Homework 1 Solution

Advanced Machine Learning 10-716

Due at 11:59pm on Tuesday, Feb 5.
You are required to start the solution to each problem on a new page. Please make sure to assign the pages to their respective questions on Gradescope.

1 Bayesian Analysis I (Shawn Lyu)

1. Write out the posterior expected loss as

$$
\int_{\Theta} w(\theta)(\theta-a)^{2} d F^{\pi(\theta \mid x)}(\theta)
$$

The loss, a weighted sum of convex functions, is a Take the derivative wrt a and set it to 0 we have

$$
0=\frac{d}{d a} \int_{\Theta} w(\theta)(\theta-a)^{2} d F^{\pi(\theta \mid x)}(\theta)
$$

which can be expanded to

$$
0=\frac{d}{d a} \int_{\Theta}\left(w(\theta) \theta^{2}-2 a w(\theta) \theta+a^{2} w(\theta)\right)^{2} d F^{\pi(\theta \mid x)}(\theta) \quad=2 \mathbb{E}^{\pi(\theta \mid x)}[\theta w(\theta)]-2 a \mathbb{E}^{\pi(\theta \mid x)}[w(\theta)]
$$

Solving this just shows that the Bayes rule is

$$
\delta^{\pi}(x)=\frac{\mathbb{E}^{\pi(\theta \mid x)}[\theta w(\theta)]}{\mathbb{E}^{\pi(\theta \mid x)}[w(\theta)]}
$$

2. (a) From the Berger book, section 4.4.2 result 3, we know that the Bayes rule for this kind of loss is

$$
\delta^{\pi}(x)=\mathbb{E}^{\pi}[\theta]
$$

The goal is then for us to find the posterior distribution $\pi(\theta \mid X=x)$. Since Beta distribution is the conjugate prior to binomial distribution we know that

$$
\theta \mid X \sim \operatorname{Beta}(x+3,14-x)
$$

and that

$$
\delta^{\pi}(x)=\frac{x+3}{17}
$$

(b) From the Berger book, section 4.4.2 result 5 the Bayes estimator is the median of the posterior, which tells us directly that

$$
\delta^{\pi}(x)=\frac{3 x+8}{49}
$$

(c) From the Berger book, section 4.4.2 result 4 (or the result above), we know that the Bayes rule for weighted loss is

$$
\delta^{\pi}(x)=\frac{\mathbb{E}^{\pi(\theta \mid x)}[\theta w(\theta)]}{\mathbb{E}^{\pi(\theta \mid x)}[w(\theta)]}
$$

Note that since $\theta \mid x \sim \operatorname{Beta}(x+3,14-x)$, expanding the pdf yields

$$
\begin{aligned}
& \mathbb{E}^{\pi(\theta \mid x)}[w(\theta)] \\
= & \mathbb{E}^{\pi(\theta \mid x)}\left[\frac{1}{\theta(1-\theta)}\right] \\
= & \int \frac{\theta^{x+2}(1-\theta)^{13-x}}{B(x+3,14-x)} \frac{1}{\theta(1-\theta)} d \theta \\
= & \int \frac{\Gamma(17)}{\Gamma(x+3) \Gamma(14-x)} \theta^{x+1}(1-\theta)^{12-x} d \theta \\
= & \frac{\Gamma(17) \Gamma(x+2) \Gamma(13-x)}{\Gamma(15) \Gamma(x+3) \Gamma(14-x)} \int \frac{\Gamma(15)}{\Gamma(x+2) \Gamma(13-x)} \theta^{x+1}(1-\theta)^{12-x} d \theta \\
= & \frac{16!}{14!(x+2)(13-x)}
\end{aligned}
$$

We then find the weighted expected value of θ, which is just

$$
\begin{aligned}
& \mathbb{E}^{\pi(\theta \mid x)}[\theta w(\theta)] \\
= & \int \frac{\Gamma(17)}{\Gamma(x+3) \Gamma(14-x)} \theta^{x+2}(1-\theta)^{13-x} \frac{1}{1-\theta} d \theta \\
= & \frac{\Gamma(17) \Gamma(x+3) \Gamma(13-x)}{\Gamma(16) \Gamma(x+3) \Gamma(14-x)} \int \frac{\Gamma(16)}{\Gamma(x+3) \Gamma(13-x)} \theta^{x+2}(1-\theta)^{12-x} d \theta \\
= & \frac{16}{(13-x)}
\end{aligned}
$$

