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1 DGMs: Conditional Probability based Local Factors

Recall that DGMs have joint distributions that factor into a product of node-conditional
distributions:

P (X) =

p∏
j=1

P (Xi|PAi).

Let us briefly consider popular approaches to specify these local conditional distributions.

2 Conditional Probability Tables

The most common uses of DGMs are when all the variables are discrete. In that case, the
most general form of a conditional distribution P (Y |X) is a conditional probability table:
with one row for each configuration x of X, and K columns corresponding to the K values
{P (Y = y|X = x)}y∈[K].

3 Deterministic Nodes

In many cases, Y will be a deterministic function of X. For instance, we could have that
Y = X1 OR X2 for boolean variables. In such cases, additional independencies beyond that
dictated by d-separation could arise.

Example 1 Consider Figure 1, where C is a deterministic function of A and B. In such
a case, conditioning on A,B would be equivalent to also conditioning on C. We would thus
conclude that D ⊥⊥ E |A,B which does not follow from just d-separation in the DAG.
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Given a DAG G, and a set of nodes Z, we define its augmentation Z+ as the smallest set
such that:

• Z ⊆ Z+

• all nodes X such that X is deterministically specified given nodes in Z+ also lie in Z+

In particular, if there are deterministic nodes X such that PAX ∈ Z+, then they are deter-
ministically specified given Z+, and hence they should also lie in Z+.

In the example above, we would thus have that {A,B}+ = {A,B,C}, so that we do get that
D ⊥⊥ E | {A,B}+.

Definition 2 (det-d-separation) For a DAG G with some deterministic nodes, we say
that X is det-d-separated from Y given Z if X is d-separated from Y given Z+.

But it does not suffice to only include additional deterministic nodes in the augmented set.

Example 3 Consider the DAG in Figure 3. If C = A XOR B, then, given B,C, we
also know the value of A. We would thus have that: D ⊥⊥ E |C,B. We can see that
{C,B}+ = {C,B,A}, so that we do get that D ⊥⊥ E | {C,B}+.

4 Context Specific Independence

We have just seen that deterministic nodes can allow for additional dependencies due to
implicit conditioning on a larger set of nodes. But in certain cases, they might incur such
independencies only for certain values of some of the variables.

Suppose in Figure 1, we have that C = A OR B. Then if A = 1, then this specifies the
value of C: C = 1. So we would have that D ⊥⊥ B | (A = 1). But it does not follow that
D ⊥⊥ B | (A = 0), since just given that A = 0 does not specify the value of C.
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We can thus constrain the notion of conditional independence as follows.

Definition 4 (Context-Specific Independence) Given a DAG G = (V,E), let X,Y,Z
be disjoint subsets of V . Let C be some other set (that could overlap with X ∪Y ∪ Z) and
let c ∈ Val(C). We say that X is contextually independent of Y given Z and the context c,
denoted by X ⊥⊥c Y |Z if:

X ⊥⊥ Y |Z, (C = c).

While the example above might suggest that this is perhaps restricted to specific determin-
istic functions, contextual conditional independencies can arise even with purely stochastic
conditional distributions. Let us consider a few popular classes of such conditional distribu-
tions.

4.1 Tree CPDs

Example 5 Here P (Y |X) is specified by a decision density tree. See for instance Figure 5.

4.2 Gated CPDs

Suppose P (Y |A = a,X1, . . . , Xk) = I[Y = Xa]. In this case, the variable A acts as a gate
that specifies which of the parents of Y will be set as the value of Y . This is a very popular
choice when we are not sure which of a set of choices to pick, and can delegate that to a gate
variable A.

4.3 d-separation variant

One caveat of general context-specific independencies is that they cannot be read directly
from the DAG G, as we have seen in the examples above. However, we could use the specifics
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of the conditional probabilities to specify a reduced graph given a context c. Given a DGM
with DAG G, and context c, we then say that G−c is the contextually reduced DAG if we
remove from G all edges Y → X such that X ⊥⊥c Y |PAX − {Y }.

