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21.1 Example

Recall the example that we discussed in the previous lecture, where we assume that there is an expert that
always makes the right prediction. However, the assumption is fairly strong, and sometimes even the best
expert can make mistakes.

Consider another setting where, after round t, set wti = βwt−1i if fi,t 6= yt, where β ∈ (0, 1) is an arbitrary
parameter. The forecast we make at round t is the weighted average of the experts’ advice with weights
wt1, . . . , w

t
N .

Claim 21.1 The number of rounds in which the forecaster makes a mistake is m ≤ m∗ log 1
β+logN

log 2
1+β

, where

m∗ is the number of mistakes the best expert has made up to this point.

Proof: Similar to the proof we did in the last lecture, let Wm be the sum of the weights of all experts after
the forecaster has made m mistakes. Initially, m = 0, wi,0 = 1 for i ∈ {1, 2, . . . N}, and W0 = N . We then
have that

Wm =

N∑
i=1

wi,m

≤ βWm−1

2
+
Wm−1

2
=

(
1 + β

2

)
Wm−1

≤
(

1 + β

2

)m
W0 =

(
1 + β

2

)m
N

Let m∗ be the number of mistakes made by the best expert when the forecaster has made m mistakes. The
weight of the expert is then βm

∗
by the algorithm, and we have

βm
∗
≤Wm ≤

(
1 + β

2

)m
N

Solving the inequality gives

m ≤
m∗ log 1

β + logN

log 2
1+β
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21.2 Weighted Average Forecaster

The weighted average forecaster predicts at time t according to

p̂t =

∑N
i=1 wi,t−1fi,t∑N
i=1 wi,t−1

, which can be viewed as a convex combination of expert advice {f1,t, f2,t, . . . , fn,t}. Assume that the decision
space D is convex and D = Y. Since {f1,t, f2,t, . . . , fN,t} ⊂ D by our assumptions, by convexity p̂t ∈ D as
well.

As our goal is to minimize the total regret, it is reasonable to choose the weights according to the regret up
to time t1. Since Ri,t = Lt − Li,t, it is the difference between the forecasters total loss and that of expert
i after t prediction rounds. The larger Ri,t is, the smaller the expert’s loss after t rounds is. Therefore, if
Ri,t is large, we assign a larger weight to expert i and vice versa. Hence, we view the weight as an arbitrary
increasing function of the experts regret.

We find it convenient to write this function as the derivative of a nonnegative, convex, and increasing function
φ : R→ R, whose derivative is denoted as φ′. The weighted average forecaster is then defined as

p̂t =

∑N
i=1 φ

′(Ri,t−1)fi,t∑N
i=1 φ

′(Ri,t−1)

We start the analysis by making the following observation

Proposition 21.2 If the loss function `(p, y) is convex in the first argument, then

sup
yt∈Y

N∑
i=1

ri,tφ
′(Ri,t−1) ≤ 0

Proof: By Jensen’s inequality we have

`(p̂, yt) = `

(∑N
i=1 φ

′(Ri,t−1)fi,t∑N
i=1 φ

′(Ri,t−1)

)
≤
∑N
i=1 φ

′(Ri,t−1)`(fi,t, t)∑N
i=1 φ

′(Ri,t−1)

Rearrange the terms, we obtain the statement above.

Based on the proposition above, we can view the weighted average forecaster from another perspective.
Define the potential function Φ : RN → R of the form

Φ(u) = ψ

(
N∑
i=1

φ(ui)

)

where φ is any nonnegative, increasing, and twice differentiable function, and ψ is any nonnegative, strictly
increasing, concave, and twice differentiable auxiliary function.

Using this notion of potential function, we can give the following equivalent definition of the weighted average
forecaster

p̂t =

∑N
i=1∇iΦ(Ri,t−1)fi,t∑N
i=1∇iΦ(Ri,t−1)
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. From proposition 21.2 we also know that for any loss function ` convex in the first argument,

sup
yt∈Y

N∑
i=1

ri,t∇iΦ(Ri,t−1) ≤ 0

. The above inequality is equivalent to the Blackwell condition. We can then use this condition to prove the
following theorem

Theorem 21.3 Assume that a forecaster satisfies the Blackwell condition for a potential Φ : RN → R of the

form Φ(u) = ψ
(∑N

i=1 φ(ui)
)

, then for all n = 1, 2, . . .

Φ(Rn) ≤ Φ(0) +
1

2

n∑
t=1

Ct

where

Ct = sup
u∈RN

{
ψ′

(
N∑
i=1

φ(ui)

)
N∑
i=1

φ′′(ui)r
2
i,t

}

With Theorem 21.3, we can bound the maximum regret obtained by an arbitrary expert at round n,
maxiRi,n, defined as

max
i
Ri,n = max

i

n∑
t=1

(`(p̂t, yt)− `(fi,t, yt)) =

n∑
t=1

(
`(p̂t, yt)−min

i
`(fi,t, yt)

)
By definitions of ψ and φ we have

ψ
(
φ
(

max
i
Ri,n

))
= ψ

(
max
i
φ(Ri,n)

)
≤ ψ

(
N∑
i=1

Ri,n

)
= ψ(Rn)

. In the definition of the potential function, we also assumed that ψ is invertible. If φ happens to be invertible
as well, we can easily obtain the following bound

max
i
Ri,n ≤ φ−1ψ−1(φ(Rn))

.

21.2.1 Example: Polynomially Weighted Average Forecaster

Consider following potential function

Φ(u) =

N∑
i=1

(ui)
2
+

, where (ui)+ = max(ui, 0). The weights assigned to the experts are then defined by

wi,t = ∇iΦ(Rt) = ∂Ri,t

, and the regret at round n satisfies
max
i
Ri,n ≤

√
nN

The proof can be found on page 13 of the recommended reading.
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21.2.2 Example: Exponentially Weighted Average Forecaster

Consider following potential function

Φη(u) =
1

η
ln

(
N∑
i=1

eηui

)

, where η is a positie parameter. The weights assigned to the experts are of the form

wi,t = ∇iΦη(Rt) =
eηRi,t∑N
j=1 e

ηRj,t

=
eη(

∑t
s=1(`(p̂s,ys)−`(fi,s,ys))∑N

j=1 e
η(

∑t
s=1(`(p̂s,ys)−`(fj,s,ys))

=
e−ηLi,t∑N
j=1 e

−ηLj,t

Using Theorem 21.3, we can show that

max
i
Ri,n ≤

lnN

η
+
nη

2

and is minimized when η =
√

2 lnN
n . The proof can be found on page 14 of the recommended reading.


