Hierarchical Probabilistic Image Inpainting

Alex Hung(lingyuh) Zhiqing Sun(zhiqings)

Carnegie Mellon University

December, 2020
Introduction

In what manner should we model the uncertainty in $x \rightarrow y$?
Figure: Probabilistic Graphical Model (PGM) interpretation of our method, where \(\{z_i\} \) denotes Gaussian latent variables, while \(h_i \) represents a compressed representation of \(z_{\leq i} \). \(x \) represents the incomplete images and \(y \) represents the complete image, where both of them are observed.
Network Structure

- Convolution
- Up/Down Sampling
- Skip Connection
- Concatenation
- Subsumed Operations
- KL Divergence
- Conv Block
- Prior Block
- Posterior Block
PGM: Learning

In the learning phase, the incomplete image x and the complete image y are observed. We aim to learn n posterior distribution

$$q_{\phi_i}(z_1|x, y), q_{\phi_i}(z_i|x, y, z_{<i}),$$

n prior distribution

$$p_{\theta_1}(z_1|x), p_{\theta_i}(z_i|x, z_{<i}),$$

and a final projection function

$$p_{\theta}(y|x, z_1, \ldots, z_n),$$

such that the variational lower bound (ELBO) is maximized:

$$\mathbb{E}_{\{q_{\phi_i}(z_i|x,y,z_{<i})\}} \left[\log p_{\{\theta_i\}}(y|x, \{z_i\}) \right]$$

$$- \sum_i D_{KL}(q_{\phi_i}(z_i|x, y, z_{<i})\|p_{\theta_i}(z_i|z_{<i}))$$
In the inference stage, only the incomplete image x are observed. Therefore, we can first sample latent variables from the priors:

$$
\tilde{z}_1 \sim p_{\theta_i}(z_1|x) \\
\tilde{z}_i \sim p_{\theta_i}(z_i|x, z_{<i})
$$ \hspace{1cm} (5)

And the perform the inference using $\{\tilde{z}_i\}$:

$$
\tilde{y} \sim p_{\theta}(y|x, \tilde{z}_1, \ldots, \tilde{z}_n)
$$ \hspace{1cm} (6)
Results on CelebAMask-HQ Dataset

Figure: Input Prior1 Prior2 Prior3 Posterior Original
Conclusion

- We propose a hierarchical probabilistic approach for image inpainting, which utilizes latent variables to model the uncertainty in images.

- Our empirical results show that our hierarchical probabilistic model is able to successfully complete an up to 256×256 face image with fine-grained details.
Joint Clustering of scRNA-seq and scATAC-seq Data

Euxhen Hasanaj
A little bit of biology

- scRNA-seq: captures gene expression profiles of individual cells
- scATAC-seq: captures chromatin accessibility profiles of individual cells
- SNARE-seq: captures both at the same cell level

The Problem

- We can cluster and analyze scRNA-seq and scATAC-seq separately

- When we jointly profile chromatin accessibility and RNA on the same cell, we can utilize this fact to perform joint clustering

The Solution

- Assume underlying distributions for each data modality
 - Gaussian for scRNA-seq
 - Bernoulli for scATAC-seq

- For cells of the same type, require open chromatin regions corresponding to the top differential genes to be open simultaneously
The Solution

- View this as a latent variable PGM
- Likelihood

\[
p(X_R, X_A, Y | \Theta_R, \Theta_A, G) = \frac{1}{Z} \prod_{i,j} (1 - \mathbb{I}(y_i = y_j)(1 - \delta_{i,j})) \prod_i \alpha_{y_i} \prod_i p(X_R^i | y_i, \Theta_R)p(X_A^i | y_i, \Theta_A).
\]

- Solve via EM
- Under some assumptions

\[
Z = \left(1 - \sum_{j=1}^{c} \alpha_j^2\right)^c
\]
Proof of Concept

Baseline: Ensemble method

Joint clustering
Translating Robot Skills using Cycle Consistency

Anand Bollu, Tanmay Shankar
10th December 2020
10-708 Course Project
Motivation
Motivation

Abstract away low-level details, and reason over abstractions.

1. Reach for the kettle.
2. Grasp the kettle.
3. Move the kettle towards the cup.
...
N. Drink tea!
Motivation

Abstractions enable understanding commonalities across tasks.

Good abstractions are invariant to:

• Robot morphology
High-level Idea

How do we learn representations of these abstractions that are invariant to robot morphology?
Problem Setting

Source Morphology

Target Morphology
Source Morphology

Demonstration data → Skill Representation Learning

Learnt Skill Representation

Target Morphology

Demonstration data → Skill Representation Learning

Learnt Skill Representation
Objective

Input Reconstruction:
The latent representations should preserve identifying information about the original trajectory.
Source Morphology

Demonstration data ➔ Skill Representation Learning ➔ Learnt Skill Representation

Target Morphology

Demonstration data ➔ Skill Representation Learning ➔ Learnt Skill Representation
Objective

Input Reconstruction:
The latent representations should preserve identifying information about the original trajectory.

Latent Space Indiscriminability:
The distributions of latent representations should be virtually indistinguishable across different domains.
Objective

Input Reconstruction:
The latent representations should preserve identifying information about the original trajectory.

Latent Space Indiscriminability:
The distributions of latent representations should be virtually indistinguishable across different domains.

Cycle Consistency:
Enforce consistency of original and trajectory translated from source to target and back.
Experiments
Experiments – Learnt Skill Representations

Learnt Embedding Space of ‘Skills’

Ground Truth and Reconstructed Trajectories

GT

Learnt
Experiments – Domain Adversarial Training
Experiments – Cycle Consistency Training
Experiments – Learnt Skill Representations

Source Morphology

Target Morphology
mol-D — Molecular Graph Directionalization to Address Message Passing Neural Network Tottering

Abhinav Adduri, Monica Dayao, Mustafa Guler
December 9, 2020

Carnegie Mellon University
Message Passing Neural Networks (MPNNs)

Molecule

Molecular Graph

Create Atom & Bond Features
Message Passing Neural Networks (MPNNs)

Molecule

Create Atom & Bond Features

Molecular Graph
Message Passing Neural Networks (MPNNs)

Create Atom & Bond Features

Aggregate neighbors M, U

Node's Latent Features

$m_i^{t+1} = \sum_{j \in \text{ne}(i)} M_t(h_i^t, h_j^t, \ell_{i,j})$

$h_i^{t+1} = U_t(h_i^t, m_i^{t+1})$

Node's Latent Features
Message Passing Neural Networks (MPNNs)

Molecule

Create Atom & Bond Features

Molecular Graph

Aggregate neighbors

\[M, U \]

Node’s Latent Features

\[\begin{bmatrix} 0.258 & 0.527 & 0.221 & \ldots \end{bmatrix} \]
A Potential Problem with MPNNs

- Messages between neighbors bounce back and forth

$t = 0$

1Yang et al., “Analyzing learned molecular representations for property prediction”.
A Potential Problem with MPNNs

- Messages between neighbors bounce back and forth

\[t = 0 \]

\[^1 \text{Yang et al., “Analyzing learned molecular representations for property prediction”} \]
A Potential Problem with MPNNs

- Messages between neighbors bounce back and forth

$t = 1$

1Yang et al., “Analyzing learned molecular representations for property prediction”.

