
Homework 4

High-dimensional models, lower bounds, statistical complexity

of optimization

CMU 10-716: Advanced Machine Learning (Spring 2019)

OUT: Mar. 22, 2019
DUE: April 4, 2019, 11:59 PM.

Instructions:

• Collaboration policy: Collaboration on solving the homework is allowed, after you have
thought about the problems on your own. It is also OK to get clarification (but not solutions)
from books or online resources, again after you have thought about the problems on your own.
There are two requirements: first, cite your collaborators fully and completely (e.g., “Bob
explained to me what is asked in Question 4.3”). Second, write your solution independently :
close the book and all of your notes, and send collaborators out of the room, so that the
solution comes from you only.

• Submitting your work: Assignments should be submitted as PDFs using Gradescope unless
explicitly stated otherwise. Each derivation/proof should be completed on a separate page.
Submissions can be handwritten, but should be labeled and clearly legible. Else, submission
can be written in LaTeX. Upon submission, label each question using the template provided
by Gradescope.

• Start Early.

1 Square-root Lasso [20 pts]

The square-root Lasso is given by

θ̂ ∈ arg min
θ∈Rd

{
1√
n
||y −Xθ||2 + γn||θ||1

}
.

1. (2 pts) Show that any square-root Lasso estimate θ̂ satisfies the equality

1
nX

T
(
Xθ̂ − y

)
1√
n
||y −Xθ̂||2

+ γnẑ = 0

where ẑ ∈ Rd belongs to the subdifferential of the `1-norm at θ̂.

2. (2 pts) Suppose y = Xθ∗ + w where the unknown regression vector θ∗ is S-sparse. Use part

(1) to establish that the error ∆̂ satisfies the basic inequality

1

n
||X∆̂||22 ≤ 〈∆̂,

1

n
XTw〉+ γn

||y −Xθ̂||2√
n

{||∆̂S ||1 − ||∆̂Sc ||1}.
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3. (8 pts) Suppose that γn ≥ 2 ||X
Tw||∞√
n||w||2

. Show that the error vector satisfies the cone constraint

||∆̂Sc ||1 ≤ 3||∆̂S ||1. The significance of square-root lasso is that γn is not dependent on the
scale of the noise w due to the normalization term ‖w‖2.

Hints:

(a) Norms || · || are convex.

(b) First-order characterization of convex functions: if f is differentiable, then f is convex if
and only if dom(f) is convex and f(y) ≥ f(x) +∇f(x)T (y − x) for all x, y ∈ dom(f).

(c) Start the proof with bounding ||y −Xθ̂||2 − ||y −Xθ∗||2 from above and below.

(d) Notice that by the optimality of θ̂, we have ||y−Xθ̂||2 ≤ ||w||2+
√
nγn

(
||∆̂S ||1 − ||∆̂Sc ||1

)
.

4. (8 pts) Suppose in addition that X satisfies an RE condition over S with parameter (κ, α) and
κ− γ2ns ≥ ρ for some constant ρ > 0. Show that there is a constant c such that

||θ̂ − θ∗||2 ≤ c
||w||2√
n
γn
√
s.

Hints:

(a) Using part (d) of the above hints, we can get ||y −Xθ̂||2 ≤ ||w||2 +
√
nγn||∆̂S ||1.

2 Lower Bound [25 pts each]

1. Let X1, · · · , Xn ∼ P where Xi ∈ R. Assume P = Uniform(0, θ) where 0 < θ < M . Given
a set of distributions P = {Uniform(0, θ) : θ ∈ R and 0 < θ < M}, out goal is to estimate θ.
Define the minimax risk (under `1 loss) for estimating θ as follows

Rn = inf
θ̂

sup
P∈P

EP |θ̂ − θ|.

Show that Rn � 1
n , which means

c

n
≤ Rn ≤

C

n

for some constants 0 < c ≤ C ≤ ∞. Please enumerate at least one pair of {c, C}.

Hints:

(a) For the upper bound, you can use the estimator θ̂ as the maximum of {X1, · · · , Xn}. You
can use the following fact as given that:

θ̂

θ
∼ Beta(n, 1).

(b) For the lower bound, consider Le Cam’s method.
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2. Let X1, · · · , Xn ∼ P where Xi = (X1
i , · · · , Xd

i ) ∈ Rd with d ≥ 2. Assume P = N(θ, I) where
θ = (θ1, · · · , θd) and I is the d× d identity matrix. Given a set of distributions P = {N(θ, I) :
θ ∈ Rd}, our goal is to estimate θ. Define the minimax risk (under `∞ loss) for estimating θ
as follows

Rn = inf
θ̂

sup
P∈P

EP ‖θ̂ − θ‖∞.

Show that Rn �
√

log d
n , which means

c

√
log d

n
≤ Rn ≤ C

√
log d

n

for some constants 0 < c ≤ C ≤ ∞. Please enumerate at least one pair of {c, C}.

Hints:

(a) For the upper bound, you can use the estimator θ̂ as the mean of {X1, · · · , Xn}. Then,

show that: θ̂ − θ ∼ N(0, 1
nI). Then use the maximal inequality for subgaussian R.V.:

If X1, · · · , Xn are n R.V.s s.t. Xi are sub-Gaussian with parameter σ, then

E[ max
1≤i≤n

|Xi|] ≤ σ
√

2log(2n).

(b) For the lower bound, consider the “generalized Fano’s method” discussed in class, also
summarized below:

Let F = {P1, · · · , PM} ⊂ P. Let θ(P ) be a parameter taking values in a metric space
with metric d. Then

Rn ≥
s

2

(
1− nβ + log2

logM

)
where

s = min
j 6=k

d
(
θ(Pj), θ(Pk)

)
and

β = max
j 6=k

KL(Pj , Pk).

3 Statistical complexity of optimization [15 pts]

Let us consider a space of input-output pairs (x, y) ∈ X×Y . The discrepancy between the predicted
output ŷ and the real output y is measured with a loss function l(ŷ, y). Our benchmark is the function
f∗ that minimizes the expected risk. Let us define

E(f) = E[l(f(x), y)],

and the empirical risk as

En(f) =
1

n

n∑
i=1

l(f(xi), yi) = En[l(f(x), y)].

Let us choose a family F of candidate prediction functions and we try to find the function that
minimizes the empirical risk

fn = arg minf∈FEn(f).

3



Since the optimal function f∗ is unlikely to belong to the family F , we also define

f∗F = arg minf∈FE(f).

Let us assume that f∗, f∗F and fn are well defined and unique. If our minimization algorithm returns

an approximate solution f̃n such that En(f̃n) < En(fn) + ρ, We can write

E = E[E(f̃n)− E(f∗)]

= E[E(f∗F )− E(f∗)] + E[E(fn)− E(f∗F )] + E[E(f̃n)− E(fn)]

= Eapp + Eest + Eopt.

Let F be the class of binary linear classifiers sign(wTx) pamameterized by w ∈ Rd, and l(·, y)
be 1-Lipshcitz for all y ∈ Y . Also assume that the absolute value of l(·, ·) is upper bounded by 1.
Show that for some positive constant c,

Eest + Eopt ≤ c
√
d log(n+ 1)

n
+ ρ

Hint: You may use the following facts without proof:

• For |g(X)| ≤ 1, |Rn(F + g)−Rn(F)| ≤
√

2 log 2/n

• Consider φ : R×Z → R.
Suppose, ∀z, α→ φ(α, z) is 1-Lipschitz and φ(0, z) = 0.
Define φ(F) = {z → φ(f(z), z) : f ∈ F}. Then Rn(φ(F)) ≤ 2Rn(F).
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