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1 Pairwise Discrete UGMs

Recall the overcomplete exponential family representation of discrete UGMs. Suppose we
have variables X = (X1, . . . , Xp) each taking values in X = ⊗ps=1Xs. Suppose we have an
undirected graph G = (V,E) with nodes V associated with each of the random variables
{Xi}i∈[p]. Then the exponential family correponding to the set sufficient statistics:

φ(x) = {I[xs = j}s∈V,j∈Xs ∪ {I[(xs, xt) = (j, k)]}(s,t)∈E, j∈Xs,k∈Xt ,

is given as:

pθ(x) ∝ exp

∑
s∈V

θs(xs) +
∑

(s,t)∈E

θst(xs, xt)

 ,

where we use the shorthand:

θs(xs) =
∑
j∈Xs

θs;jI[xs = j]

θst(xs, xt) =
∑

j∈Xs,k∈Xt

θst;jkI[xs = j, xt = k].

Associated with these overcomplete exponential family canonical parameters are also mean
parameters for which we will use the shorthand:

µs(xs) =
∑
j∈Xs

µs;jI[xs = j]

µst(xs, xt) =
∑

j∈Xs,k∈Xt

µst;jkI[xs = j, xt = k].

Thus, {µs} and {µst} are the nodewise and pairwise marginals of the exponential family
distribution. These lie in the marginal polytope:

M(G) = {µ ∈ Rd | ∃ p with nodewise marginals {µs} and pairwise marginals {µst}}.

Recall the variational characterization of the log-partition function:

A(θ) = sup
µ∈M

(〈θ, µ〉 − A∗(µ)). (1)
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This is a convex optimization problem: the constraint setM is convex, specifically a convex
polytope in the case of discrete overcomplete UGMs. While the negative entropy A∗(µ) is
convex as well. However, both of these objects do not have a closed form expression. Char-
acterizing the marginal polytope would require exponentially many halfspaces in general,
and computing the entropy is in turn intractable. In what follows, we will be approximating
both of these components with tractable alternatives.

2 Tree-based Outer Bound to M(G)

As discussed earlier, M(G) is a convex polytope, and can be expressed as a convex hull
of the sufficient statistics {φ(x)}x∈X . So it has a finite number of vertices, but clearly
an exponential number so that this is a not a tractable characterization. One could also
characterize the polytope via half-space constraints (also known as facets), but even this can
be shown to require an exponential number of constraints. But what if we only specify a
subset of polynomially many constraints? This would then specify an outer bound of the
marginal polytope.

Consider a candidate set of node-wise functions {τs}s∈V and edge-wise functions {τst}(s,t)∈E.
What are some constraints that will entail that they be marginals of some joint distribution p?
One condition is that these functions be non-negative. Second, that the nodewise functions
normalize to one: ∑

xs

τs(xs) = 1, ∀s ∈ V, xs ∈ Xs. (2)

And moreover, that the edgewise and nodewise candidate-marginal functions be consistent,
so that ∀(s, t) ∈ E: ∑

x′t

τst(xs, x
′
t) = τs(xs), ∀xs ∈ Xs (3)

∑
x′s

τst(x
′
s, xt) = τt(xt), ∀xt ∈ Xt. (4)

Note that these local consistency constraints together with node-wise function normalization
constraints also entail that the edgewise functions also normalize to one. These constraints
together specify the polytope:

L(G) = {τ ∈ Rd
+ | condition (2) holds for all s ∈ V ,

and conditions (3), and (4) hold for all (s, t) ∈ E}. (5)

The set L(G) could be viewed as a set of locally consistent pseudo-marginals.
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Theorem 1 The set L(G) of pseudo-marginals defined in (5) satisfies:

M(G) ⊆ L(G),

for any graph G, with equality when the graph G is a tree.

Proof. The inclusion follows from the observation that any set of true node and edgewise
marginals definitely satisfy the normalization and local cconsistency constraints in L(G).
Now suppose the graph is a tree, G = T . Now for any µ ∈ L(T ), consider the distribution

pµ(x) =
∏
s∈V

µs(xs)
∏

(s,t)∈E

µst(xs, xt)

µs(xs)µt(xt)
.

This can be seen to be a valid distribution just given the property that µ satisfies the local
consistency properties in L(G). And moreover, by a simple induction argument, it can be
seen that for this distribution, the node and edgewise marginals are precisely µ, so that it
follows that µ ∈M(G) (since there exists a distribution that has µ as its node and edgewise
marginals). �

Figure 1: Outer Bound Local Polytope L(G)

Thus, for tree-structured graphs, L(G) is an exact characterization of the marginal polytope,
whereas for more general graphs, it is likely a strict upper bound.

