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3.1 Decision Rules

Recall that a randomized decision rule takes the form: δ∗(x,A) = Pr(A ⊆ A is picked).

On the other hand, a deterministic rule specifies a single action: δ(x) ∈ A.

The question is, can we simplify a randomized decision rule δ∗(x,A) to a deterministic δ(X)? If we consider
A ∈ Rd, we can see that we cannot always act on the expected value Ea∼δ∗(x,·)[a], as the result may not lie
within A unless A is convex.

Theorem 3.1 Derandomization. Suppose A ∈ Rd is convex, and L(θ, a) is a convex function of a ∀θ ∈ Θ.
Let δ∗ be a randomized rule such that δ = Ea∼δ∗(x,·)|a| <∞ ∀x ∈ X . Then, L(θ, δ(X)) ≤ L(θ, δ∗(x, ·)).

Proof: We use the definition of our deterministic rule and Jensen’s inequality to prove this theorem.

L(θ, δ(X)) = L(θ,Ea∼δ∗(x,·)[a]) (3.1)

≤ Ea∼δ∗(x,·)L(θ, a) by Jensen’s inequality (3.2)

= L(θ, δ∗(X, ·)) (3.3)

Given the conditions of Theorem 3.1, this theorem tells us that there exists a simple rule derandomizer that
doesn’t sacrifice loss. Note that this does not work for discrete action spaces, only for continuous spaces
where the action space is convex.

In the previous lecture, we saw a method of going from a randomized decision rule δ∗(X,A) to a decision
rule that just uses the sufficient statistic t, even if the action space is non-convex: δ∗(t, A) = EX|tδ

∗(X,A).

If we try to perform a similar operation on a deterministic decision rule, we get δ(t) = EX|tδ(X), which
may not lie in the action space. So as before, this can only be performed when the action space is convex.
However, the former, randomized method is well-defined and can also operate on deterministic decision rules,
so it is more general and can still be used.

For the specific case where the action space is convex, though, we can also improve a deterministic decision
rule using the Rao-Blackwell theorem, as follows.

Theorem 3.2 Rao-Blackwell Theorem. Suppose A ∈ Rd is convex, and L(θ, a) is a convex function
of a ∀θ ∈ Θ. Let T be a sufficient statistic for θ, and let δ0 be a deterministic decision rule. Then, the
deterministic decision rule δ1(t) = EX|t[δ

0(X)] is R-equivalent to or R-better than δ0.
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Proof:

L(θ, δ1(T )) = L(θ,EX|T [δ0(X))]

≤ EX|T [L(θ, δ0(X))] pulling the expectation out, and using Jensen’s inequality for convex L().

R(θ, δ1) = ET [L(θ, δ1(T ))]

≤ ET [EX|T [L(θ, δ0(X))]]

= R(θ, δ0).

The Rao-Blackwell theorem shows that if we have a sufficient statistic and some decision rule, we have an
easy way of improving on the decision rule (at the very least, it won’t be worse than the original).

3.2 Bayesian Analysis

3.2.1 Definitions

A posterior distribution of θ given samples X is defined as:

Π(θ|X) =
Π(θ)f(X|θ)∫

Π(θ)f(X|θ)dθ)
=

Π(θ)f(X|θ)
m(X)

Let F = {f(X|θ)}θ∈Θ be a class of density families (i.e. Gaussians). A class P denoting the prior distribution
is conjugate to F if Π(θ|X) ∈ P.

Example: Let X ∼ N(θ, σ2), θ ∼ N(β, τ2). Then Π(θ|X) = N(µ(x), ρ2) where

µ(x) =
τ2

τ2 + σ2
X +

σ2

τ2 + σ2
β

1

ρ2
=

1

σ2
+

1

τ2
.

If we instead use the improper prior Π(θ) = 1 (not a valid probability distribution), we can still apply the
Bayes rule and get posterior is Π(θ|X) = N(X,σ2).

So even though the prior may not be a valid probability distribution, the posterior may still be a valid
distribution.

A 100(1− α) credible set C for θ is a subset of θ such that

1− α ≤ P (C|X) =

∫
C

Π(θ|X) dθ.

The size of C is given by S(C) =
∫
C
h(θ) dθ, where h : Θ→ R+. Notice that when h(θ) = 1, this yields the

volume of the set C, a simple and straightforward measure of the size of the set. In choosing a credible sets
for θ, it is usually desirable to try to minimize its size. To do this, one should include in the sets only those
points with the largest posterior density, i.e., the most likely values of θ. (For example, if we can only pick
one element, we would like to pick the one with the largest probability mass.) Our objective is then to find
infC S(C) such that 1− α ≤ P (C|X).
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The solution is given by K(α) where

CK = {θ : f(θ|x) > K}
K(α) = sup{K : P (CK) ≥ 1− α}

Essentially, we find sets of elements with the highest probability masses, then find the smallest of those sets
that has a posterior probability density at least 1−α, yielding CK(α) as a solution to the above optimization
problem.