1
A Potential Problem with MPNNs

- Messages between neighbors bounce back and forth

\[t = 2 \]

1Yang et al., “Analyzing learned molecular representations for property prediction”.
A Potential Problem with MPNNs

- Messages between neighbors bounce back and forth

- Tottering

\[1\] Yang et al., “Analyzing learned molecular representations for property prediction”.
A Potential Problem with MPNNs

- Messages between neighbors bounce back and forth

- Tottering
- Possible solution – pass messages along directed edges (D-MPNN)\(^1\)

\(^1\)Yang et al., “Analyzing learned molecular representations for property prediction”.
A Potential Problem with MPNNs

- Messages between neighbors bounce back and forth

- Tottering

- Possible solution – pass messages along directed edges (D-MPNN)

- Our alternative – convert undirected molecule to a directed analogue

\(^1\)Yang et al., “Analyzing learned molecular representations for property prediction”.
Undirected → Directed – Directionality Assignment
Undirected → Directed – Directionality Assignment
Undirected \rightarrow Directed – Triangulation
Undirected \rightarrow Directed – Triangulation

Berry et al., “Maximum cardinality search for computing minimal triangulations of graphs”.

Undirected \rightarrow Directed – Triangulation
Undirected \rightarrow Directed – Junction Trees\(^2\)

\[^2\]Jin, Barzilay, and Jaakkola, “Junction tree variational autoencoder for molecular graph generation”.
Undirected → Directed – Junction Trees
Undirected → Directed – Junction Trees
Undirected \rightarrow Directed – Junction Trees
Validation Accuracy – BBBP

Figure 1: Validation AUC for BBBP Dataset
Validation Accuracy – Tox21

Figure 2: Validation AUC for Tox21 Dataset
<table>
<thead>
<tr>
<th>Package</th>
<th>Method</th>
<th>Dataset</th>
<th>Mean</th>
<th>Test AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>chemprop</td>
<td>D-MPNN</td>
<td>bbbbp</td>
<td>0.914338</td>
<td></td>
</tr>
<tr>
<td>chemprop</td>
<td>MPNN</td>
<td>bbbbp</td>
<td>0.913947</td>
<td></td>
</tr>
<tr>
<td>moldnet</td>
<td>Random Direction</td>
<td>bbbbp</td>
<td>0.756267</td>
<td></td>
</tr>
<tr>
<td>moldnet</td>
<td>Gastieger Charge</td>
<td>bbbbp</td>
<td>0.777256</td>
<td></td>
</tr>
<tr>
<td>moldnet</td>
<td>Triangulation</td>
<td>bbbbp</td>
<td>0.858727</td>
<td></td>
</tr>
<tr>
<td>moldnet</td>
<td>Junction Tree</td>
<td>bbbbp</td>
<td>0.799936</td>
<td></td>
</tr>
<tr>
<td>chemprop</td>
<td>D-MPNN</td>
<td>tox21</td>
<td>0.790662</td>
<td></td>
</tr>
<tr>
<td>chemprop</td>
<td>MPNN</td>
<td>tox21</td>
<td>0.775361</td>
<td></td>
</tr>
<tr>
<td>moldnet</td>
<td>Random Direction</td>
<td>tox21</td>
<td>0.779763</td>
<td></td>
</tr>
<tr>
<td>moldnet</td>
<td>Gastieger Charge</td>
<td>tox21</td>
<td>0.756799</td>
<td></td>
</tr>
<tr>
<td>moldnet</td>
<td>Triangulation</td>
<td>tox21</td>
<td>0.739608</td>
<td></td>
</tr>
<tr>
<td>moldnet</td>
<td>Junction Tree</td>
<td>tox21</td>
<td>0.788076</td>
<td></td>
</tr>
</tbody>
</table>

RL4RL: Neural architecture search for deep Q learning

Haotian Teng, Yang Ping Kuo, Xiaoyue Cui
Neural architecture search with RL, for RL

Use reinforcement learning for some tasks (play the Pong game)

Agent: a CNN

How do we design a good architecture for it?

Search architecture space with RL!
Deep Q learning

- Determine a set of actions that leads to maximum reward
- The q function tells the agent which action is optimal at every given state

\[Q(s, a) = r(s, a) + \gamma \max_a Q(s', a) \]

- Impossible to keep track of when state space is huge
- Neural network!!!
Atari: Pong

- States: 210 × 160 pixel RGB images

\[|\text{state}| = 256^{(3 \times 210 \times 160)} \]

- Train neural network to minimize predicted q value of every state
- Hard: training with output of the neural net instead of fixed objective
- No guaranteed convergence
- Heavily depended on hyperparameters and architecture

\[Q(s, a) = r(s, a) + \gamma \max_a Q(s', a) \]
Search structure parameters using Evolutionary algorithm

- Convolutional layer 1: kernel size, stride, padding
- Convolutional layer 2: kernel size, stride, padding
- Fully connected layer
Search Neural network architecture using RNN

3 Convolutional neural network structures with positive reward.
Discussion

Current reward function only consider the final agent performance. The time to convergence can be added to the reward function to search for structure with faster convergence rate.

The neural network architecture search require huge amount of time as every agent has to be trained separately to converge. The weight of the neural network can be reused to achieve faster training convergence.
Deep Generative Models for FPGA Placement with Disentangled Representation

Shan Xue, Haiguang Liao
2020.12.10
10708 Project Spotlight
Background

FPGA Placement and Route

PnR Predictive Model (Yu 2019)

Background

GAN for Disentangled representation

\[
\min_G \max_D L_{I}(D, G) = \mathbb{E}_{x \sim P_{\text{real}}} \left[\log(D(x)) \right] + \mathbb{E}_{P_{G}} \left[\log(1 - D(x)) \right]
\]

\[
\min_G \max_D L_{I}(D, G) = L(D, G) - \lambda I(c; G(z, c))
\]

Method - Data Generation

Kruskal’s Minimum Spanning tree

Placement Image:

Routing Image:

Placement Image: \[G_p(i, j) = \sum_{l=1}^{p} \mathbb{1}[(i, j) \in V_{N_i}] l \]

Routing Image: \[G_r(i, j) = \sum_{i=1}^{p} \mathbb{1}[(i, j) \in R_{N_i}] \]
Method - Flow
Method - infoGAN

Generator Networks

Discriminator Networks
Results

Info GAN results

Generator and Discriminator Loss During Training

Placement - 1net

infoGAN

Generated Placement
Results

Pix2Pix Model for 1 net design

Epoch 5
Real Place
Fake Congestion
Real Congestion

Epoch 100
Real Place
Fake Congestion
Real Congestion
Results

Pix2Pix Model for 10 net design

Epoch 5

Epoch 50

Real Place
Fake Congestion
Real Congestion
Real Place
Fake Congestion
Real Congestion
Results

Pix2Pix Model for 1 net design with infoGAN data

With Random Data

With InfoGAN Data

Fake Congestion

Real Congestion

Hot spots
Conclusions

- A data generator for placement and route is developed imitating the real FPGA placement and routing problem.
- The pix2pix routing congestion model is able to predict congested with high accuracy on a grid size of 64 with one net design, but still not able to generalize to multiple nets design.
- InfoGAN is able to generate data for 1 net design, but not able to get trained on multiple nets design well.
- Based on InfoGAN generated placement data, the pix2pix model has around 20% lower l_1 loss.
Thanks!
Spatial-Temporal Network with Adaptive Graph Structure