Plug these two together we have

$$
\delta^{\pi}(x)=\frac{x+2}{15}
$$

2 Bayesian Analysis II (Shawn Lyu)

1. Based on the constraint write the decision rule as

$$
\delta^{\pi}(x)=\left(a_{1}, 1-a_{1}\right)^{T}
$$

we have that the loss can be written as

$$
\int_{\Theta} \theta_{1}^{2} a_{1}^{2}+\theta_{2}^{2}+\theta_{2}^{2} a_{1}^{2}+1+2 \theta_{1} \theta_{2} a_{1}-2 \theta_{1} \theta_{2} a_{1}^{2}-2 \theta_{1} a_{1}-2 \theta_{2}^{2} a_{1}-2 \theta_{2}+2 \theta_{2} a_{1} d F^{\pi}(\theta)
$$

Set the derivative wrt to a_{1} to 0 we have

$$
0=2 \mathbb{E}\left[\theta_{1}^{2}\right] a_{1}+2 \mathbb{E}\left[\theta_{2}^{2}\right] a_{1}+2 \mathbb{E}\left[\theta_{1} \theta_{2}\right]-4 \mathbb{E}\left[\theta_{1} \theta_{2}\right] a_{1}-2 \mathbb{E}\left[\theta_{1}\right]-2 \mathbb{E}\left[\theta_{2}^{2}\right]+2 \mathbb{E}\left[\theta_{2}\right]
$$

Since the conjugate prior of Gaussian is Gaussian, we have

$$
\theta \left\lvert\, x \sim \mathcal{N}\left(\frac{x+\mu}{2}, \frac{1}{2} I_{2}\right)\right.
$$

We then have

$$
\begin{aligned}
\mathbb{E}\left[\theta_{1}^{2}\right] & =\frac{\left(x_{1}+\mu_{1}\right)^{2}+2}{4} \\
\mathbb{E}\left[\theta_{2}^{2}\right] & =\frac{\left(x_{2}+\mu_{2}\right)^{2}+2}{4} \\
\mathbb{E}\left[\theta_{1}\right] & =\frac{x_{1}+\mu_{1}}{2} \\
\mathbb{E}\left[\theta_{2}\right] & =\frac{x_{2}+\mu_{2}}{2} \\
\mathbb{E}\left[\theta_{1} \theta_{2}\right] & =\frac{\left(x_{1}+\mu_{1}\right)\left(x_{2}+\mu_{2}\right)}{4}
\end{aligned}
$$

Plug these back on top to obtain
$\frac{\left(x_{1}+\mu_{1}\right)^{2}+\left(x_{2}+\mu_{2}\right)^{2}+4-2\left(x_{1}+\mu_{1}\right)\left(x_{2}+\mu_{2}\right)}{2} a_{1}=-\frac{\left(x_{1}+\mu_{1}\right)\left(x_{2}+\mu_{2}\right)}{2}+x_{1}+\mu_{1}+\frac{\left(x_{2}+\mu_{2}\right)^{2}}{2}+1-x_{2}-\mu_{2}$
So

$$
a_{1}=\frac{\left(x_{2}+\mu_{2}\right)^{2}+2+2\left(x_{1}+\mu_{1}\right)-2\left(x_{2}+\mu_{2}\right)-\left(x_{1}+\mu_{1}\right)\left(x_{2}+\mu_{2}\right)}{\left(x_{1}+\mu_{1}\right)^{2}+\left(x_{2}+\mu_{2}\right)^{2}+4-2\left(x_{1}+\mu_{1}\right)\left(x_{2}+\mu_{2}\right)}
$$

and the other parameter is

$$
a_{2}=\frac{\left(x_{1}+\mu_{1}\right)^{2}+2+2\left(x_{2}+\mu_{2}\right)-2\left(x_{1}+\mu_{1}\right)-\left(x_{1}+\mu_{1}\right)\left(x_{2}+\mu_{2}\right)}{\left(x_{1}+\mu_{1}\right)^{2}+\left(x_{2}+\mu_{2}\right)^{2}+4-2\left(x_{1}+\mu_{1}\right)\left(x_{2}+\mu_{2}\right)}
$$

Finally, our decision rule is just

$$
\delta^{\pi}(x)=\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]
$$

2. Expand the loss

$$
\int_{\Theta} \theta^{T} Q \theta-2 \theta^{T} Q a+a^{T} Q a d F^{\pi}(\theta)
$$

