
10-716: Advanced Machine Learning Spring 2019

Lecture 19: March 28
Lecturer: Pradeep Ravikumar Scribes: Xinze Wang, Zhiqi Wang, Fan Fan

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

We can see that if given more samples, computation complexity decreases. However, we don’t have very
good ways to verify the existence of the dotted curve. In other words, given m samples, we couldn’t lower
bound the computation complexity and given a certain computation complexity, we couldn’t lower bound
the number of samples.

Let {0, 1}∗ denote the set of all finite bits strings and Unif {0, 1}∗ denotes the uniform distribution over
{0, 1}∗, the we have the following definition:

Definition 19.1 One-way permutation: A one-way permutation P : {0, 1}∗ 7→ {0, 1}∗ is a boolean function
which for any n, maps {0, 1}∗ to itself; there exists an algorithm for computing P(x) with polynomial runtime.
And for ∀ polynomial-time algorithm A, ∀ x, P

x∈unif{0,1}∗
[A(P (x)) = x] < 1

poly(n) for sufficient large n.

It’s widely conjectured that such one-way permutation exist. One concrete candidate is the RSA permutation
function. P(x) ≡ x3 mod N, which treats x ∈ {0, 1}n as a number in {0, ..., 2n − 1}. Here, N is a product
of two random primes of length n such that (p - 1)(q - 1) does not divide 3. Since the existence of such a
one-way permutation would imply P 6= NP, there is no formal proof that such functions exist.

Let P be a one-way permutation, and consider a classification problem. Let X = {0, 1}n and treat it as a
pair (r, s). Let f∗(x) =< r, p−1(s) >∈ {0, 1}, where < r, r

′
>=

∑n
i=1 rir

′

i mod 2. The hypothesis class H
consists of randomized functions, parameterized by {0, 1}n, and defines as follow:

hα(r, s) =

{
< r, α >, if α = p−1(s)

Unif{0, 1}, otherwise

19-1

19-2 Lecture 19: March 28

H = {hα}α∈{0,1}n . We define Dα as a distribution such that:

Dα = {< r, P (α) >︸ ︷︷ ︸
x

, < r, α >︸ ︷︷ ︸
y

}

Note that r ∈ {0, 1}n. Also, note that for any such distribution Dα, infh∈H err(h) = 0, and this is achieved
with the hypothesis hα.

19.1 Learning Algorithms

Theorem 19.2 There exists an agonostic binary classification learning problem over X = {0, 1}2n and
Y = {0, 1} with the following properties:

1. It is inefficiently learnable with sample size m = O(1/ε2), and running time O(2n +m).

2. Assuming one-way permutations exist, there exist no polynomial-time learning algorithm based on a
sample of size O(log(n)).

3. It is efficient learnable with a sample of size m = O(n/ε2). Specifically, the trainging time is O(m),
resulting in an improper predictor whose runtime is O(m3).

For the theorem 19.2.2 it implies that the learning algorithm based on a sample of size O(log(n)) will fail to
learn a classifier with low error.

Proof: We consider the following ”hard” set of distributions Dα, parameterized by α ∈ {0, 1}n: each Dα is
a uniform distribution over all ((r, P (α)), 〈r, α〉). Note that there are exactly 2n such examples, one for each
choice of r ∈ {0, 1}n. Also, note that for any such distribution Dα, infh∈H err(h) = 0, and this is achieved
with the hypothesis hα.

First, we will prove that with a sample size m = O(log(n)), any efficient learner fails on at least one of the
distributions Dα. Suppose on the contrary that we have an efficient distribution-free learner A, that works
on all Dα, in the sense of seeing m = O(log(n)) examples and then outputting some hypothesis h such that
h(r, P (α)) = 〈r, α〉 with even some non-trivial probability (e.g. at least 1/2 + 1/poly(n)). However, by the
Goldreich-Levin Theorem, such an algorithm can be used to efficiently invert P , violating the assumption
that P is a one-way permutation.

Thus, we just need to show how given P (x), r, we can efficiently compute 〈x, r〉 with probability at least
1/poly(n). The procedure works as follows: we pick m = O(log(n)) vectors r1, ..., rm uniformly at random
from {0, 1}n, and pick uniformly at random bits b1, ..., bm, bi ∼ Uniform{0, 1}n. We then apply our learning
algorithm A over the examples Dm ≡ {(ri, P (α)), bi}mi=1, getting us some predictor h

′
. We then attempt to

predict 〈x, r〉 by computing h
′
((x, P (x))).

To see why this procedures works, we note that with probability of 1/2m = 1/poly(n), we picked values for
b1, ..., bm such that bi = 〈ri, α〉 for all i. If this event happened, then the training set we get is distributed
like m i.i.d. examples from Dm. By our assumption on A, and the fact that infh err(h) = 0, it follows that
with probability at least 1/poly(n), A will return a hypothesis which predicts correctly with probability at
least 1/2 + 1/poly(n) as required.