Yuchao Wu
yuchaow@andrew.cmu.edu
Spatial Dependency

Temporal Dependency

Graph convolution

Temporal Convolution Block (TCN)
+ Graph Convolution Block (GCN)
Previous Methods

Predefined Graph

Static Graph

Proposed Method

Learned Graph

Dynamic Graph
Adaptive Adjacency Matrix

\[f_{out} = \sum_{k=0}^{K} A_{adp}^{k} f_{in} \Theta_{k} \]

Graph convolution with K-step diffusion

\[A^{(t)}_{adp} = \beta \tilde{A}_{\Omega} + (1 - \beta) A^{(t)}_{N(K)} \]

Adaptive Graph = Global Graph + Local Graph

\[\tilde{A}_{\Omega} = \text{SoftMax}(\text{ReLU}(A_{\Omega})) \]

Global Graph captures long-term spatial relations

\[A^{(t)}_{N(K)} = \text{SoftMax}(X^{(t-K:t)}^T W^T_\theta W_\phi X^{(t-K:t)}) \]

Local Graph measures local node similarity in an embedding space
Gated Dilated Convolution

Stacked Dilated Convolution

+

Gated Linear Unit

\[h_{k+1} = \tanh(W_{f,k} \ast h_k) \odot \sigma(W_{g,k} \ast h_k) \]
Experimental Results

METR-LR Dataset: Traffic Speed in Los Angeles

<table>
<thead>
<tr>
<th>Methods</th>
<th>Adjacency Matrix</th>
<th>15 min RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCRNN</td>
<td>PRE-DEFINED</td>
<td>5.38</td>
</tr>
<tr>
<td>STGCN</td>
<td>IDENTITY</td>
<td>6.08</td>
</tr>
<tr>
<td>STGCN</td>
<td>PRE-DEFINED</td>
<td>5.24</td>
</tr>
<tr>
<td>STGCN</td>
<td>ADAPTIVE (RANDOM)</td>
<td>5.16</td>
</tr>
<tr>
<td>STGCN</td>
<td>ADAPTIVE (PREDEFINED)</td>
<td>5.15</td>
</tr>
</tbody>
</table>

Note: Adaptive (.) denotes Adaptive Adjacency Matrix with (.) initialization
Experimental Results

Learned Adaptive Matrix

Geographical Location
Unsupervised Conditional Generative Models

By Gregory Howe and Justin Jia
Introduction

1. Generative Models
 a. Generative Adversarial Networks (GAN's)
 b. Variational Auto Encoders (VAE's)
 c. Flow Based

2. Deep Cluster
 a. Unsupervised feature learning technique
 b. Alternates between feature clustering and using the cluster assignments as labels to train a feature extractor
 c. Consists of a feature extraction and a small classifier (typically a single dense layer)

3. i-RevNet
 a. Fully Invertible CNN up to projection onto classes
i-DC-v1
Results v1

Cluster Means

Samples
i-DC-v2
Results v2

Cluster Means

Sampled from GMM (Variance Reduced)

Sampled from Individual Clusters (Variance Reduced)
Summary and Future Work

- Introduced a generative model that can also sample from specific class distributions
- Sampling from specific class distributions provides model interpretability
- Would have liked to apply on image datasets with higher resolution
Thank You
Causal Direction and Unsupervised Transfer Learning

Minshi Peng
Department of Statistics and Data Science

F20-10708 project
Transfer learning (domain adaptation)

Transfer learning is the improvement of learning in a new task through the transfer of knowledge from a related task that has already been learned.

\[T: \text{target domain} \quad S: \text{source domain} \]

\[(X, Y, P) \quad (X, Y, Q) \]

Many existing works studying the theoretical properties of transfer learning under different model assumptions such as label shift, covariate shift, posterior shift etc (cite).
My goal in this project is to study the transfer learning in unsupervised setting: how and when information can be passed from source to target to improve unsupervised learning.

Only feasible in anti-causal direction $Y \rightarrow X$ (Schölkopf et al., 2012)

(Zhang et al. 2013) (Gong et al. 2016)
Goal:

- Examine the minimax bound of transfer learning on the unsupervised learning of target data under the assumed generative model.

\[P_{X,Y} = P_{X|Y}P_Y \]

S: source data
T: target data

Label shift
\[P^S_Y \neq P^T_Y \]

Conditional shift
\[P^S_{X|Y} \overset{LS}{\approx} P^T_{X|Y} \]

Model: Gaussian mixture model with location-scale shift
Results

- Start with the simplest location-shift isotropic GMM model

\[X_i^t = \eta_i^t \mu + \epsilon_i^t; \quad X_i^s = \beta + \eta_i^s \mu + \epsilon_i^s \]

- Study the minimax risk

\[\Psi_{\Delta} := \inf_{\tilde{\eta}^t, \tilde{\eta}^s, \hat{\beta}} \sup_{(\mu, \eta) \in \Omega_{\Delta}} \frac{1}{n_t} \mathbb{E} \left[r(\tilde{\eta}^t, \eta^t) \right] \]

with \(\Omega_{\Delta} = \pi_\mu \times \pi_{\eta^s} \times \pi_{\eta^t} \), where \(\pi_{\eta^s} \) and \(\pi_{\eta^t} \) are independent iid Rademacher random vectors. For the weak signal case, suppose \(\pi_\mu = \mathcal{N} \left(0, \kappa_n^2 \mathbf{I}_p \right) \) for the strong signal case, suppose \(\pi_\mu \) is a point mass at \(\mu_0 = (\Delta, 0, \ldots, 0) \). (Ndaoud, 2018)
Results

- $n_s = \gamma n_t$, γ bound away from 0 and ∞. Let

$$R_n = \frac{\Delta^2}{\sqrt{\Delta^2 + \frac{p}{n(1 + \gamma)}}}$$

Theorem (lower bound). We have, with some $\epsilon_n = o(1)$, if $\Delta \geq \log^2 n / \sqrt{n}$

$$\Psi_\Delta \geq c \Phi^c \left(R_n (1 + \epsilon_n) \right)$$

$$\bar{\Delta}^2 = \sigma^2 \left(1 + \sqrt{1 + \frac{2p}{n \log n}} \right) \log n \quad \rightarrow \quad \bar{\Delta}^2 = \sigma^2 \left(1 + \sqrt{1 + \frac{2p}{(n_s + n_t) \log n_t}} \right) \log n_t$$
Results

- Examined the potential algorithm for transfer learning under the location shift model in order to derive upper bound

- EM Algorithm

- SDP: convex relaxation for learning GMM (Chen & Yang, 2020)

- Due to the non-convex nature, haven’t figured out the upper bound yet.
Future extensions:

- Derive upper bounds through for alternative algorithms, potential through further convex relaxation.