3 Bethe Entropy Approximation

It turns out that for tree-structured graphs, one can also derive a closed-form expression for
the negative entropy A∗(µ). Specifically, if the graph is a tree, then we know that we could
write the distribution in reparameterized form:

pµ(x) =
∏
s∈V

µs(xs)
∏

(s,t)∈E

µst(xs, xt)

µs(xs)µt(xt)
.
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Its entropy can then be written as:

H(pµ) = −A∗(µ) = Eµ[− log pµ(X)]

=
∑
s∈V

Eµ[− log µs(Xs)] +
∑

(s,t)∈E

Eµ[− log
µst(Xs, Xt)

µs(Xs)µt(Xt)
]

=
∑
s∈V

Hs(µs)−
∑

(s,t)∈E

Ist(µst),

where the first set of terms are the nodewise entropies:

Hs(µs) = −
∑
xs

µs(xs) log µs(xs), (6)

and the second set of terms are the edgewise mutual information:

Ist(µst) =
∑

xs∈Xs,xt∈Xt

µst(xs, xt)
µst(xs, xt)

µs(xs)µt(xt)
. (7)

Thus for a tree-structured graph, A∗(µ) has a simple closed form expression in terms of
node-wise entropies and edgewise mutual information. The Bethe approximation to A∗

is simply to use the closed form expression above which is exact for trees, as an inexact
approximation for more general graphs:

−A∗(τ) ≈ Hbethe(τ) =
∑
s∈V

Hs(τs)−
∑

(s,t)∈E

Ist(τst).

4 Sum-Product as Variational Approximation

So far, we have discussed approximations to both of the two intractable components in the
variational form for the log-partition function:

• The outer bound L(G) to the marginal polytope M(G) comprising locally consistent
pseudo-marginals

• The Bethe entropy Hbethe(τ) as an approximation of the exact entropy −A∗(µ)

Plugging these into the variational form for the log-partition function A(θ), we get the
following so-called Bethe variationaloptimization problem:

max
τ∈L(G)

〈θ, τ〉+
∑
s∈V

Hs(τs)−
∑

(s,t)∈E

Ist(τst)

 . (8)

We have the following natural proposition.
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Proposition 2 For tree-structured graphs G, the solution τ ∗ of the Bethe variational opti-
mization problem in (8) corresponds to the exact node-wise and edge-wise marginals of the
discrete exponential family UGM.

Let us now consider how to solve this constrained optimization problem. Denote the nor-
malization constraint expression as:

Css(τ) = 1−
∑
xs

τs(xs), (9)

so that the normalization constraint is simply Css(τ) = 0. Similarly, denote the local con-
sistency constraint expression as:

Cts(xs, τ) = τs(xs)−
∑
xt

τst(xs, xt), (10)

so that the local consistency constraints Cts(xs, τ) = 0, and Cst(xt, τ) = 0. Consider the
Lagrangian of the constrained optimization problem above, with Lagrange parameters λss
for the Css constraints, and parameters λts(xs) and λst(xt) for the constraints Cts and Cst
respectively. We then get the Lagrangian:

L(τ, λ, θ) = 〈θ, τ〉+Hbethe(τ) +
∑
s∈V

λssCss(τ)

+
∑

(s,t)∈E

[∑
xs

λts(xs)Cts(xs, τ) +
∑
xt

λst(xt)Cst(xt, τ)

]
. (11)

We have the following interesting theorem, due to Yedidia et al.

Theorem 3 The sum-product message-passing updates are fixed point updates derived from
stationary conditions on the Lagrangian in (11), where the messages Mts(xs) are related to
the Lagrangian parameters λts(xs) as Mts(xs) = exp(λts(xs)). Any fixed point of the sum-
product updates specifies a pair (τ ∗, λ∗) that is a stationary point of the Lagrangian so that:

∇τL(τ ∗, λ∗, θ) = 0

∇λL(τ ∗, λ∗, θ) = 0.

A key consequence of this theorem is that it provides a principled basis for sum-product
message passing even when the graph G is not a tree. It is simply solving for the Lagrangian
of the Bethe variational optimization problem, which is an approximation of the exact vari-
ational form for the log-partition function. However, note that it is a simple fixed point
update derived from the stationary condition of the Lagrangian of the Bethe variational
optimization problem. It is thus not even guaranteed to converge. There have been some
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approaches developed that convergently optimize the constrained problem, but these are
typically not as fast “in practice” as sum-product, nor as simple, so the latter still remains
the method of choice. Moreover, there is no guarantee that the pseudo-marginal stationary
points of the Bethe variational optimization problem is close to the actual marginals. Indeed,
note that the Bethe variational problem is not even convex, so that local optima need not
even be global optima of the Bethe variational problem itself.

4.1 Reparameterization

We know that if the graph is a tree T , then the distribution pθ admits a reparameterization
in terms of its node and edgewise marginals as

p(x) =
∏
s∈V

µs(xs)
∏

(s,t)∈E

µst(xs, xt)

µs(xs)µt(xt)
.

This does not of course hold when the graph is not a tree. But interestingly, any local
optimum pseudomarginals of the Bethe variational problem admits a reparameterization as
shown in the following theorem.

Theorem 4 Suppose (τ∗s, s ∈ V ; τ ∗st, (s, t) ∈ E) are any local optimum of the Bethe varia-
tional problem in (8) corresponding to a discrete exponential family UGM pθ. It then holds
that:

pθ(x) = pτ∗(x) :=
1

Z(τ ∗)

∏
s∈V

τ ∗s (xs)
∏

(s,t)∈E

τ ∗st(xs, xt)

τ ∗s (xs)τ ∗t (xt)
.