Find the derivative wrt a and set to 0 to obtain

$$
0=2 \mathbb{E}\left[\theta^{T}\right] Q-2 a^{T} Q
$$

We then easily know that

$$
\delta^{\pi}(x)=\mathbb{E}^{\pi}[\theta]
$$

3 Minimax Analysis I (Karthika Nair and Yao-Hung Tsai)

1. Let δ^{\prime} be another decision rule. Since δ is admissible, we can always find a point θ^{\prime} depending on δ^{\prime} s.t.

$$
R\left(\theta_{0}, \delta\right) \leq R\left(\theta^{\prime}, \delta^{\prime}\right)
$$

Since δ has constant risk, we have the following inequalities

$$
\sup _{\theta} R(\theta, \delta)=R\left(\theta_{0}, \delta\right) \leq R\left(\theta^{\prime}, \delta^{\prime}\right) \leq \sup _{\theta} R\left(\theta, \delta^{\prime}\right)
$$

(4 pts) Note that δ^{\prime} can be arbitrary decision rule. Therefore, δ is minimax. (1 pts) If unique Bayes, then unique minimax.
2. (a) $\mathrm{A}=\left\{a_{1}, a_{2}, a_{3}\right\}$
where $a_{1}=$ Order of $15, a_{2}=$ Order of $30, a_{3}=$ Order of 45
$\Theta=\left\{\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}\right\}$
where $\theta_{1}=$ Demand of 20, $\theta_{2}=$ Demand of 25 and $\theta_{3}=$ Demand of $30, \theta_{4}=$ Demand of 45

$$
\begin{aligned}
& \theta_{1} \\
& \theta_{2} \\
& \theta_{3} \\
& \theta_{4}
\end{aligned}
$$

a_{1}	a_{2}	a_{3}
-425	-350	-50
-400	-700	-400
-375	-1050	-750
-300	-975	-1800

(b) All actions are admissable.
(c) $\mathrm{p}\left(\pi, a_{1}\right)=0.2(-425)+0.4(-400)+0.2(-375)+0.2(-300)$
$=-380$
$\mathrm{p}\left(\pi, a_{2}\right)=0.2(-350)+0.4(-700)+0.2(-1050)+0.2(-975)$
$=-755$
$\mathrm{p}\left(\pi, a_{3}\right)=0.2(-50)+0.4(-400)+0.2(-750)+0.2(1800)$
$=-680$
The Bayes action is a_{2}.
(d) $\sup _{\theta}\left(R\left(\theta, a_{1}\right)=-300\right.$
$\sup _{\theta}\left(R\left(\theta, a_{2}\right)=-350\right.$
$\sup _{\theta}\left(R\left(\theta, a_{3}\right)=-50\right.$
The minimax action is a_{2} and its corresponding value is -350 .
3. (a) $\mathrm{A}=\left\{a_{1}\right.$: without marketing campaign, a_{2} : with marketing campaign $\}$
$\Theta=[0,1]$
$\mathrm{L}\left(\theta, a_{1}\right)= \begin{cases}-(2+3 \theta), & 0 \leq \theta<0.7 \\ -5, & 0.7 \leq \theta \leq 1\end{cases}$
$\mathrm{L}\left(\theta, a_{2}\right)=\left\{\begin{array}{lr}-(4+1.5 \theta), & 0 \leq \theta<0.7 \\ -4, & 0.7 \leq \theta \leq 1\end{array}\right.$
(b) $\rho\left(\pi, a_{1}\right)=E^{\pi}\left[L\left(\theta, a_{1}\right)\right]$
$=\int_{0}^{1} L\left(\theta, a_{1}\right) \pi(\theta) d \theta$
$=\int_{0}^{0.7}-(2+3 \theta) d \theta+\int_{0.7}^{1}(-5) d \theta$

```
=-2.135-1.5
= -3.635
\rho(\pi,\mp@subsup{a}{2}{})=\mp@subsup{E}{}{\pi}[L(0,\mp@subsup{a}{2}{}]
= 盾L(0, a}\mp@code{2})\pi(0)d
= \mp@subsup{\int}{0}{0.7}-(4+1.50)d0+\mp@subsup{\int}{0.7}{1}(-4)d0
=-3.1675-1.2
=-4.3675
```

Hence, a_{2} is the Bayesian action.
(c) $\sup _{\theta}\left(R\left(\theta, a_{1}\right)=\sup _{\theta}\left(L\left(\theta, a_{1}\right)=-2(\right.\right.$ when $\theta=0)$
$\sup _{\theta}\left(R\left(\theta, a_{2}\right)=\sup _{\theta}\left(L\left(\theta, a_{2}\right)=-4(\right.\right.$ when $\theta=0)$
Hence, a_{2} is the minimax action.