- Study more general model, (i) with large label shift (distinction class composition, (ii) add the scale shift or consider other conditional shifts.
References:

A Causal (Re)-formulation of Controlled Text Synthesis

Amrith Setlur & Aman Madaan
Probabilistic Graphical Models Spotlight Presentation
Fall 2020
Controlled Text Synthesis is Counterfactual Inference

The pizza was terrible ➔ The pizza was amazing

Send me the data ➔ Please send me the data

- Content words: subject of the discussion
- Style words: alters the perception of the message (sentiment, level of politeness etc.)

- Controlled Text Synthesis is Counterfactual Inference!
 - What would the “The pizza was terrible” look like if it was written with a positive sentiment?
Causal Formulation

\[x_{i}^{s_{i}} \sim \mathbb{P}(X) \]

\[x \sim \mathbb{P}_{C}^{do(S=s')} (X' \mid X = x_{i}, S = s_{i}) \]

\[\mathbb{P}_{C}^{do(S=s')} (X' \mid X = x_{i}, S = s_{i}) = \int_{Z} d\mathbb{P}_{C}^{do(S=s')} (X', Z \mid S = s_{i}, X = x_{i}) = \int_{Z} \mathbb{P}_{C}(X' \mid Z, S = s') d\mathbb{P}_{C}(Z \mid S = s_{i}, X = x_{i}) \]

Sample from Counterfactual Distribution

Intractable!

SCM

T: Presence/Absence of a Style word
C: Confounders (Topics, Content)
Y: Perceived Style (Sentiment)
M: Mediators (indirect effect)

(1) Action (2) Abduction (3) Prediction
Tractable Approximation

• Step 1: *Identify* causally relevant words in sentence and *remove* them

• Step 2: *Generate* contextually relevant sentences by replacing the gaps with words/phrases associated with the new *(intervened)* style.

 Good approximation *only when* the words identified to be removed have a true causal effect on the inferred style!

 Current frameworks identify words to be of a particular style merely through *estimators* that capture *correlation*, not *causation*!
Estimating Average Treatment Effect (ATE) (for Style Words)

ATE: \(\psi_{ate} = \mathbb{E}^{do(T=1)} [Y] - \mathbb{E}^{do(T=0)} [Y] \)
\[
= \mathbb{E}_C [\mathbb{E} [Y|T = 1, C] - \mathbb{E} [Y|T = 0, C]]
\]

\(\hat{\psi}_{pg} = \frac{1}{\sum_i t_i} \sum_i g(c_i) \left(\hat{Q}(1, c_i) - \hat{Q}(0, c_i) \right) \)

Unbiased ATE Estimator

PROPENSITY

CONDITIONAL EXPECTATION
Causal Sufficiency

Veitch et. al. (AISTATS 2020)

Theorem 3.1. Suppose $\lambda(w)$ is some function of the words such that at least one of the following is $\lambda(W)$-measurable:

1. $(Q(1, W), Q(0, W)),$
2. $g(W),$
3. $g((Q(1, W), Q(0, W)))$ or $(Q(1, g(W)), Q(0, g(W))).$

If adjusting for W suffices to render the ATT identifiable then adjusting for only $\lambda(W)$ also suffices. That is, $\psi = \mathbb{E}[\mathbb{E}[Y \mid \lambda(W), T = 1] - \mathbb{E}[Y \mid \lambda(W), T = 0]].$

- For ATE, we need a **consistent estimator** for the **propensity score** and **conditional expectations** of the outcome (Y) given the treatment (T).

- But text data is extremely **high-dimensional** which makes the estimation hard.

- For this, we use the notion of **causal sufficiency** where we need only learn a function of the set of words comprising the confounder (C), that is sufficient to reliably predict $g(\cdot), Q(1, \cdot), Q(0, \cdot).$
Learning Causally Sufficient representations

• In practice: add losses to predict the outcome Y and the treatment T, in addition to the language modeling loss

$$L(w_i; \xi, \gamma) = (y_i - \tilde{Q}(t_i, \lambda_i; \gamma))^2 + \text{CrossEnt}(t_i, \tilde{g}(\lambda_i; \gamma)) + L_U(w_i; \xi, \gamma).$$

• Treatment T (collection of Binary RVs):
 • 1 if the sentence contains a word $w \in T_w$, 0 otherwise
 • We experiment with eight sets of T_w (food words, descriptive words)

• Outcome Y:
 • The target style
Experiments

- 50,000 samples from the Yelp restaurant corpus for sentiment classification

- Eight sets of treatment words T_w: (top/barely/all) positive, (top/barely/all) negative, food words, and descriptive words.

- Calculate the ATE for each set T_w
Results

<table>
<thead>
<tr>
<th>Treatment (w)</th>
<th>ψ̂q(w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>0.06</td>
</tr>
<tr>
<td>Negative</td>
<td>-0.07</td>
</tr>
<tr>
<td>Top Positive</td>
<td>0.40</td>
</tr>
<tr>
<td>Top Negative</td>
<td>-0.59</td>
</tr>
<tr>
<td>Barely Positive</td>
<td>0.25</td>
</tr>
<tr>
<td>Barely Negative</td>
<td>-0.32</td>
</tr>
<tr>
<td>Food Words</td>
<td>0.03</td>
</tr>
<tr>
<td>Descriptive Words</td>
<td>-0.02</td>
</tr>
</tbody>
</table>

Table 1. ψ̂q(w) for different settings of W

- Our method correctly associates low ATE with descriptive words like "cold", "warm", "edible" and food words "pizza", "sushi", "coffee" are incorrectly labeled as style words by existing systems.

- Causally sufficient embeddings can tease out the causal impact of each word, allowing us to infer the style-independent endogenous variables (namely, the content words) more effectively.

- Additional benefit: can quantify the causal contribution of each word to the style!
Thank you!
Human Trajectory Prediction with Social Interaction Transformer

Yangfan Liang & Xinyu Yao

Carnegie Mellon University

December 9, 2020
Background and Motivation

1. Booming location-based services
2. Accurate trajectory prediction will lead to
 - better navigation service
 - better autonomous driving
3. Big Challenges: how to correlate the spatial, temporal, semantic, and content-based information (Wu et al., 2018).
4. Our Solution: Social Interaction Transformer for Trajectory Prediction
5. Reasons:
 - **Transformer models**: excellent representation of the spatiotemporal trajectory data to mining heterogeneous human behavior patterns.
 - **Social mechanism**: consider the interaction between the agents in the system.
Baseline Model: Vanilla LSTM (Alahi et al., 2016)

1. LSTM proven successful for sequential learning
2. Vanilla LSTM for trajectory prediction learns the state of the person and predicts their future positions
3. Big Issue: a vanilla LSTM directly modeling human trajectory would fail to take human interaction into account.