We then say that X is contextually d-separated from Y given Z and context c if X is
d-separated from Y given Z,C in DAG G−c .

5 Independent Parents

One of the caveats with DGM factors is that the local factor P (X|PAX) while local could
still require large storage complexity if the size of PAX is large (exponential in this size in the
worst case). There are however many popular parametric classes of conditional distributions
that have much lower representational complexity. Loosely, these can be motivated by
limiting interactions among the parent “causes”.

5.1 Noisy OR Model

One of the most popular instances of such a conditional distribution is a noisy OR model, for
the case where all variables are binary. Consider the simple OR function: Y = X1 OR . . . OR Xk.
This can be expressed compactly as:

1− Y =
k∏
i=1

(1−Xi),

so that Y = 1−
∏k

i=1(1−Xi).

A natural stochastic variant of this is given as:

P (Y = 0) = α0

k∏
i=1

αXi
i .

Here α0 = 1− ε0 for some very small ε0, and αi ∈ (0, 1). The more variables that are equal
to one, the lower the probability that Y is equal to zero. If none of the variables are equal
to one, then P (Y = 0) = α0. The purpose of α0 is to allow for a small probability for Y = 1
even when none of the variables are equal to one.

This can be seen to be a very natural conditional distribution when there is weak or no
dependence among the parents. For instance, in a medical diagnosis context, where are
symptom has multiple parents, each of which is a relatively independent disease, one could
argue that one would see the symptom if at least one of the diseases are active. The noisy
OR model allows for a stochastic version of this simple OR function to accomodate for any
uncertainty.
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5.2 Generalized Linear Models

Another popular class of conditional distributions that do not parameterize dependencies
among the parents are the broad class of generalized linear models (GLMs). We can consider
the following simplified instances of such GLMs:

P (Y |X) = exp(θTXY + C(Y )−B(θ,X)),

where C(Y ) is some fixed function of the child, and B(θ,X) is the log-normalization constant:

B(θ,X) = log
∑
y

exp(θTXy + C(y)).

Logistic Regression Model. Here Y ∈ {0, 1} (though this can also be generalized to the
case where Y takes a larger number of finitely many values, in which case it is called a
multiclass logistic regression model). We then have:

P (Y = 1|X) = sigmoid(θTX + θ0),

which can be seen to be an instance of the general GLM form above with C(Y ) = θ0Y .

Linear Regression Model. Here Y ∈ R, and Y ∼ N (θTX+θ0, σ
2). Here C(Y ) = −1/2Y 2+

θ0Y .

6 Structural Equation Models

One could use DGMs for causal reasoning by explicitly specifying the conditional distribution
in equation form (also called a strucural equation):

Y = fY (X,NY ),

where fY is a deterministic function, and NY is a noise random vector independent of all
other variables in the DGM. An important instance is where NY = , and Y is a deterministic
function of X. Some specific parametric instances are popular for reasons of identifiability
(distinct SEMs give rise to the same observational distribution), as we will see later when
we consider learning such models from data.

6.1 Linear Gaussian Models

The simplest instance of such an SEM is where:

Y = θTX +NY ,
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where NY ∼ N (0, σ2). These are the most well-studied class of SEMs, but as we will see
this class suffers from a lack of identifiability without additional restrictions.

6.2 Linear Additive Non-Gaussian Noise Models

Here we again have the linear additive noise model:

Y = θTX +NY ,

but where NY is now non-Gaussian. It turns out that one can consider the ill-specified setting
where we only impose non-Gaussianity, but can still recover the linear model coefficients.

6.3 Non-linear Additive Noise Models

Here we assume that:
Y = fθ(X) +NY ,

for some non-linear function fθ(·).

6.4 Post-nonlinear Models

Here:
Y = gβ(fθ(X) +NY ),

so that there is a non-linear transformation of an non-linear additive noise model.
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