑
x/∈Bδ

f(x | θ)

=
∑
x

f(x | θ) +
∑
x∈Bδ

f(x | θ) > 1 3 L(θ, δ0(x)) ≈ R(θ, δ0)

So we have 1 = supθ R(θ, δ0) < supθ R(θ, δ) ∀δ 6= δ0.
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4.3 Minimax Regret

Definition 4.4 Minimax regret is the worst case difference between the loss from the action chosen under δ
and the minimum possible loss under that same supremizing θ.

Rminimax = inf
δ

sup
θ

{
L(θ, a)− inf

a′
L(θ, a′)

}
Example Suppose the table of possible states of nature θ and actions a, with their respective losses L(θ, a),
are as follows:

a1 a2

θ1 10 10.01
θ2 8 -8

If the state of nature is θ1, then a2 is only slightly worse than a1, and if instead the state of nature is θ2,
then a2 is significantly better. Thus, a2 appears to be the better action. However, optimizing for minimax
risk would suggest picking a1, because the maximum loss is smaller.

If instead we consider minimax regret, we arrive at a more reasonable decision. The table corresponding to
L(θ, a)− infa′ L(θ, a′) is

a1 a2

θ1 0 0.01
θ2 16 0

Because θ is supremized in Rminimax, we pick the action with the smallest worst-case regret. For a1 the
worst-case regret is 16 and for a2 it is 0.01. Therefore we pick a2.

Recall that the risk of a policy δ is
r(π, δ) = EθEx [L(θ, δ(x))]

The expected regret for a policy δ can be expressed as

EθEx
[
L(θ, δ(x))− inf

a
L(θ, a)

]
= EθEx [L(θ, δ(x))]︸ ︷︷ ︸

r(π,δ)

−Eθ∼π
[
inf
a
L(θ, a)

]
(4.2)

The second term on the right hand side of Equation 4.2 does not depend on δ at all. So we have:

r∗(π, δ) = r(π, δ)− Eθ∼π
[
inf
a
L(θ, a)

]
(4.3)

Thus, whether you minimize the Bayes risk, or whether you minimize the Bayes regret, you will find the
same decision rule. The minimax rule and the minimax regret rule are going to be different, however.

4.4 Loss Functions

Returning to the consideration of loss functions, let’s start with a look at the squared loss: L(θ, a) = (θ−a)2.
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There’s a sense in which this can be seen as an approximation to a function of the difference between the
two terms. Suppose we have L(θ, a) = g(θ−a), where g′′(0) > 0. We can write the Taylor Expansion of this
as

g(θ − a) ≈ g(0) + g′(0)(θ − a) +
g′′(0)

2
(θ − a)2 ≈ (θ − a+ c)2

Observe that this is similar to squared loss, with a difference of some constant c.

There are several other popular loss functions. One is the scaled absolute loss, defined as

L(θ, a) =

{
k1(θ − a), θ ≥ a
k2(a− θ), θ < a

If k1 = k2 = k then this can just be written as L(θ, a) = k|θ − a|. We can also consider the zero-one loss,
defined as

L(θ, a) = I{θ 6= a}

4.5 Hypothesis Testing

Recall that in hypothesis testing, we are considering two possible (sets of) states of nature and we wish to
take an action based on which we think is true. Under the null θ ∈ Θ0 we may wish to take action a0 (e.g.,
retain the null) and under the alternative θ ∈ Θ1 we prefer action a1 (reject the null).

Suppose we decide on the zero-one loss, such that L(θ, a) = I{θ 6∈ Θi}.

The risk of a policy δ under a given state of nature θ is therefore

R(θ, δ) = Ex
[
I{θ 6∈ Θδ(x)}

]
We can see that under the null,

R(θ0, δ) = Px∼p(·|θ0)(δ(x) 6= a0) = Px∼p(·|θ0)(δx is incorrect)︸ ︷︷ ︸
Type I Error

Similarly,
R(θ1, δ) = Px∼p(·|θ1)(δx is incorrect)︸ ︷︷ ︸

Type II Error

So we can see that the two types of error in hypothesis testing can be reframed as the risk of a policy under
the null or alternative hypotheses using zero-one loss.