Figure: Trajectory Prediction Task (Kothari et al., 2020)
Baseline Model: Social LSTM (Alahi et al., 2016)

1. Each individual time varying motion-properties captured by hidden states of LSTM
2. Vanilla LSTM does not model interactions between LSTMs
3. Modification: Add a social pooling layer on those hidden states of LSTMs to incorporate interactions between different trajectories that are proximal in space; add pooled social hidden-state tensor as input for trajectory encoder LSTM

Figure: Social LSTM (Alahi et al., 2016)
1 Motivation:
 - The similarity between trajectory prediction and text generation
 - LSTM models has been considered less potent than the Transformer model for NLP problems (Vaswani et al., 2017).
 - Recent work about Transformer for trajectory prediction did not consider social interactions (Giuliari et al., 2020)

2 Framework: the trajectory encoder module, the interaction module, the decoder module.

3 Fill the gap in those previous works by applying Transformer for encoder while still considering social interaction.

4 Main changes: Compared with Social-LSTM, replace LSTM with transformer for the trajectory encoder module
Proposed method: Social Transformer Formulation

1. Input: all observed motion trajectories: $M^o = [M^o_1, M^o_2, ..., M^o_n]$

2. Output: the prediction of the remaining trajectories for each individual agent: $M^r = [M^r_1, M^r_2, ..., M^r_n]$

3. The observed position of agent i at time frame t: $m^t_i = (x^t_i, y^t_i)$, where $t = 1, .., T_{obs}$ and T_{obs} is the last received time frame point.

4. v^t_i and a^t_i: the velocity and acceleration at frame t of the agent i.

5. State of each agent at frame t: $s^t_i = [m^t_i, v^t_i, a^t_i]$

6. Directional pooling tensor D^t_i

$$D^t_i(m, n, :) = \sum_{j \in N_i} \mathbb{I}_{mn}[x^t_j - x^t_i, y^t_j - y^t_i](v^t_i - v^t_j)$$ \hspace{1cm} (1)

7. The interaction vector $p^t_i = \phi_p(D^t_i; W_p)$ where ϕ_p is an MLP and W_p is the weight to learn.
The state embedding e_i^t:

$$e_i^t = \phi_{emb}(s_i^t; W_{emb}) \quad (2)$$

Encoder output:

$$U_i = TF_{enc}([e_i, p_i]; W_{enc}) \quad (3)$$

Decoder output at each time stamp:

$$[\mu_i^t, \sigma_i^t, \rho_i^t] = \phi_{dec}(U_i; W_{dec}) \quad (4)$$

All the weights $W_{emb}, W_{enc}, W_{dec}$ are to be learned.

Loss function: the negative log-likelihood function of the positions, velocity and acceleration on the training set for the i-th trajectory:

$$\mathcal{L}_i(W) = -\sum_{t=T_{obs}+1}^{T_{pred}} \log(P(m_i^t, v_i^t, a_i^t|\mu_i^t, \sigma_i^t, \rho_i^t)) \quad (5)$$
We use TrajNet dataset.

- **Goal:** Predict the trajectory of the following 12 frames, given the observation of 8 consecutive frames
- **Consists four different datasets:**
 - BIWI Hotel (contains 389 pedestrians, bird’s eye view, outdoor at building entrance)
 - Crowd UCY (contains three datasets of total 204 pedestrians, bird’s eye view in various outdoor situations, from shopping streets to student pedestrians)
 - MOT PETS 2009 (19 pedestrians, multi-sensor sequences containing different crowd activities, outdoors on a path)
 - Stanford Drone Dataset (contains eight scenes of total 3297 pedestrians, bird’s eye’s view).
Table: TrajNet Results

<table>
<thead>
<tr>
<th>Model name</th>
<th>Avg</th>
<th>ADE</th>
<th>FDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vanilla LSTM</td>
<td>2.107</td>
<td>3.114</td>
<td>1.100</td>
</tr>
<tr>
<td>Social LSTM</td>
<td>1.3865</td>
<td>2.098</td>
<td>0.675</td>
</tr>
<tr>
<td>Transformer</td>
<td>0.776</td>
<td>1.197</td>
<td>0.356</td>
</tr>
</tbody>
</table>

- **Average Displacement Error (ADE)** represents the mean squared loss between model prediction and ground truth on predicted points.
- **Final Displacement Error (FDE)** represents the distance between the final ground-truth destination and model predicted the final destination at the end of the prediction period.

Identifying Causal Structure

10708 Project Presentation
Wael Al Saeed, Advait Gadhikar
Meta Transfer Objective

- The true causal form adapts faster to interventional changes in data
- Correct causal form needs to change fewer parameters to learn the transfer (intervened distribution)
- A Parameter counting proof for 2 nodes discrete case

- Meta Transfer Loss:

\[R = -\log [\text{sigmoid}(\gamma)\mathcal{L}_{A \rightarrow B} + (1 - \text{sigmoid}(\gamma))\mathcal{L}_{B \rightarrow A}] \]

where \(\mathcal{L}_{A \rightarrow B} = \prod_{t=1}^{T} P_{A \rightarrow B}(a_t, b_t ; \theta_t) \) and \(\mathcal{L}_{B \rightarrow A} = \prod_{t=1}^{T} P_{B \rightarrow A}(a_t, b_t ; \theta_t) \)
Meta Transfer Objective for more than two nodes

- Graphs with more than 2 nodes can be parametrized as a soft adjacency matrix
- Ground truth graph is a causal DAG, but the parametrization does not assume so
- Can be easily included in the meta transfer learning objective framework

Each edge in the graph is B_{ij} such that

$$B_{ij} \sim \text{Bernoulli}(p_{ij}) \text{ where } p_{ij} = (\gamma_{ij})$$

V_j is a parent of V_i if $B_{ij} = 1$

The set of parents of a node is given by

$$pa(i, V, B_i) = \{V_j | B_{ij} = 1, j \neq 1\}$$

$$\mathcal{L}_{B_i} = \prod_t P_{B_i}(V_i = v_{ti}|pa(i, v_t, B_i))$$

Now the total regret can be given as

$$\mathcal{R} = -\log E_B\{\mathcal{L}_B\} \text{ where } \mathcal{L}_B = \prod_i \mathcal{L}_{B_i}$$

And its gradient can be estimated as

$$g_{ij} = \frac{\sum_k (\sigma(\gamma_{ij}) - B_{ij}^{(k)}) L_{B_i}^{(k)}}{\sum_k L_{B_i}^{(k)}}$$
Neural Causal Learning with Unknown Interventions

- Score based method to learn the causal structure in data
- Alternately learns structural parameters of the underlying graph and the functional parameters of the SCM
 - Learn parameters of a neural network, that model the functional parameters, on observational data
 - Calculate the log likelihood of this model on interventional data
 - Predict intervened variable as one with least log likelihood
 - Update structural (graph) parameters based on intervened log likelihood
 - Enforce Sparsity and Smooth Acyclicity constraint

Gradient for Structural Parameters

\[g_{ij} = \frac{\sum_k (\gamma_{ij} \sigma(c_{ij}^{(k)})) \mathcal{L}_C^{(k)}(X)}{\sum_k \mathcal{L}_C^{(k)}(X)}, \quad \forall i, j \in \{0, \ldots, M-1\} \]
Analysis of the Meta-Transfer Loss

Ground Truth: Chain5

Ground Truth: 3 Layers Full Binary Tree
Analysis of the Meta-Transfer Loss

Performance of the Graph with Optimal Meta-Transfer Loss for Ground Truth Chain2-5

Average SHD of Graph with Optimal Meta-Transfer Loss

Accuracy of Graph with Optimal Meta-Transfer Loss
Analysis of the Meta-Transfer Loss

Meta-Transfer Loss Distribution per SHD value

Ground Truth: Chain5

Ground Truth: 3 Layers Full Binary Tree
Analysis of the Meta-Transfer Loss

How Number of Interventions affects performance of Meta-Transfer Loss
References

Unsupervised Causal Cluster Inference with Domain Transfer

Tyler Lovelace, Daniel Yuan
Many major types of cancer, categorized by starting cell type
→ each cancer has their own further subtypes (molecular, genetic, etc)
→ subtypes linked to different survival rates and treatment plans

Main Questions:
● How can we identify these subtypes from data? **Cluster Inference**
● How are these subtypes linked to gene interaction networks? **Causality**
● How do we apply these models on a wider scale? **Domain Transfer**

Our strategy:
Link clusters directly to causal networks and domain noise
Component 1: Causal Cluster Inference

Learn directed acyclic graph (DAG) over the observed features X to identify cluster membership in Y.

