
Homework 5

Computation Complexity

CMU 10-716: Advanced Machine Learning (Spring 2019)

OUT: April 8, 2019
DUE: April 24, 2019, 11:59 PM.

Instructions:

• Collaboration policy: Collaboration on solving the homework is allowed, after you have
thought about the problems on your own. It is also OK to get clarification (but not solutions)
from books or online resources, again after you have thought about the problems on your own.
There are two requirements: first, cite your collaborators fully and completely (e.g., “Bob
explained to me what is asked in Question 4.3”). Second, write your solution independently :
close the book and all of your notes, and send collaborators out of the room, so that the
solution comes from you only.

• Submitting your work: Assignments should be submitted as PDFs using Gradescope unless
explicitly stated otherwise. Each derivation/proof should be completed on a separate page.
Submissions can be handwritten, but should be labeled and clearly legible. Else, submission
can be written in LaTeX. Upon submission, label each question using the template provided
by Gradescope.

• Start Early.

1 Stability and Generalization [20 pts each]

1. (20pts) Consider a set of samples S = {(xi, yi)}mi=1 ∈ (X × Y)m = Dm and a function class

F of functions f : X → Ŷ where Y, Ŷ ∈ R. We also have the loss function ` : Ŷ × Y → [0, L].
Let fS ∈ F be any function dependent on the sample S. Define

Err`D(fS) = E(x,y)∼D[`(fS(x), y)],

and

Err`m,S(fS) =
1

m

m∑
i=1

`(fS(xi), yi).

Define Si = {(xj , yj)}j 6=i ∪ (x′i, y
′
i) as a set of samples that differs in the ith sample from S,

and where the differing sample is drawn from the same distribution D. We say that fS has a
loss stability of ε w.r.t. ` if ∀(x, y) ∈ D,

|`(fS(x), y)− `(fSi(x), y)| ≤ ε. (1)
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If fS has a loss stability of ε w.r.t. ` and let 0 < δ < 1, then prove that the following holds
with probability at least 1− δ:

Err`D(fS) ≤ Err`m,S(fS) + ε+ (2mε+ L)

√
ln( 1

δ )

2m
. (2)

Hints:

(a) Define φ(S) = Err`D(fS)− Err`m,S(fS). Show that ∀S, k, (x′k, y′k),

|φ(S)− φ(Sk)| ≤ 2ε+
L

m
.

(b) Applying bounded difference inequality using the bounded difference from hint (a). Show
that with probability at least 1− δ (over S ∼ Dm),

φ(S) ≤ ES∼Dm [φ(S)] + (2mε+ L)

√
ln(1/δ)

2m
.

(c) Show that
ES∼Dm [φ(S)] ≤ ε.

2. (20 pts) Letting X ,W ⊂ Rd, Y ⊂ R with supx∈X ‖x‖2 ≤ R, for some finite constant R ≥ 0,
consider the following optimization problem

wS = argmin
‖w‖2≤R

{
1

m

m∑
i=1

`(wTxi, yi)︸ ︷︷ ︸
LS(w)

+
λ

2
‖w‖22

}
, (3)

where `(·, y) is convex and L-Lipschitz for all y ∈ Y. We will show that wS has a stability of
4LR
λm (not the same as loss stability).

Define Si = {(xj , yj)}j 6=i ∪ (x′i, y
′
i) as a set of samples that differs in the ith sample from S,

and where the differing sample is drawn from the same distribution D. Define w̄ =
wSi+wS

2 .

(a) First establish that,
2LS(w̄) ≤ LS(wS) + LS(wSi). (4)

(b) Using the previous part, and the optimality of wS , wSi wrt. LS(w) and LSi(w) respec-
tively, show that

λ

2
‖wS‖22 +

λ

2
‖wSi‖22 − λ‖w̄‖22 ≤ LS(wSi)− LSi(wSi) + LSi(w̄)− LS(w̄). (5)

(c) Using the previous part and the Lipschitz property on the loss, show that

λ

4
‖∆w‖22 ≤

LR

m
‖∆w‖2 =⇒ ‖∆w‖2 ≤

4LR

λm
, (6)

where ∆w = wSi − wS .

(d) Show that fS(·) = 〈wS , ·〉 has a loss stability of 4L2R2

λm .
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2 Lower Bound on the Oracle Complexity [40 pts]

In this problem, we will go through the proof of a lower bound on the oracle complexity of convex
optimization. We will walk through some parts of the proof of Theorem 1 in [1]. The goal is to
minimize a convex function f(x) defined over a convex set S:

x∗f ∈ arg min
x∈S

f(x).

In general, it is hard to perform classical complexity analysis for convex optimization problem due to
the difficulty of modeling optimization algorithms as Turing machines. An alternative is to analyze
the oracle complexity of the algorithm. An oracle is a (possibly random) function φ : S × F → I
such that for any query x ∈ S on f ∈ F , the oracle provides an answer φ(x, f) in an information
set I. Given the number of rounds T , and a function f ∈ F , an optimization algorithm M at any
step t = 1, . . . , T makes a query xt ∈ S, and the oracle returns φ(xt, f). The class of optimization
algorithms M that make T queries is denoted by MT . We first define the following quantities:

1. Error of an algorithm M∈MT on function f after T steps:

ε(M, f, S, φ) = f(xT )− inf
x∈S

f(x) = f(xT )− f(x∗f ).

2. The minimax error over the class of functions F and the class MT of optimization methods
taking T oracle queries:

ε∗(F , S, φ) = inf
MT∈MT

sup
f∈F

Eφ[ε(M, f, S, φ)].