3.2.2 Bayesian Analysis and Decision Theory

The strength of Bayesian analysis in decision theory is that it combines the loss function and the prior into
something actionable. We start with some definitions.

Bayesian Expected Loss:

ρ(Π(θ|x), a) =

∫
Θ

L(θ, a)Π(θ|x) dθ.

So now, we have some actionable metric that gives us the Bayes estimator in two stages:

1. We compute Π(θ|x) using the Bayes rule, combining prior information with the information that we
have gained from the sample.

2. We can take this posterior distribution and pick an action based on the loss function that minimizes
the Bayesian expected loss.

This is called the Bayes estimator. More formally:

Bayes Estimator:

δΠ(x) = inf
a∈A

L(Π(θ|x), a).

Another quantity that one might be concerned about is the Bayes risk, which takes the expectation of the
loss over the possible distributions of θ, i.e. all possible states of nature.

Bayes Risk:

r(Π, δ) = Eθ∼Π[Ex∼f(x|θ)[L(θ, δ(x))]].

Clearly, we would like to minimize the Bayes risk as well, to get a decision rule δΠ ∈ inf
δ
r(Π, δ). But it turns

out that minimizing the Bayes risk and the Bayesian expected loss is the same! They are both the Bayes
estimator.

Theorem 3.3 Minimization Equivalence Theorem. δΠ ∈ arg inf
δ
r(Π, δ) minimizes δΠ(X) ∈ arg inf

a∈A
ρ(Π(θ|X), a)

for X;m(x) > 0.

Proof: First recall the joint distribution: f(X|θ)Π(θ) = Π(θ|X)m(X).
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Then:

r(Π, δ) =

∫
Θ

∫
X
l(θ, δ(X)) f(X|θ) Π(θ) dXdθ (3.4)

=

∫
X

∫
Θ

l(θ, δ(X)) Π(θ|X) m(X) dX (3.5)

=

∫
X
ρ(Π(θ|X), δ(X)) m(X) dX (3.6)

So we can see that the minimization problems for the Bayesian expected loss and the Bayes risk are the
same, and we get the same estimator. This is quite convenient, as the latter formulation may be harder to
solve, as it deals with not only the distribution of X but with the distribution over states of nature as well.

3.2.3 Advantages and Criticisms of Bayesian Analysis

Advantages:

1. Incorporates prior information over Θ.

2. Π(θ|x) quantifies the uncertainty over θ via a probability distribution. The expected value is a good
way to quantify uncertainty.

3. Conditional perspective.

4. Incorporates loss functions in estimator.

Criticisms:

1. Priors need not be objective, different priors can lead to different answers.

2. Computational difficulty with large-scale priors.

3.3 Minimax Analysis Introduction

Minimax analysis is a frequentist method uses no prior information on Θ. It is useful in the case you want to
be conservative with respect to the loss you might suffer, or if nature is adversarial in how it sets parameters.
However, it is not very actionable in general.

Minimax analysis stems from game theory, and as such we model actions as part of a two-player game
between nature (choosing θ ∈ Θ) and ML/a statistician (choosing a ∈ A). As always, the statistician’s goal
is to minimize the loss L(θ, a), while nature’s goal is to maximize the loss.

Depending which ”player” goes first, i.e. whether the parameter or the decision rule is set first, we define
two values:

V ≡ inf
a∈A

sup
θ∈Θ

L(θ, δ) if nature goes first (3.7)

V ≡ sup
θ∈Θ

inf
a∈A

L(θ, δ) if the statistician goes first (3.8)
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Intuitively, it makes sense that whoever goes first has the advantage, such that V ≥ V . We can also show
this more formally.

Lemma 3.4 For V and V as defined above, V ≥ V .

Proof: By definition of infimum:
sup
θ

inf
a
L(θ, a) ≤ sup

θ
L(θ, b) ∀b

Then, taking an infimum over b on both sides:

inf
b

sup
θ

inf
a
L(θ, a) (3.9)

= sup
θ

inf
a
L(θ, a) ≤ inf

b
sup
θ
L(θ, b) (3.10)

Which we can then see is just V ≤ V .

The minimax strategy for the statistician is δM ∈ arg inf
δ

sup
θ
L(θ, δ).

The maximin strategy for nature is θM ∈ arg sup
θ

inf
a
L(θ, a).