Each cluster in Y is represented as an indicator variable that is a casual parent of features in X.
Component 2: Domain Transfer

DAG is learned under assumptions of causality and Markov faithfulness.

Utilize the assumption of independent causal mechanisms to adapt our clusters to the different exogenous noise in new domains.

\[
x_a = \alpha_a + \sum_{i \in PA_a} \beta_{al} x_l + \mathcal{N}(0, \sigma_a)
\]

\[
x_a = \alpha_a + \sum_{k=1}^K \gamma_{ka} y_k + \sum_{i \in PA_a} \beta_{al} x_l + \mathcal{N}(0, \sigma_a)
\]

\[
r_s = \sum_{k=1}^K \gamma_{ka} y_k = x_a - \left(\alpha_a + \sum_{i \in PA_a} \beta_{al} x_l + \mathcal{N}(0, \sigma_a) \right)
\]

\[
r_s = \alpha_a + \sum_{k=1}^K \gamma_{ka} y_k = x_a - \left(\sum_{i \in PA_a} \beta_{al} x_l + \mathcal{N}(0, \sigma_a) \right)
\]
METABRIC Clustering Results
Interpreting UCCI METABRIC Clusters

- UCCI is identifying latent cluster features that cause tumors to deviate from the underlying causal model
 - Different from clustering directly on the feature space
- Y2 cluster is baseline
 - Tumors fit the learned causal model
- Other clusters cause distinct deviations from baseline, and are enriched for genes related to
 - Y3: metabolism, cytokine response, cell division
 - Y4: cellular regulation, cell communication, immune system
 - Y6: immune system, negative cellular regulation
Conclusion

- **UCCI clusters mostly did not align well with known breast cancer subtypes**
 - Likely due to difference in assumptions:
 - Traditional breast cancer subtypes are based on similarity in gene expression
 - UCCI breast cancer subtypes are based on deviation from underlying causal model of gene expression
- **UCCI clusters are still biologically meaningful**
 - Clusters are causally linked to genes involved in cellular processes linked to cancer
- **Domain transfer of clusters to external datasets needs to be analyzed**
Emotional Speech Synthesis with Combined Speaker-Emotion Embeddings

Jeffrey Chen
Deep Generative Text-to-Speech

- Given text, speaker identity, and emotion, predict output waveform
- Learn joint probability

\[p(x, s, m, y) = \prod_{t=1}^{T} p(y_t | y_1, \ldots, y_{t-1}, x, s, m) \]

where \(x \) is input text (preprocessed into phonemes), \(s \) is speaker, \(m \) is emotion, \(y \) is output waveform
Deep Generative Text-to-Speech

- Use multi-speaker Deep Voice 3 (Ping et al. 2018) as baseline model
- Consists of encoder, decoder, and converter
Embedding Vectors

- To predict text for different speakers, we use low-dimensional speaker embedding vectors.
- Augment with low-dimensional emotion embedding vectors to capture emotion features.
- Concatenate speaker and emotion embedding vectors, then pass them into encoder and decoder.
- Speaker and emotion embeddings learn different latent features.
Methods

- Datasets:
 - VCTK: 108 speakers, ~44 hours of labeled speech, no labeled emotions (assume neutral)
 - RAVDESS: 24 speakers, 15 emotions, ~72 minutes of speech labeled with emotions
- Train on VCTK for achieving good speech synthesis, then finetune by training on both VCTK and RAVDESS to learn emotion embeddings
Results

- Can generate speech for combinations of text, speaker, and emotion
Wasserstein-GP CGAN Optimization For Facial Expression Synthesis

Tianlei Pan, Zheng Xu
Facial Expression Synthesis

CDAAE

ExprGAN
Generative Models

Adversarial Autoencoder

Generative Adversarial Network
Network Structure
Wasserstein Distance

P_r

P_θ

Wasserstein Distance
Algorithm 1 WGAN with gradient penalty. We use default values of $\lambda = 10$, $n_{\text{critic}} = 5$, $\alpha = 0.0001$, $\beta_1 = 0$, $\beta_2 = 0.9$.

Require: The gradient penalty coefficient λ, the number of critic iterations per generator iteration n_{critic}, the batch size m, Adam hyperparameters α, β_1, β_2.

Require: initial critic parameters w_0, initial generator parameters θ_0.

1: while θ has not converged do
2: for $t = 1, \ldots, n_{\text{critic}}$ do
3: for $i = 1, \ldots, m$ do
4: Sample real data $x \sim P_r$, latent variable $z \sim p(z)$, a random number $\epsilon \sim U[0, 1]$.
5: $\hat{x} \leftarrow G_\theta(z)$
6: $\bar{x} \leftarrow \epsilon x + (1 - \epsilon) \hat{x}$
7: $L^{(i)} \leftarrow D_w(\bar{x}) - D_w(x) + \lambda(\|\nabla_\theta D_w(\bar{x})\|_2 - 1)^2$
8: end for
9: $w \leftarrow \text{Adam}(\nabla_{w} \frac{1}{m} \sum_{i=1}^{m} L^{(i)}, w, \alpha, \beta_1, \beta_2)$
10: end for
11: Sample a batch of latent variables $\{z^{(i)}\}_{i=1}^{m} \sim p(z)$.
12: $\theta \leftarrow \text{Adam}(\nabla_{\theta} \frac{1}{m} \sum_{i=1}^{m} -D_w(G_\theta(z)), \theta, \alpha, \beta_1, \beta_2)$
13: end while
Preliminary Results

Dataset

Generated

FER2013
Probabilistic Graphical Models for Joint Object Detection and Surface Estimation

Matthew Levine (mjlevine@andrew) (12/12/2020)
Overview

• Object detection for autonomy off-road imposes additional challenges
• Goal: detect objects and surfaces
• Approach: integrate older probabilistic approaches with deep learned features for improved performance
• Benchmark old approaches against new approach with new dataset
Problem

Object Detection
- Viola-Jones
- SSD
- Fast-RCNN

Surface Estimation
- HSMM/MRF
- RANSAC
- Voxel / Structure
- GMM / Bayesian Optimization
Challenges

• Complicated correlations / conditioning
• Partial observability
• Ambiguous target state
Model

- **Appearance**
- Density
- Freespace
- Obstacles

Fig. 5. A graphical description of the model showing (a) the voxel, (b) the voxel column, and (c) the connections between voxel columns. For each voxel column ij, the model contains voxel states X^v_{ij}, observations Y^v_{ij}, and a class C_{ij}, class height H^v_{ij}, and ground height H^g_{ij} that interact with neighbors N_{ij} and the common class height H^c.
Data

- Outdoor agricultural setting
- People hidden; many other obstacles
- Difficult terrain
 - Vegetation
 - Dips and runoffs
 - Relative flatness but some complicated inclination
Results

*metrics are difficult here, all these come with caveats!