4 Minimax Analysis II (Karthika Nair and Yao-Hung Tsai)

1. For any other estimator δ^{\prime}, we have

$$
\begin{aligned}
\sup _{\theta} R\left(\theta, \delta^{\prime}\right) & \geq \int R\left(\theta, \delta^{\prime}\right) \pi(d \theta) \\
& \geq \int R\left(\theta, \delta_{0}^{*}\right) \pi(d \theta)=\sup _{\theta} R\left(\theta, \delta_{0}^{*}\right)
\end{aligned}
$$

(2 pts)
Therefore, δ_{0}^{*} is minimax. If δ_{0}^{*} si unique Bayes under π, then the second inequality is strict and thus makes δ_{0}^{*} to be a unique minimax. (1 pt)
Let π^{\prime} be another prior over Θ. Then we have

$$
\begin{aligned}
R\left(\pi^{\prime}, \delta_{\pi^{\prime}}\right) & =\int R\left(\theta, \delta_{\pi^{\prime}}\right) \pi^{\prime}(d \theta) \\
& \leq \int R\left(\theta, \delta_{0}^{*}\right) \pi^{\prime}(d \theta) \\
& \leq \sup _{\theta} R\left(\theta, \delta_{0}^{*}\right)=R\left(\pi, \delta_{0}^{*}\right)
\end{aligned}
$$

(2 pt)
Therefore, π is least favorable. (1 pt)
2. Let δ_{0} be an equalizer rule with $R\left(\theta, \delta_{0}\right)=C$. If δ_{0} was not minimax, $\exists \delta^{\prime}$ s.t. $\sup _{\theta} R\left(\theta, \delta^{\prime}\right)=v$ would be strictly less than C. (2 pts)
For any $\epsilon>0$ s.t. $0<\epsilon<c-v$ and any prior π, we have

$$
r\left(\pi, \delta_{0}\right)=c>v+\epsilon \geq r\left(\pi, \delta^{\prime}\right)+\epsilon .
$$

(2 pts)
Thus, δ_{0} cannot be ϵ-Bayes w.r.t. to any prior distribution, and so δ_{0} can not be an extended Bayes rule. We prove this by contradiction. (2 pts)
(a)

$$
\begin{aligned}
R(\theta, \delta) & =E_{X}\left(\frac{(\theta-\delta(X))^{2}}{1-\theta}\right) \\
& =\sum_{x=0}^{\infty}\left(\theta^{2}-2 \theta \delta(x)+\delta(x)^{2}\right) \theta^{x} \\
& =\delta(0)^{2}+\theta\left(\delta(1)^{2}-2 \delta(0)\right)+\sum_{x=2}^{\infty}\left(\delta(x)^{2}-2 \delta(x-1)+1\right) \theta^{x}
\end{aligned}
$$

(4 pts)
(b)

$$
\begin{aligned}
& \delta(1)^{2}=2 \delta(0) \text { and } \\
& \delta(x)^{2}=2 \delta(x-1)-1 \text { for } x=2,3, \cdots
\end{aligned}
$$

(2 pts)
Since $2 \delta(x-1)=\delta(x)^{2}+1=(\delta(x)-1)^{2}+2 \delta(x)$, so that $\delta(x)$ are non-decreasing from $x=1$ on. (1 pt)
Therefore, $\delta(x)$ converges, and suppose its value is c we have $c^{2}=2 c-1$. This implies $c=1$. (1 pt)
To conclude, we have

$$
\begin{aligned}
& \delta(0)=\frac{1}{2} \text { and } \\
& \delta(x)=1 \text { for } x=1,2,3, \cdots
\end{aligned}
$$

(2 pts)
(c) From part (i),

$$
\begin{aligned}
r(\pi, \delta) & =E R(\theta, \delta) \\
& =\delta(0)^{2}+\mu_{1}\left(\delta(1)^{2}-2 \delta(0)\right)+\sum_{x=2}^{\infty} \mu_{x}\left(\delta(x)^{2}-2 \delta(x-1)+1\right)
\end{aligned}
$$

(2 pts)
To find the Bayes rule, we take the derivative w.r.t. to each $\delta(x)$ for the above equation, setting to zero. (2 pts)
We then obtain

$$
\delta_{\pi}(x)=\frac{m_{x+1}}{m_{x}}
$$

for $x=0,1,2, \cdots .(1 \mathrm{pt})$

