Homework 1 Solution

Advanced Machine Learning 10-716

Due at 11:59pm on Tuesday, Feb 5.
You are required to start the solution to each problem on a new page. Please make
sure to assign the pages to their respective questions on Gradescope.

1 Bayesian Analysis I (Shawn Lyu)

1. Write out the posterior expected loss as

/ w(0)(0 — a)2dF™O1) (9)
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The loss, a weighted sum of convex functions, is a Take the derivative wrt a and set it to 0 we

have p
_ _ 2 7(0]x)
0= da/ w(0)(0 — a)°dF 9)

which can be expanded to
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Solving this just shows that the Bayes rule is

"(#) = Framwe)]

2. (a) From the Berger book, section 4.4.2 result 3, we know that the Bayes rule for this kind
of loss is

0" (x) =E"[0]
The goal is then for us to find the posterior distribution 7(0|X = z). Since Beta distri-
bution is the conjugate prior to binomial distribution we know that

0| X ~ Beta(x + 3,14 — x)

and that +3
T
0" =
(@) = —-

(b) From the Berger book, section 4.4.2 result 5 the Bayes estimator is the median of the
posterior, which tells us directly that
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(¢) From the Berger book, section 4.4.2 result 4 (or the result above), we know that the Bayes
rule for weighted loss is

)
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Note that since 0|z ~ Beta(x + 3,14 — ), expanding the pdf yields

0" (x) =
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We then find the weighted expected value of 6, which is just
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Plug these two together we have
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Bayesian Analysis II (Shawn Lyu)

. Based on the constraint write the decision rule as
5™ (z) = (a1,1 —ay)"

we have that the loss can be written as
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©

Set the derivative wrt to a; to 0 we have

0 = 2E[07]a; + 2E[03]a; + 2E[0,02] — 4E[61605]a; — 2E[61] — 2E[03] + 2E[6s]

Since the conjugate prior of Gaussian is Gaussian, we have
r4+p 1
Olz ~N [ ——, =T
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We then have
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Plug these back on top to obtain
+ p1)? + (w2 + pp)® +4 — 2(x1 + + + +
(z1 +p1) (T2 + p2) . (21 + 1) (72 M2)a1 _ (z1 ,u1)2(x2 M2)+$1+M1+

So
(z2 + p2)? + 2+ 2(x1 + 1) — 2(z2 + pr2) — (21 + ) (w2 + po)

b (w1 + p1)? + (w2 + p2)? +4 — 2(2 + py) (w2 + p2)

and the other parameter is

(@ )2 2+ 2( + po) — 2(z1 + ) — (21 + pr) (22 + p2)

a (z1+ 1) + (22 4+ p2)® +4 — 2(21 + 1) (22 + p2)
Finally, our decision rule is just
T _|a
0" (x) = [ag]
. Expand the loss
/ 07 Q0 — 20" Qa + aT QadF™(6)
e
Find the derivative wrt a and set to 0 to obtain
0 =2E[07]Q — 247 Q

We then easily know that
0" (x) = E™[0]
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2.

Minimax Analysis I (Karthika Nair and Yao-Hung Tsai)

. Let ¢ be another decision rule. Since § is admissible, we can always find a point 6’ depending

on ¢ s.t.

R(60,0) < R(®',5").

Since § has constant risk, we have the following inequalities

SupR(076) = R(9075) < R(9/76/) < SupR(076/)'
0 0

(4 pts) Note that ¢’ can be arbitrary decision rule. Therefore, § is minimax. (1 pts) If unique
Bayes, then unique minimax.

(a) A

(b)
()

- { ai, az, as }
where a; = Order of 15, as = Order of 30, ag = Order of 45

O = {01,02,03,04}
where #; = Demand of 20, 5 = Demand of 25 and 03 = Demand of 30, 8, = Demand of
45

aq a9 as
01 -425 -350 -50
02 -400 -700 -400
03 -375 -1050 -750
04 -300 -975 -1800

All actions are admissable.
p(mar) = 0.2(-425) 4 0.4(-400) + 0.2(-375) + 0.2(-300)

= -380
p(m,az) = 0.2(-350) + 0.4(-700) + 0.2(-1050) + 0.2(-975)
= -755

p(m,as) = 0.2(-50) + 0.4(-400) + 0.2(-750) + 0.2(1800)
= -680

The Bayes action is as.

supy(R(0,a1) = -300

supy (R(0, az) = -350

supy(R(0, az) = -50

The minimax action is as and its corresponding value is -350.

A = {ay: without marketing campaign, as: with marketing campaign }
0 = [0,1]

L(a,al):{ (2+30), 0<60<0.7

0.7<60<1

_57
L6,0z) = —(4+150), 0<0<0.7
HC 07<0<1

p(m, a1) = E7[L(6, a1)]
= [y L(8, a1)m(6)de
= [T —(2+30)d0 + [, .(~5)d6



=-2135-15
= -3.635

p(ﬂ', a2) =E" [L(ov 0’2]
= [ L8, a2)m(8)d0
= [V (44 1.50)d6 + [, (—4)d6
=-3.1675-1.2

= -4.3675

Hence, as is the Bayesian action.
supy(R(0,a1) = supy(L(h,a1) = -2 (when 6 = 0)
supy(R(0, az) = supy(L(0,az) = -4 (when 6 = 0)

Hence, as is the minimax action.



Minimax Analysis II (Karthika Nair and Yao-Hung Tsai)

. For any other estimator ¢’, we have
sup R(6,4") > /R(0,5’)7r(d9)
0
> [ R6,5)m(ds) = sup R(6.5).
0

(2 pts)
Therefore, &5 is minimax. If §; si unique Bayes under =, then the second inequality is strict
and thus makes 0§ to be a unique minimax. (1 pt)

Let 7’ be another prior over ©. Then we have
R(x',6.) = / R(0,6.)x (d6)

< [ Ri6.55) (@0
< sup R(0,63) = R(r,5;)
6

(2 pt)

Therefore, 7 is least favorable. (1 pt)

. Let §p be an equalizer rule with R(6,dp) = C. If §p was not minimax, 3¢’ s.t. supR(6,¢’) = v
0

would be strictly less than C. (2 pts)

For any € > 0 s.t. 0 < € < ¢ — v and any prior m, we have

r(mdy) =c>v+e>r(md)+e

(2 pts)
Thus, dp cannot be e-Bayes w.r.t. to any prior distribution, and so Jy can not be an extended
Bayes rule. We prove this by contradiction. (2 pts)



s <M>

= Z —200(x) + 6(x)%)6*

=5(0)> +6(5(1)* — 26(0 Z 220z — 1)+ 1)6"
(4 pts)
§(1)? = 26(0) and
§(z)2=25(x—1)—1 for . =2,3,--
(2 pts)

Since 2§(x — 1) = 6(z)2 + 1 = (§(x) — 1) + 2§(x), so that () are non-decreasing from x = 1
on. (1 pt)

Therefore, §(z) converges, and suppose its value is ¢ we have ¢? = 2¢ — 1. This implies ¢ = 1.
(1 pt)

To conclude, we have

1
0(0) = 5 and

0(x) =1 for £ =1,2,3,---

(2 pts)

From part (i),

r(r,8) =ER(0,5)

=6(0)% + 1 (8(1)% = 26(0 +Z”w )2 —28(x—1)+1).

(2 pts)
To find the Bayes rule, we take the derivative w.r.t. to each d(x) for the above equation,
setting to zero. (2 pts)

‘We then obtain

br(2) = T

forx =0,1,2,---. (1 pt)
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