<table>
<thead>
<tr>
<th>Model</th>
<th>Recall</th>
<th>Precision (Person)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RetinaNet</td>
<td>65.5%</td>
<td>92%</td>
</tr>
<tr>
<td>Base MRF</td>
<td>32.2%</td>
<td>61.9%</td>
</tr>
<tr>
<td>Deep MRF</td>
<td>61%</td>
<td>64%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>Mean l_2 Surface Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>RANSAC</td>
<td>0.32m</td>
</tr>
<tr>
<td>Base MRF</td>
<td>0.09</td>
</tr>
<tr>
<td>Deep MRF</td>
<td>0.13</td>
</tr>
</tbody>
</table>
Learning Nonparanormal DAGs from Data

Shantanu Gupta, Vishwak Srinivasan
{shantang,vishwaks}@andrew.cmu.edu

December 9, 2020
Methods for Learning DAGs

Constraint based
- Rely on conditional independence testing to learn the edges in the graph.
- Two classical algorithms are the PC algorithm [4] and the Fast Causal Inference (FCI) algorithm [1].

Score based
- Try to optimize a score $S : \mathcal{D} \to \mathbb{R}$, where \mathcal{D} is the set of DAGs:
 $$\min_G S(G), \text{ subject to } G \in \mathcal{D}.$$
- The DAG constraint is challenging to enforce.
- Can be converted into a continuous constrained optimization problem in [5].
Nonparanormal distributions and Nonparanormal graphs

Nonparanormal distribution \equiv nonparametric extension to multivariate Gaussian distributions [3].

Why? Limiting nature of Normality.

$$\text{NPN}(\Sigma, \{f_i\}_{i=1}^p)$$

Nonparanormal distribution: defined w.r.t. a covariance matrix $\Sigma \in S^+_p$ and a collection of strictly increasing functions $\{f_i\}_{i=1}^p$.

$$(f_1(X_1), \ldots, f_p(X_p)) \sim \text{NPN}(\Sigma) \Leftrightarrow (X_1, \ldots, X_p) \sim \mathcal{N}(0, \Sigma)$$

Given a DAG G, a nonparanormal graphical model: the set of distributions $\text{NPN}(f, \Sigma)$ that are Markov w.r.t. G.
Rank-PC: a provable algorithm for learning nonparanormal DAGs

- PC algorithm [4] uses Gaussian conditional independence tests to infer a CPDAG from the given data.
 - Specifically, the test statistic is chosen to the Pearson correlation.
- Key fact: PC algorithm provably finds the true CPDAG by only checking whether distinct pairs of nodes are d-separated by arbitrary sets of a certain size.
- Idea behind Rank-PC [2]
 1. Simple transformations of the Spearman correlation and Kendall’s τ approximate the Pearson correlation well for multivariate normal data [3].
 2. Aforementioned measures are ranking-based and ranks are still intuitively preserved due to strictly increasing functions.
Preliminary Experiments

Our preliminary experiments focus on synthetically generated DAGs. We simulate random DAGs and sample from multivariate normal distributions that are faithful to them.

We choose the number of nodes in the random DAG to be 10 and 20 and sample 10 graphs each.

From each random DAG, we obtain \(n = 1000 \) samples to evaluate the methods. The transformation applied to these samples is \(f(z) = \exp(z) \).

<table>
<thead>
<tr>
<th>Method</th>
<th>Recall</th>
<th>Precision</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rank-PC</td>
<td>0.956 (0.059)</td>
<td>0.855 (0.153)</td>
<td>0.979 (0.015)</td>
</tr>
<tr>
<td>NOTEARS</td>
<td>0.352 (0.097)</td>
<td>0.778 (0.228)</td>
<td>0.917 (0.035)</td>
</tr>
</tbody>
</table>

Table: Results
Our Proposed Method

- Let $Y \sim NPN(f, \Sigma)$. Each node Y_i is associated with a hidden latent variable X_i such that $Y_i = f_i(X_i)$ where $X \sim \mathcal{N}(0, \Sigma)$.
- Thus we can write X as

$$X = WX + \epsilon,$$

where $\epsilon \sim \mathcal{N}(0, \Psi)$, and $\epsilon \perp \perp X$.
- NOTEARS requires two components: (i) a loss function L; and (ii) a continuous constraint $H(W) = 0$ that becomes zero when W becomes a DAG.
Proposed Method

Let \mathcal{G} and \mathcal{H} be an arbitrary *parametric* class of functions (e.g. neural networks). The loss function is

$$R = \frac{1}{n} \sum_{j=1}^{n} \| Y(j) - h(g(Y(j))) \|_2^2,$$

$$L(W, \Psi, g_1, \ldots, g_p, h_i, \ldots, h_p) = -\log(\det(\Sigma)) + \frac{1}{n} \sum_{j=1}^{n} g(Y(j))^\top \Sigma^{-1} g(Y(j)) + \lambda |W|_1 + R.$$

The NOTEARS objective then is:

$$\min_{W, \Psi} \min_{g_i \in \mathcal{G}, h_i \in \mathcal{H}, i \in [p]} L(W, \Psi, g_1:p, h_1:p) \text{ subject to } H(W) = 0.$$

Can be optimized using EM style methods.
References

Variational Inference for Federated Multi-Task Learning

Yichen Ruan
Dec 10, 2020
Background

• Federated Learning

A distributed learning framework without clients sharing raw data

Algorithm 1 Federated Averaging. The K clients are indexed by k; B is the local minibatch size, E is the number of local epochs, and η is the learning rate.

Server executes:
- initialize w_0
- for each round $t = 1, 2, \ldots$ do
 - $m \leftarrow \max(C \cdot K, 1)$
 - $S_t \leftarrow$ (random set of m clients)
 - for each client $k \in S_t$ in parallel do
 - $w_{k+1} \leftarrow$ ClientUpdate(k, w_t)
 - $w_{t+1} \leftarrow \frac{1}{K} \sum_{k=1}^{K} n_k w_k^{k+1}$

ClientUpdate(k, w): // Run on client k
- $B \leftarrow$ (split P_k into batches of size B)
- for each local epoch i from 1 to E do
 - for each batch $b \in B$ do
 - $w \leftarrow w - \eta \nabla f_i(w; b)$
- return w to server

• Multi-task Learning

Learning of multiple local models with shared global information

Task A

Task B

Task C

Task-specific layers

Shared layers

Local update

Synchronization
FMTL as Variational Inference

• PGM for FMTL

\[p(\theta, \phi_1, \cdots, \phi_K | D_{1:K}) \propto \prod_{i=1}^{K} p(\theta, \phi_i | D_i) \]

• Variational PGM

Gaussian mean-field approximation:

\[
\begin{align*}
 s(\theta) &= \prod_{d=1}^{\text{dim}(\theta)} N(\theta_d | \mu_d^s, \sigma_d^s) \\
 c_i(\phi_i) &= \prod_{d=1}^{\text{dim}(\phi_i)} N(\phi_i_d | \mu_{i_d}^c, \sigma_{i_d}^c)
\end{align*}
\]

\[
q(\theta, \phi_1, \cdots, \phi_K) = s(\theta) \prod_{i=1}^{K} c_i(\phi_i)
\]

\[
q_i(\theta, \phi_i) = s(\theta) c_i(\phi_i)
\]
Algorithm 1: Variational Federated Multi-Task Learning

Input: Datasets \(\{D_i\}_{i=1}^K \), \(|D_i| = N_i \), priors \(p(\theta) \), \(\{p(\phi_i)\}_{i=1}^K \), number of global epochs \(T \), number of local epochs \(E \).

