
10-716: Advanced Machine Learning Spring 2019

Lecture 18: April 2
Lecturer: Pradeep Ravikumar Scribes: Xuejian Wang, Zijun Shi, Mengxiong Liu

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

18.1 Oracle Complexity

18.1.1 Statistical Query Model

Suppose x ∼ P , which we don’t have access to. Instead, we have access to an oracle that takes a query
q : x→ Rd and returns Zq ∈ Rd, which is a noisy evaluation of Ex∼P [q(x)], with a guarantee that

P
(

sup
q∈Q

∣∣ZQ − Ex∼P [q(x)]
∣∣ ≥ τQ) ≤ ε

i.e., ZQ concentrated around Ex∼P [q(x)]. We aim to minimize the empirical risk by only querying the oracle.
We are interested in establishing lower bounds on the sample complexity under a computational budget.

Definition 18.1 Let P be the problem space, ΦT be the set of algorithms that makes at most T queries to
the oracle, ρ be some distance measure between two solutions, P̄ be the distribution over oracle answers.
Then the minimax error is defined as

inf
φ̂∈ΦT

sup
P∈P

EP̂

[
ρ(φ̂, θ(P))

]

18.1.2 Hypothesis Testing

Consider the case of hypothesis testing, H0 ≡ θ ∈ G0, H1 ≡ θ ∈ G1, φ : Z → {0, 1}, where Z is the oracle
output. Then the minimax error can be written as the following

inf
φ

[
sup
θ∈G0

Pθ(φ(Z) = 1) + sup
θ∈G1

Pθ(φ(Z) = 0)
]

E.g. Gaussian Mixture Model H0 ≡ X ∼ N (µ0,Σ), H1 ≡ X ∼ vN (µ1,Σ) + (1 − v)N (µ2,Σ) with
µ0, µ1, µ2 ∈ Rp and v fixed. Let s = ||µ1 − µ2||0, we have the following information theoretic lower bound.

testing error > c′ > 0 if ‖µ1 − µ2‖2 ≤ c
√
s log p

n

testing error
n→∞−−−−→ 0 if ‖µ1 − µ2‖2 > c

√
s log p

n

18-1

18-2 Lecture 18: April 2

Let ΦT be the set of algorithms that makes at most T queries to the oracle with T = O(dc), using oracle
complexity we have the following lower bound

testing error
n→∞−−−−→ 0 if ‖µ1 − µ2‖2 ≥

√
s2 log p

n

testing error > c′ > 0 if ‖µ1 − µ2‖2 = O

(√
s2 log p

n

)

18.1.3 Stochastic Gradient Descent

Let f : x → R be the function to be minimized, ΦT be the set of algorithms that makes at most T queries
to the oracle, which returns a noisy gradient g given any input x. Furthermore, assume ∀x, we have

E[g] = ∇f(x)

E
[
(g −∇f(x))2

]
≤ σ2

Then the minimax error has the following lower bound

inf
φ∈ΦT

sup
f∈F

EZ

[
ρ(φ(Z), inf

x
f(x))

]
≥

{
c√
T
F is a set of convex Lipschitz functions

c
T F is a set of strongly convex functions

where the expectation is taken over oracle answers.

18.2 Decision Problems

Define {0, 1}∗ =
⋃
n≥0{0, 1}n where {0, 1}n be n bits binary string. Define f : {0, 1}∗ → {0, 1}. Define

language associated with f, Lf = {x ∈ {0, 1}∗|f(x) = 1}. Then x ∈ Lf ⇔ f(x) = 1.

18.2.1 Deterministic time and the class P

Definition 18.2 (Computing a function and running time) Let f : {0, 1} → {0, 1} and let T : N→ N
be some functions, and let M be a Turing machine. We say that M computes f in T (n)-time if for every
x ∈ {0, 1}, if M is initialized to the start configuration on input x, then after at most T (|x|) steps it halts
with f(x) written on its output tape. We say that M computes f if it computes f in T (n) time for some
function T : N→ N.

Definition 18.3 (The class DTIME) Let T : N → N be some function. We let DTIME(T (n)) be the
set of all Boolean (one bit output) functions that are computable in c · T (n)-time for some constant c > 0.

Definition 18.4 (The class P) P =
⋃
c≥1 DTIME(nc)

The class P contains all decision problems that could be solved by Turing machines in polynomial times.
Normally, we say the problems in P are efficiently solvable.

Lecture 18: April 2 18-3

18.2.2 Criticisms of P

• Requires the amount of computation to be bounded for all input. However, not all possible inputs
arise in practice.

• Formulates computation in terms of decision problems, which are too limited.

