10-716: Advanced Machine Learning Spring 2019

Lecture 19: March 28
Lecturer: Pradeep Ravikumar Scribes: Xinze Wang, Zhiqi Wang, Fan Fan

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

T(Time) N
3 DNF

O(24d) —'O— Exponential

"
"

L Polynomial
O(d"3) T el D) {Lifted) Conj
| »
Ofd} m O{d~3) n (# samples)

We can see that if given more samples, computation complexity decreases. However, we don’t have very
good ways to verify the existence of the dotted curve. In other words, given m samples, we couldn’t lower
bound the computation complexity and given a certain computation complexity, we couldn’t lower bound
the number of samples.

Let {0,1}* denote the set of all finite bits strings and Unif {0,1}* denotes the uniform distribution over
{0,1}*, the we have the following definition:

Definition 19.1 One-way permutation: A one-way permutation P : {0,1}* — {0,1}* is a boolean function
which for any n, maps {0, 1}* to itself; there exists an algorithm for computing P(x) with polynomial runtime.

And for ¥ polynomial-time algorithm A, V =, _IJE}O . [A(P(z)) =] < ﬁ(n) for sufficient large n.
xreuni, S

It’s widely conjectured that such one-way permutation exist. One concrete candidate is the RSA permutation
function. P(x) = 23 mod N, which treats z € {0,1}" as a number in {0, ...,2" — 1}. Here, N is a product
of two random primes of length n such that (p - 1)(q - 1) does not divide 3. Since the existence of such a
one-way permutation would imply P # NP, there is no formal proof that such functions exist.

Let P be a one-way permutation, and consider a classification problem. Let X = {0,1}" and treat it as a
pair (r,s). Let f*(z) =< r,p~'(s) >€ {0,1}, where < r,r >= >"" r;r, mod 2. The hypothesis class H
consists of randomized functions, parameterized by {0, 1}", and defines as follow:

ha(r, 5) = <r,a>, ifa=pi(s)
V77| Unif{0,1}, otherwise

19-1

19-2 Lecture 19: March 28

H = {ha}acfo,13n- We define D, as a distribution such that:

D, ={<rPla) > <ra>}
—_— —
x Yy

Note that r € {0,1}". Also, note that for any such distribution Dy, infpey err(h) = 0, and this is achieved
with the hypothesis h,.

19.1 Learning Algorithms

Theorem 19.2 There exists an agonostic binary classification learning problem over X = {0,1}?" and
Y ={0,1} with the following properties:

1. It is inefficiently learnable with sample size m = O(1/€?), and running time O(2" +m).

2. Assuming one-way permutations exist, there exist no polynomial-time learning algorithm based on a
sample of size O(log(n)).

3. 1t is efficient learnable with a sample of size m = O(n/€?). Specifically, the trainging time is O(m),
resulting in an improper predictor whose runtime is O(m3).

For the theorem 19.2.2 it implies that the learning algorithm based on a sample of size O(log(n)) will fail to
learn a classifier with low error.

Proof: We consider the following "hard” set of distributions D,,, parameterized by « € {0,1}": each D, is
a uniform distribution over all ((r, P(a)), (r,)). Note that there are exactly 2" such examples, one for each
choice of r € {0,1}™. Also, note that for any such distribution D,,, infrey err(h) = 0, and this is achieved
with the hypothesis h,.

First, we will prove that with a sample size m = O(log(n)), any efficient learner fails on at least one of the
distributions D,. Suppose on the contrary that we have an efficient distribution-free learner A, that works
on all D,, in the sense of seeing m = O(log(n)) examples and then outputting some hypothesis h such that
h(r, P(a)) = (r,a) with even some non-trivial probability (e.g. at least 1/2 + 1/poly(n)). However, by the
Goldreich-Levin Theorem, such an algorithm can be used to efficiently invert P, violating the assumption
that P is a one-way permutation.

Thus, we just need to show how given P(z),r, we can efficiently compute (x,r) with probability at least
1/poly(n). The procedure works as follows: we pick m = O(log(n)) vectors ry, ..., r, uniformly at random
from {0, 1}"™, and pick uniformly at random bits by, ..., by, b; ~ Uniform{0,1}™. We then apply our learning
algorithm A over the examples D,, = {(r;, P()), b;}"™,, getting us some predictor . We then attempt to
predict (z,7) by computing A’ ((z, P(z))).