Initialize all variational posteriors;

for \(t = 1, 2, \cdots, T \) do

% Client Procedure;

for \(i = 1, 2, \cdots, K \) in parallel do

\[
\begin{align*}
 s_{i}^{t,0}(\theta) &\leftarrow s^{t}(\theta); \\
 c_{i}^{t,0}(\phi_i) &\leftarrow c_{i}^{t,1,E}(\phi_i);
\end{align*}
\]

for \(e = 1, 2, \cdots, E \) do

\[
 s_{i}^{t,e}(\theta)c_{i}^{t,e}(\phi_i) \leftarrow \text{SVI}(s_{i}^{t,e-1}(\theta)c_{i}^{t,e-1}(\phi_i), p(\theta, \phi_i|D_i));
\]

end

end

% Server Procedure;

\[
 s^{t+1}(\theta) \leftarrow \sum_{i=1}^{K} \frac{N_i}{\sum_{j=1}^{K} N_j} s_{i}^{t,E}(\theta)
\]

end

Local update with stochastic variational inference

Synchronization of global variational parameters

\[
\begin{align*}
 \mu_s &\leftarrow \sum_k \alpha_k \mu_s(k), \alpha_k = \frac{N_k}{\sum N_i} \\
 \sigma_s^2 &\leftarrow \sum_k \alpha_k \sigma_s^2(k) + \sum_k \alpha_k (\mu_s - \mu_s(k))^2
\end{align*}
\]
Experiments

• MNIST

- 784 × 1024 × 512 × 256 × 10 with ReLu
- All priors initialized to $N(0,1)$
- Non-IID Data partition: 10 clients, each got 1 label
- Test scheme: sampling 100 models and average

Table 1: Average test accuracy with different number of local epochs for MNIST.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$E = 10$</td>
<td>0.82</td>
<td>0.80</td>
<td>0.91</td>
<td>0.90</td>
</tr>
<tr>
<td>$E = 30$</td>
<td>0.80</td>
<td>0.79</td>
<td>0.87</td>
<td>0.88</td>
</tr>
<tr>
<td>$E = 50$</td>
<td>0.72</td>
<td>0.75</td>
<td>0.81</td>
<td>0.83</td>
</tr>
</tbody>
</table>
Inflection-aware Data Augmentation for Low-resource Language Machine Translation

Ye Yuan, Xingyuan Zhao
Motivation

➢ NMT: Data-hungry ↔ Low-Resource Languages
 ○ Data augmentation needed for low-resource MT

➢ Current Word replacement methods consider no morphology
 ○ Morphology is specially important for many low-resource languages which are morphologically rich
 ○ Hard to obtain grammatically correct sentences with proper inflection

➢ Language Models for low-resource languages are not good enough for inflection

➢ Propose an inflection-aware data augmentation method to rectify the grammatical mistakes in the sentence pairs generated by word replacement for low-resource MT
Method: Overview

These are cute puppies

These are cute cat

These are cut cats

-->

Das sind süße Welpen

Das sind süße Katze

Das sind süße Katzen

● Word replacement & alignment
 ○ Language model prediction in high-resource language
 ○ Fast alignment
Method: Inflector

- Contextual inflection
 - Das sind süße Katze
 - (DET;DEF V;IND;3;PRS;FIN ADJ ____)

![Diagram of the Inflector method](image-url)
Preliminary Results

<table>
<thead>
<tr>
<th>Model</th>
<th>Data</th>
<th>test2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>192K</td>
<td>4.92</td>
</tr>
<tr>
<td>Naive-Replace</td>
<td>235K</td>
<td>4.52</td>
</tr>
<tr>
<td>LM-Replace</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inflected-Replace</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Thank you
On Model-Enhanced A2C methods in Deep RL

Di Wang, Alvin Pan
Introduction and Problem Formulation

- Model-free RL, with an actor-critic (A2C) model, has been a goto model in a variety of simulation environments
- Model-based methods have been less explored, especially in the actor-critic framework and context
- We aim to introduce model-based methodology to the Actor-Critic model in order to improve the training efficiency of the A2C paradigm
Methodology

- Main Algorithm (train until converged for a given interval of t episodes):
 - Sample real trajectory steps w.r.t. a given environment and buffer them
 - Use these trajectory steps to train an ensemble model based on PETS of the environment dynamics for a predetermined number of iterations
 - Use the transition of the model to train an actor critic A2C instance for t episodes
 - Rinse and repeat until converged

Important: Backpropagate using importance sampling involving real trajectory and its corresponding virtual trajectory
Results: Cartpole
Results:
Lunarlander

MB_a2c(N=100)Lunar
References

The Effect of Fact-checking on the Spread of Information

Ramon Villa-Cox
Melda Korkut
Introduction

- We seek to quantify the Causal effect of a tweet being called out as false on its diffusion over the network.
- The treatment is defined based on the presence of a fact-checking response.
 - These were identified by the usage of a URL from a prominent fact-checking domain (e.g. politifact, snopes, etc.).
- The data was collected during the first months of the COVID-19 crisis. Rumors were identified using a classifier that achieved aprox. 90% f1-score in that task. We match treated and non-treated rumors by controlling for semantic and network characteristics.
Rumor Diffusion

- We fine-tuned the rumor classification model from (Memon & Carley, 2020), which was applied to identify rumors in a COVID-19 Twitter dataset.
 - The model uses a BERT embedding layer combined with 2 MLP layers to predict whether a tweet contains a rumor or not.
- We identified approximately 100k rumors, 12k of which had a fact checking response.
- We measure the overall diffusion of a rumor based on the number of retweets that it obtained through its life-cycle.
Confounder Matching

Semantic Similarities:

- We obtain the BERT embeddings of each identified rumor (fine-tuned for the rumor classification task).
- These 768 dimensional vector encode the semantic characteristics of the rumors. We hypothesize that similar rumors (written in similar ways) will be close in this space.

Network Influence:

- We obtain node2vec embeddings of the users creating the rumors in their retweet networks.
- These 128 dimensional vectors encode the structural equivalency of users in the network. Users that are close in this space have similar access to the overall retweet network.

Average Treatment Effect

\[\text{ATE} = \frac{1}{N} \sum_{i=1}^{N} (Y_{i1} - Y_{i0}) \]

We calculate the average treatment effect by using matching between the treated and untreated population.

Propensity score estimation

For confidence intervals around this point estimate, to make it more robust, we employ bootstrapping to get confidence intervals around this estimate.

Difference in differences