• Does there exist other physically realizable computation device, such as an alien computer, faster than
Turing Machine?
No, according to Church-Turing (CT) thesis, which states that every physically realizable computation
device whether its silicon-based, DNA-based, neuron-based or using some alien technology can be
simulated by a Turing machine. (The CT thesis is not a theorem, merely a belief about the nature of
the world.) However, there are several objections made to the strong form of CT thesis.

18.2.3 The class NP

Definition 18.5 (The class NP) A language L ⊆ {0, 1}∗ is in NP if there exists a polynomial p : N→ N
and a polynomial time Turing machine M such that ∀x ∈ {0, 1}∗:

x ∈ L⇔ ∃u ∈ {0, 1}p(|x|) s.t. M(x, u) = 1

Here u is called a certificate for x w.r.t. language L and machine M .

For example, given an inequality Ax ≤ b, we would like to know whether there is a rational solution x to the
problem. This might not be easy to answer. However, if a possible solution u is also given, we can check if
Au ≤ b.

Theorem 18.6 P ⊆ NP ⊆ ∪c>1DTIME(2nc)

18.2.4 Reducibility, NP-hard and NP-completeness

Definition 18.7 (Reduction) A ⊆ {0, 1}∗ is polynomial-time reducible to some other language B ⊆
{0, 1}∗, if there exists polynomial-time computation f{0, 1}∗ → {0, 1}∗, s.t. ∀x ∈ {0, 1}∗, x ∈ A, if and
only if f(x) ∈ B.

Definition 18.8 (NP-hard) B is NP-hard, if ∀A ∈ NP , A is reduced in B.

Definition 18.9 (NP-complete) B is NP-complete, if B is NP-hard and B ∈ NP .

18.2.5 Decision vs. Search

Given an inequality Ax ≤ b, a decision problem is asking whether there exists a rational solution, while a
search problem is asking what exactly the solution is.

Apparently, the search problem is harder than the decision problem. However, if the problem is NP-complete,
they are equivalent in the sense that if the decision problem can be solved(hence P = NP) then the search
problem can also be solved in polynomial time.

18-4 Lecture 18: April 2

Theorem 18.10 There exists polynomial time TM M where x ∈ L iff ∃u ∈ {0, 1}p(|x|) such that M(x, u) =
1. There exists TM B that makes polynomial queries to NP-decision oracle, such that M(x,B(x)) = 1,

B(x) ∈ {0, 1}p(|x|).

18.3 Computation Complexity of Learning

Next, we study how size of training data can be leveraged to reduce computational complexity. We’ll give
a toy example first and delve deeper in the next lecture. We follow the notation of [SST] in the following
sections. Let x ∈ X , y ∈ Y, a prediction rule h : x → y. A learning algorithm, A, receives a training set of
m examples, Sm = ((x1, y1), ..., (xm, ym)) and produces a prediction rule A(m). The goal of the learner is
to find a prediction rule with low risk, defined as

err(h) = E(x,y)∼D

[
l(h(x), y)

]
The learner is required to produce a predictor whose risk will be close to inf

h∈H
err(h). Denote by time(A,m)

the upper bound on the run time of the algorithm A when running on any training set of m examples. The
main object that we will be studying is the following:

TH,ε(m) = min{∃A s.t. ∀D, time(A,m) ≤ t ∧ err(A(m)) ≤ inf
h∈H

err(h) + ε}

18.3.1 Learning 3-DNF

The following example is adopted from [SST]. Consider the problem of learning the class of 3-term disjunctive
normal form (DNF) formulas in the realizable case. A 3-DNF is a boolean function, h : {0, 1}d → {0, 1},
of the form h(x) = T1(x) ∧ T2(x) ∧ T3(x), where Ti(x) is a conjunction of an arbitrary number of literals,
e.g. Ti(x) = x1 ∧ ¬x3 ∧ x5 ∧ ¬x7. Since the number of 3-DNF formulas is at most 33d, it follows that the
information theoretic sample complexity is O(dε). However, unless RP=NP, the search problem of finding a
3-DNF formula which is (approximately) consistent with a given training set cannot be performed in poly(d)

time. On the other hand, if number of samples m = θ(d
3

ε) then TH,ε(m) = poly(dε). Note that there is no
contradiction between the last two sentences, since the former establishes hardness of proper learning while
the latter claims feasibility of improper learning. The reduction of computational complexity comes with
the fact that with more samples we can search in a large hypothesis space to achieve the same generalization
error.

References

[SST] Shalev-Shwartz, Shamir, Tromer, “Using More Data to Speed-up Training Time” Proceed-
ings of the 15th International Con- ference on Artificial Intelligence and Statistics (AISTATS),
2012.

[AB] Arora, Sanjeev, Barak, Boaz, “Computational complexity: a modern approach” Cam-
bridge University Press, 2009.

