
Homework 1 Solution

Advanced Machine Learning 10-716

Due at 11:59pm on Tuesday, Feb 5.
You are required to start the solution to each problem on a new page. Please make

sure to assign the pages to their respective questions on Gradescope.

1 Bayesian Analysis I (Shawn Lyu)

1. Write out the posterior expected loss as∫
Θ

w(θ)(θ − a)2dFπ(θ|x)(θ)

The loss, a weighted sum of convex functions, is a Take the derivative wrt a and set it to 0 we
have

0 =
d

da

∫
Θ

w(θ)(θ − a)2dFπ(θ|x)(θ)

which can be expanded to

0 =
d

da

∫
Θ

(
w(θ)θ2 − 2aw(θ)θ + a2w(θ)

)2
dFπ(θ|x)(θ) = 2Eπ(θ|x)[θw(θ)]− 2aEπ(θ|x)[w(θ)]

Solving this just shows that the Bayes rule is

δπ(x) =
Eπ(θ|x)[θw(θ)]

Eπ(θ|x)[w(θ)]

2. (a) From the Berger book, section 4.4.2 result 3, we know that the Bayes rule for this kind
of loss is

δπ(x) = Eπ[θ]

The goal is then for us to find the posterior distribution π(θ|X = x). Since Beta distri-
bution is the conjugate prior to binomial distribution we know that

θ|X ∼ Beta(x+ 3, 14− x)

and that

δπ(x) =
x+ 3

17

(b) From the Berger book, section 4.4.2 result 5 the Bayes estimator is the median of the
posterior, which tells us directly that

δπ(x) =
3x+ 8

49
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(c) From the Berger book, section 4.4.2 result 4 (or the result above), we know that the Bayes
rule for weighted loss is

δπ(x) =
Eπ(θ|x)[θw(θ)]

Eπ(θ|x)[w(θ)]

Note that since θ|x ∼ Beta(x+ 3, 14− x), expanding the pdf yields

Eπ(θ|x)[w(θ)]

=Eπ(θ|x)

[
1

θ(1− θ)

]
=

∫
θx+2(1− θ)13−x

B(x+ 3, 14− x)

1

θ(1− θ)
dθ

=

∫
Γ(17)

Γ(x+ 3)Γ(14− x)
θx+1(1− θ)12−xdθ

=
Γ(17)Γ(x+ 2)Γ(13− x)

Γ(15)Γ(x+ 3)Γ(14− x)

∫
Γ(15)

Γ(x+ 2)Γ(13− x)
θx+1(1− θ)12−xdθ

=
16!

14!(x+ 2)(13− x)

We then find the weighted expected value of θ, which is just

Eπ(θ|x)[θw(θ)]

=

∫
Γ(17)

Γ(x+ 3)Γ(14− x)
θx+2(1− θ)13−x 1

1− θ
dθ

=
Γ(17)Γ(x+ 3)Γ(13− x)

Γ(16)Γ(x+ 3)Γ(14− x)

∫
Γ(16)

Γ(x+ 3)Γ(13− x)
θx+2(1− θ)12−xdθ

=
16

(13− x)

Plug these two together we have

δπ(x) =
x+ 2

15
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2 Bayesian Analysis II (Shawn Lyu)

1. Based on the constraint write the decision rule as

δπ(x) = (a1, 1− a1)T

we have that the loss can be written as∫
Θ

θ2
1a

2
1 + θ2

2 + θ2
2a

2
1 + 1 + 2θ1θ2a1 − 2θ1θ2a

2
1 − 2θ1a1 − 2θ2

2a1 − 2θ2 + 2θ2a1dF
π(θ)

Set the derivative wrt to a1 to 0 we have

0 = 2E[θ2
1]a1 + 2E[θ2

2]a1 + 2E[θ1θ2]− 4E[θ1θ2]a1 − 2E[θ1]− 2E[θ2
2] + 2E[θ2]

Since the conjugate prior of Gaussian is Gaussian, we have

θ|x ∼ N
(
x+ µ

2
,

1

2
I2

)
We then have

E[θ2
1] =

(x1 + µ1)2 + 2

4

E[θ2
2] =

(x2 + µ2)2 + 2

4

E[θ1] =
x1 + µ1

2

E[θ2] =
x2 + µ2

2

E[θ1θ2] =
(x1 + µ1)(x2 + µ2)

4

Plug these back on top to obtain

(x1 + µ1)2 + (x2 + µ2)2 + 4− 2(x1 + µ1)(x2 + µ2)

2
a1 = − (x1 + µ1)(x2 + µ2)

2
+x1+µ1+

(x2 + µ2)2

2
+1−x2−µ2

So

a1 =
(x2 + µ2)2 + 2 + 2(x1 + µ1)− 2(x2 + µ2)− (x1 + µ1)(x2 + µ2)

(x1 + µ1)2 + (x2 + µ2)2 + 4− 2(x1 + µ1)(x2 + µ2)

and the other parameter is

a2 =
(x1 + µ1)2 + 2 + 2(x2 + µ2)− 2(x1 + µ1)− (x1 + µ1)(x2 + µ2)

(x1 + µ1)2 + (x2 + µ2)2 + 4− 2(x1 + µ1)(x2 + µ2)

Finally, our decision rule is just

δπ(x) =

[
a1

a2

]
2. Expand the loss ∫

Θ

θTQθ − 2θTQa+ aTQadFπ(θ)

Find the derivative wrt a and set to 0 to obtain

0 = 2E[θT ]Q− 2aTQ

We then easily know that
δπ(x) = Eπ[θ]
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3 Minimax Analysis I (Karthika Nair and Yao-Hung Tsai)

1. Let δ′ be another decision rule. Since δ is admissible, we can always find a point θ′ depending
on δ′ s.t.

R(θ0, δ) ≤ R(θ′, δ′).