Lemma 19.3 Let Dα ≡ {(ri, P (α))︸ ︷︷ ︸
xi

, 〈ri, alpha〉}︸ ︷︷ ︸
yi

, for a test point (r, P (α)), suppose r ∈ span({r1, ..., rm}),

which is r =
∑m
i=1 ciri; 〈r, α〉 =

∑n
i=1 ci〈ri, α〉 =

∑n
i=1 ciyi, then

Lecture 19: March 28 19-3

P (r /∈ span(({ri}mi=1))) ≤ n

m
≤ ε

m ≥ n

ε

Proof: For a set of random variables r1, ..., rm, let Bi is indicator random variable that indicate whether
ri /∈ span({r1, ..., ri−1}), so Bi ∈ {0, 1},

m∑
i=1

Bi ≤ n

n ≥
n∑
i=1

E[Bi]︸ ︷︷ ︸
pi

≥ mPm

where 1 = P1 ≥ P2... ≥ Pm
Pm ≥

n

m

Bi decreases with the increase of ri.

In the setting of this classification problem, we still couldn’t figure out the time needed given nα samples.

We cannot bound the time token between O(log(n)) and O(nε) for sample size.

19.2 Sparse PCA

For i.i.d. samples of vectors X drawn from Rd with E[X] = 0, the first principle component is a direction v,
such that

arg sup
v:‖v‖2=1
v:‖v‖0=k

E[(vTX)2]

which means the variance along direction v is larger than in any other direction. If no such v exists, the
distribution of X is said to be isotropic. The goal of sparse PCA is to test whether X follows an isotropic

19-4 Lecture 19: March 28

distribution P0 or a Pv, which exists a sparse v, where v : ‖v‖0 = k < d, along with the variance.

Without loss of generality, we define null hypothesis H0 and Hθ
1 :

H0 ≡ sup
v:‖v‖2=1

E[(vTx)2] = 1

Hθ
1 ≡ sup

v:‖v‖2=1v:‖v‖0=k
E[(vTX)2] = 1 + θ

Under H0, we assume that X is under the isotropic distribution, all directions have unit variance. Under
Hθ

1 , we assume the variance along v is equal to 1 + θ, where θ is much larger than 1. Note that since v has
unit norm, θ captures the signal strength.

Similar to the previous GGM example, when θ is much larger than 1, it’s easy to perform the hypothesis
testing. From information theoretical limit, when

θ �
√
k log d

n

no algorithm can control the hypothesis testing error to 0 as n goes to infinity.

There exists no polynomial time algorithm for α < 2

19.3 Planted Clique Problem

For random graphs, the number of vertices |V | = m fix an integer m ≥ 2 and let Gm denote the set
of undirected graphs on m vertices. For all pairs of vertices, add edges with probability P . Denote by
G(m, p = 1/2) the distribution over Gm generated by choosing to connect every part of vertices by an edge
independently with probability 1/2. For any κ ∈ 2, ...,m, the distribution G(m, 1/2, κ) is constructed by two
steps:

• pick a random subset of κ vertices and place a clique between them

Lecture 19: March 28 19-5

• for all remain pairs of vertices, add edges with probability P = 1/2

Theorem 19.4 Fix m ≥ κ ≥ 2, let Planted Clique denote the following statistical hypothesis testing
problem:

HPC
0 : G ∼ G(m, 1/2) = P

(G)
0

[HPC
1 : G ∼ G(m, 1/2, κ) = P

(G)
1

A test for the planted clique problem is a family ξ = {ξm,k}, where ξm,k : Gm → {0, 1}.

For κ that is extremely large, say κ = n, the problem is easy since there will be a point mass over a fully
connected graph. For κ that is small, say, κ = 2, the first step is just to pick 2 vertices and add an edge.
There’s no way to distinguish between the two hypothesis.

Planted Clique Conjecture: 6 ∃ polynomial time algorithm with vanishing test error when κ ≤ O(
√
m)

19-6 Lecture 19: March 28

19.4 Algorithmic Weakening

Question: is there a practical way to reduce computation complexity given more samples?

P ≡ ProblemSize
εA(P) ≡ Error
TA(P) ≡ Time

nA(P) ≡ # Samples used

If we fix ε(P) = 0.1, see if we could get a curve similar to the right side.

19.4.1 Denoising

Given the following, where X∗ is the target signal

Yi = X∗ + σZi

Zi ∼ N(0, I)

Our goal is to recover X∗ given {Yi}ni=1 and we have prior info that X∗ ∈ S ⊆ Rd. A natural estimator is
that:

min
X inS

n∑
i=1

||X − Yi||22 ≡ min
X∈S
||X −

∑n
i=1 Yi
n

||

References

[W] M. Wainwright, “High Dimensional Statistics,” Prerelease, 2019

[CJY18] Yuansi Chen, Chi Jin, Bin Yu, “Stability and Convergence Trade-off of Iterative Optimiza-
tion Algorithms,” 2018

[SPR] Arun Sai Suggala, Adarsh Prasad, Pradeep Ravikumar, “Connecting Optimization
and Regularization Paths,” NeurIPS 2018