3. The worst-case error average over S = {S ⊆ Rd|S convex,∀x, y ∈ S, ||x− y||∞ ≤ 1}:

ε∗(F , φ) = sup
S∈S

ε∗(F , S, φ).

We consider a class of oracles O which returns pairs of noisy functions and gradient evaluations:

φ(x, f) = (f̂(x), ĝ(x))

where E[f̂(x)] = f(x) and E[ĝ(x))] = ∇f(x). We want to show that for the class of bounded, convex,
1−Lipschitz functions FC in Rd, there exists a constant C such that

sup
φ∈O

ε∗(F , φ) ≥ C
√
d

T
.

To obtain the lower bound, we need to a construct a subclass of function G ⊆ F . Define a distance
(not necessarily a metric) ρ to be

ρ(f, g) = inf
x∈S

[f(x) + g(x)− f(x∗f )− g(x∗g)],∀f 6= g ∈ F .

Given δ ∈ [0, 14 ], we are given a subclass of functions G(δ) = {gα | α ∈ V} where V ⊆ {−1,+1}d is
used to index G(δ). gα is defined as,

gα(x) =
1

d

d∑
i=1

(
1

2
+ αiδ

)
f+i (x) +

(
1

2
− αiδ

)
f−i (x),
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where {f+i , f
−
i }di=1 are some basis functions in F . Define ψ(G(δ)) = minα6=β ρ(gα, gβ) and assume

ψ(G(δ)) ≥ δ
2 , |V| ≥ (2/

√
e)d/2. We encourage you to see [1] for an exact construction of the basis

functions, although it is not necessary to solve this problem. We can now restrict our analysis to the
subset G(δ) ⊆ F , because the minimax error over a larger set can only be higher. Since we want to
prove a lower bound of ε∗(F , φ) which is a sup over the set of first order oracles φ ∈ O, it is sufficient
to prove the lower bound for a specific oracle. Consider the oracle φ that presents noisy value and
gradient samples from gα, according to the following process:

Given a function gα ∈ G(δ) unknown to the optimization algorithm,

• Pick an index it ∈ {1, ..., d} uniformly at random.

• Draw bit from a Bernoulli distribution with parameter 1
2 + αitδ.

• Return the value and subgradient of ĝα(x) = bitf
+
it

+ (1− bit)f−it .

We can see that φ ∈ O since E[ĝα(x)] = gα(x) and E[∇ĝα(x)] = ∇gα(x).

Let MT be any algorithm making at most T queries achieving the minimax error. Informally,
the proof contains three steps: (i) MT obtaining a low minimax optimization error ε∗ over G(δ)
implies that the true α∗ ∈ V can be identified usingMT ; (ii) identifying α∗ ∈ V can be related to a
hypothesis testing problem on Bernoulli random variables (coin toss problem); (iii) Using generalized
Fano’s inequality to lower bound the minimax error for hypothesis testing.

1. (8 pts) Show that for any x ∈ S, there can be at most one function gα ∈ G(δ) for which

gα(x)− gα(x∗gα) ≤ ψ(G(δ))
3 .

2. (8 pts) Suppose an algorithm MT achieves a minimax optimization error upper bounded as

ε∗(MT ,G(δ), S, φ) = sup
f∈G(δ)

E[ε(MT , f, S, φ)] ≤ ψ(G(δ))

9
,

then show that such a method MT can be used to construct an estimator α̂(MT ) such that

max
α∗∈V

Pφ[α̂ 6= α∗] ≤ 1

3
.

Hence we have reduced the problem of achieving a small minimax optimization error to a
hypothesis test, which we will bound using a version of Fano’s inequality. We will choose δ
based on the desired error ε such that is satisfies ψ(G(δ)) ≥ 9ε.

3. (14 pts) We now lower bound Pφ[α̂ 6= α∗]. The problem of identifying the true α∗ can
be related to identifying a Bernoulli distribution using T samples. The first order oracle φ
described earlier performs a coin toss and returns a function value and a subgradient based
on the coin toss. Providing the coin toss outcome bit makes the problem of identifying α∗ no
harder than providing function values and the subgradient of ĝ(α) since the function values
and the subgradients can be computed using the coin toss outcome itself.

We now consider a different oracle that instead returns the coin toss outcomes (i, b) where
i ∈ {1, · · · , d} denotes the randomly chosen index and b ∈ {0, 1} denotes the outcome of the
coin toss. For any α∗ ∈ V, consider θ∗ = ( 1

2 + α∗1δ, . . . ,
1
2 + α∗dδ). Suppose for a total of T

times, we toss a set of d coins with biases given by θ∗. At each step the outcome of only one
coin chosen uniformly at random is revealed by the oracle as a pair (i, b). The goal of the coin
toss problem is to identify θ∗ using these random samples. The coin toss problem being an
easier problem, is sufficient to compute minimax lower bounds for this.

Let θ̂ be an estimator for the coin toss problem making at most T queries. Then, as argued
above inf θ̂ maxθ∗ P[θ̂ 6= θ∗] ≤ infα̂ maxα∗ P[α̂ 6= α∗]. Show that for all δ ≤ 1/4,
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inf
α̂

max
α∗∈V

P[α̂ 6= α∗] ≥

{
1− 16Tδ2 + log 2

d
2 log(2/

√
e)

}

4. (10 pts) Now set δ = 18ε (recall that we should set δ based on the desired error ε), and use

the obtained upper and lower bound of P(α̂ 6= α∗) to get that for all d ≥ 11, ε ≥ c
√

d
T for

some constant c. Hence,

sup
φ∈O

ε∗(F , φ) ≥ Ω

(√
d

T

)
.
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