Note that unlike in the case where the graph is a tree, the normalization constant Z(τ ∗) for
the sum-product pseudo-marginal based reparameterization is not in general equal to one.

5 Beyond Trees: Junction Tree Extensions

When the PGM has factors of size greater than two, and/or the graph is not a tree, we could
then construct a junction tree T where the nodes correspond to cliques {Ci}i∈V (T ) of the
augmented chordal graph. Suppose the separator sets are denoted as {Sij}(i,j)∈E(T ).

It follows that the PGM distribution belongs to an exponential family with sufficient statis-
tics:

φ(x) = (I[Ci = ci], i ∈ V (T ), ci ∈ Val(Ci); I[Sij = sij], (i, j) ∈ E(T ), sij ∈ Val(Sij)),
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with the distribution specified as:

pθ(x) = exp {〈θ, φ(x)〉 − A(θ)} ,

for which as before, we could use shorthand to write:

pθ(x) = exp

 ∑
i∈V (T )

θi(ci) +
∑

(i,j)∈E(T )

θij(sij)− A(θ)

 .

As before, we could define the corresponding set of mean parameters with shorthand:

µi(ci) =
∑

v∈Val(Ci)

µi;vI[ci = v]

µij(sij) =
∑
v∈Val

(Sij)µij;vI[sij = v].

These define the marginal polytope:

M(G) = {µ | ∃ dist. p with clique and separator set marginals µ}.

Suppose we have candidate pseudomarginals τCi
over clique nodes Ci as well as those τSij

over the separator sets Sij. ∑
sij

τSij
(sij) = 1, ∀(i, j) ∈ E(T ). (12)

And moreover, that the clique and separate set pseudo-marginals be consistent, so that
∀(i, j) ∈ E(T ): ∑

ci\sij

τCi
(ci) = τSij

(sij), ∀sij ∈ Val(Sij) (13)

∑
cj\sij

τCj
(cj) = τSij

(sij), ∀sij ∈ Val(Sij). (14)

Note that these local consistency constraints together with separator-set function normal-
ization constraints also entail that the clique-wise functions also normalize to one. These
constraints together specify the polytope:

LT (G) = {τ | condition (12) holds for all (i, j) ∈ E(T ),

and conditions (13), and (14) hold for all (i, j) ∈ E(T )}. (15)
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Along the lines of the junction tree consistency theorem, where local consistency entails
global consistency, it can be shown that this is an exact characterization of the marginal
polytope, so that:

LT (G) =M(G).

Similarly, the RIP in the junction tree T ensures the reparameterization of pθ in terms of its
clique and separator set marginals µ:

pθ(X) =

∏
i∈VT µi(ci)∏

(i,j)∈E(T ) µij(sij)
.

This thus suggests the extension of the Bethe entropy for the negative entropy of pθ:

Hbethe;T (µ) =
∑
i∈VT

Hi(µi)−
∑

(i,j)∈E(T )

Hij(µij).

We thus get the following characterization of the log-partition function:

A(θ) = sup
µ∈LT (G)

{〈θ, µ〉 −Hbethe;T (µ)}.

Unlike in the sum-product case, this is an exact rather than approximate characterization of
the log-partition function. Moreover, along similar lines as sum-product, it can presumably
be shown that junction tree message passing updates solve for the stationary points of the
Lagrangian of the above variational optimization problem. The caveat of course is that the
complexity of this characterization scales exponentially with the size of the largest clique,
which if we are lucky is the tree-width of the original graph G. This is thus not as scalable
as simple sum-product as an approximate inference procedure for a general loopy graph G.

6 Converting Higher order UGMs to Pairwise UGMs

But what if we wish to just perform sum-product rather than full junction tree message
passing, but that the UGM is not necessarily pairwise i.e. its local factors have size larger
than two. In such a case, we can first augment the PGM to an extended pairwise PGM
as follows. For each factor ψC(xC), we create a separate node ZC , associated with a corre-
sponding RV, which takes values in ⊗s∈CXs. Thus, any value z := (zs, s ∈ C) ∈ ⊗s∈CXs
can be associated with values of the RVs {Xs}s∈C in XC . We connect ZC and each of Xs

for s ∈ C, with pairwise factors ψC,s(z, xs) := ψC(z)1/|C|I[zs = xs]. Consider the augmented
graph G = (V̄ , Ē) with nodes V̄ = V ∪{ZC}C∈C, and edges Ē = E ∪{(ZC , Xs)}C∈C,s∈C , and
with just the pairwise factors defined above.
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It can then be seen that:

ψC(xC) =
∑

z∈⊗s∈CXs

∏
s∈C

ψC,s(z, xs),

so the marginalization over the augmented variables in the augmented PGM results in the
original PGM. On the other hand, the augmented PGM is pairwise, so that we can perform
inference e.g. compute marginals in this augmented PGM to also get appropriate marginals
in the original PGM.
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