To see why this procedures works, we note that with probability of 1/2™ = 1/poly(n), we picked values for
b1, ..., by such that b, = (r;, «) for all 4. If this event happened, then the training set we get is distributed
like m 4.i.d. examples from D,,. By our assumption on A, and the fact that inf, err(h) = 0, it follows that
with probability at least 1/poly(n), A will return a hypothesis which predicts correctly with probability at
least 1/2 + 1/poly(n) as required. [|

Lemma 19.3 Let D, = {(r;, P(a)), (r;,alpha)}, for a test point (r, P(«)), suppose r € span({ri,....Tm}),
—_——— —— ——

T4 Yi

which is =Y 1" ¢iri; (rya) = >0 ¢, a) = Y0 ¢y, then

Lecture 19: March 28 19-3

Proof: For a set of random variables ry,...,7,,, let B; is indicator random variable that indicate whether
r; & span({ri,...,mi—1}), so B; € {0,1},

m

S p<n

i=1
pi
where 1 = P; > P... > P,
n
P> —
m
B; decreases with the increase of r;.
T(Time)
O
——— Exponential
L Palynomial
| »
login) nha Qinfe) m (# samples)
ac (0, 1)

In the setting of this classification problem, we still couldn’t figure out the time needed given n® samples.

We cannot bound the time token between O(log(n)) and O(2) for sample size. [|

19.2 Sparse PCA

For i.i.d. samples of vectors X drawn from R¢ with E[X] = 0, the first principle component is a direction v,
such that
arg sup F[(vTX)?]
viljv]]2=1
vif|lv]o=Fk
which means the variance along direction v is larger than in any other direction. If no such v exists, the
distribution of X is said to be isotropic. The goal of sparse PCA is to test whether X follows an isotropic

19-4 Lecture 19: March 28

distribution Py or a P,, which exists a sparse v, where v : ||v||g = k < d, along with the variance.

Without loss of generality, we define null hypothesis Hy and H?:

Hy= sup E[vTz)?]=1

vi||v||2=1
HY = sup E[(wvT"X)]=1+6
v:||v]|2=1v:||v]lo=k

Under Hy, we assume that X is under the isotropic distribution, all directions have unit variance. Under
HY, we assume the variance along v is equal to 1 + 6, where 6 is much larger than 1. Note that since v has
unit norm, 6 captures the signal strength.

Similar to the previous GGM example, when 6 is much larger than 1, it’s easy to perform the hypothesis
testing. From information theoretical limit, when

klog d
h< (28
n

no algorithm can control the hypothesis testing error to 0 as n goes to infinity.

T(Time)

Exponential

Paolfnomial
| >

Wik logd / n) Vik*a logd /) W(k*2 logd / n)
ae {0 1)

8

There exists no polynomial time algorithm for a < 2

19.3 Planted Clique Problem

For random graphs, the number of vertices |V| = m fix an integer m > 2 and let G,, denote the set
of undirected graphs on m vertices. For all pairs of vertices, add edges with probability P. Denote by
G(m,p = 1/2) the distribution over G,, generated by choosing to connect every part of vertices by an edge
independently with probability 1/2. For any « € 2,...,m, the distribution G(m, 1/2, k) is constructed by two
steps:

e pick a random subset of k vertices and place a clique between them

Lecture 19: March 28 19-5

e for all remain pairs of vertices, add edges with probability P = 1/2

Theorem 19.4 Fix m > k > 2, let Planted Clique denote the following statistical hypothesis testing
problem:

HPC : G ~G(m,1/2) = P{¥
[HFC . G~ G(m,1/2,k) = P{?

A test for the planted clique problem is a family & = {&m 1}, where &y i 2 Gm — {0,1}.

For x that is extremely large, say x = n, the problem is easy since there will be a point mass over a fully
connected graph. For k that is small, say, x = 2, the first step is just to pick 2 vertices and add an edge.
There’s no way to distinguish between the two hypothesis.

T(Time)

v

O .
——— Exponential

[

"

L Polynomial

L 2

log(m) vm

Planted Clique Conjecture: A polynomial time algorithm with vanishing test error when x < O(y/m)

19-6 Lecture 19: March 28

19.4 Algorithmic Weakening

Question: is there a practical way to reduce computation complexity given more samples?

T{Time)

T(P)
A '
Subsampling
Coresets
- --pptimal
samples (P}

P = ProblemSize

e (P) = Error

TA(P) = Time

n“(P) = # Samples used

If we fix ¢(P) = 0.1, see if we could get a curve similar to the right side.

19.4.1 Denoising

Given the following, where X* is the target signal

Yi=X*+0Z
Z; ~ N(0,1)

Our goal is to recover X* given {Y;} ; and we have prior info that X* € S C R% A natural estimator is
that:

2iz1 Yi
n

n
i X —Yi||5 = mi —
Xm;gszlll ill3 = min || X I
1=

References

[W] M. WAINWRIGHT, “High Dimensional Statistics,” Prerelease, 2019

[CJY18] Yuanst CHEN, CHI JIN, BIN YU, “Stability and Convergence Trade-off of Iterative Optimiza-
tion Algorithms,” 2018

[SPR] ARUN SAI SUGGALA, ADARSH PRASAD, PRADEEP RAVIKUMAR, “Connecting Optimization
and Regularization Paths,” NeurIPS 2018