Since δ has constant risk, we have the following inequalities

sup
θ
R(θ, δ) = R(θ0, δ) ≤ R(θ′, δ′) ≤ sup

θ
R(θ, δ′).

(4 pts) Note that δ′ can be arbitrary decision rule. Therefore, δ is minimax. (1 pts) If unique
Bayes, then unique minimax.

2. (a) A = { a1, a2, a3 }
where a1 = Order of 15, a2 = Order of 30, a3 = Order of 45

Θ = {θ1, θ2, θ3, θ4}
where θ1 = Demand of 20, θ2 = Demand of 25 and θ3 = Demand of 30, θ4 = Demand of
45

a1 a2 a3

θ1 -425 -350 -50
θ2 -400 -700 -400
θ3 -375 -1050 -750
θ4 -300 -975 -1800

(b) All actions are admissable.

(c) p(π,a1) = 0.2(-425) + 0.4(-400) + 0.2(-375) + 0.2(-300)
= -380
p(π,a2) = 0.2(-350) + 0.4(-700) + 0.2(-1050) + 0.2(-975)
= -755
p(π,a3) = 0.2(-50) + 0.4(-400) + 0.2(-750) + 0.2(1800)
= -680
The Bayes action is a2.

(d) supθ(R(θ, a1) = -300
supθ(R(θ, a2) = -350
supθ(R(θ, a3) = -50
The minimax action is a2 and its corresponding value is -350.

3. (a) A = {a1: without marketing campaign, a2: with marketing campaign }
Θ = [0,1]

L(θ, a1) =

{
−(2 + 3θ), 0 ≤ θ < 0.7

−5, 0.7 ≤ θ ≤ 1

L(θ, a2) =

{
−(4 + 1.5θ), 0 ≤ θ < 0.7

−4, 0.7 ≤ θ ≤ 1

(b) ρ(π, a1) = Eπ[L(θ, a1)]

=
∫ 1

0
L(θ, a1)π(θ)dθ

=
∫ 0.7

0
−(2 + 3θ)dθ +

∫ 1

0.7
(−5)dθ
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= -2.135 - 1.5
= -3.635

ρ(π, a2) = Eπ[L(θ, a2]

=
∫ 1

0
L(θ, a2)π(θ)dθ

=
∫ 0.7

0
−(4 + 1.5θ)dθ +

∫ 1

0.7
(−4)dθ

= -3.1675 - 1.2
= -4.3675

Hence, a2 is the Bayesian action.

(c) supθ(R(θ, a1) = supθ(L(θ, a1) = -2 (when θ = 0)
supθ(R(θ, a2) = supθ(L(θ, a2) = -4 (when θ = 0)
Hence, a2 is the minimax action.
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4 Minimax Analysis II (Karthika Nair and Yao-Hung Tsai)

1. For any other estimator δ′, we have

sup
θ
R(θ, δ′) ≥

∫
R(θ, δ′)π(dθ)

≥
∫
R(θ, δ∗0)π(dθ) = sup

θ
R(θ, δ∗0).

(2 pts)

Therefore, δ∗0 is minimax. If δ∗0 si unique Bayes under π, then the second inequality is strict
and thus makes δ∗0 to be a unique minimax. (1 pt)

Let π′ be another prior over Θ. Then we have

R(π′, δπ′) =

∫
R(θ, δπ′)π′(dθ)

≤
∫
R(θ, δ∗0)π′(dθ)

≤ sup
θ
R(θ, δ∗0) = R(π, δ∗0)

(2 pt)

Therefore, π is least favorable. (1 pt)

2. Let δ0 be an equalizer rule with R(θ, δ0) = C. If δ0 was not minimax, ∃δ′ s.t. sup
θ
R(θ, δ′) = v

would be strictly less than C. (2 pts)

For any ε > 0 s.t. 0 < ε < c− v and any prior π, we have

r(π, δ0) = c > v + ε ≥ r(π, δ′) + ε.

(2 pts)

Thus, δ0 cannot be ε-Bayes w.r.t. to any prior distribution, and so δ0 can not be an extended
Bayes rule. We prove this by contradiction. (2 pts)
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(a)

R(θ, δ) =EX

( (θ − δ(X))2

1− θ

)
=

∞∑
x=0

(θ2 − 2θδ(x) + δ(x)2)θx

=δ(0)2 + θ(δ(1)2 − 2δ(0)) +

∞∑
x=2

(δ(x)2 − 2δ(x− 1) + 1)θx

(4 pts)

(b)

δ(1)2 = 2δ(0) and

δ(x)2 = 2δ(x− 1)− 1 for x = 2, 3, · · ·

(2 pts)

Since 2δ(x− 1) = δ(x)2 + 1 = (δ(x)− 1)2 + 2δ(x), so that δ(x) are non-decreasing from x = 1
on. (1 pt)

Therefore, δ(x) converges, and suppose its value is c we have c2 = 2c− 1. This implies c = 1.
(1 pt)

To conclude, we have

δ(0) =
1

2
and

δ(x) = 1 for x = 1, 2, 3, · · ·

(2 pts)

(c) From part (i),

r(π, δ) =ER(θ, δ)

=δ(0)2 + µ1(δ(1)2 − 2δ(0)) +

∞∑
x=2

µx(δ(x)2 − 2δ(x− 1) + 1).

(2 pts)

To find the Bayes rule, we take the derivative w.r.t. to each δ(x) for the above equation,
setting to zero. (2 pts)

We then obtain
δπ(x) =

mx+1

mx

for x = 0, 1, 2, · · · . (1 pt)
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