
Exact Inference: Variable Elimination
10708, Fall 2020

Pradeep Ravikumar

1 Introduction

The key utility of a probabilistic graphical model is that it enables probabilistic reasoning.
As an example, suppose we have a joint distribution over thousands of symptom variables,
and thousands of disease variables. A key question in medical diagnosis is: given some
specific symptoms, what is the probability of some disease, say the flu? This can be cast
as computing the probability of some set of variables given observed values of some other
variables.

Let X = (X1, . . . , Xp) denote the random vector associated with a DGM or UGM. We are
interested in probabilistic reasoning queries that take the form:

P (XF |XE = xe),

which can be seen to be a conditional marginal probability computation. This in turn can
be seen to be equal to:

P (XF |XE = xe) =
P (XF , XE = xe)

P (XE = xe)
,

so that the key technical quantity of interest is the marginal probability of some subset of
variables P (XF).

2 Computational Complexity: Hardness Results

Unfortunately even though the representational complexity of PGMs is low, scaling expo-
nentially in only the size of local factors, computing marginals requires “collating” all of
this local information, and marginalizing out all but a specific subset. This turns out to
be a “global” operation, and computationally hard in general. We will state these hardness
results for DGMs, but since any DGM can be expressed as a UGM without increase in repre-
sentational complexity: if inference with DGMs is hard, it entails that inference with UGMs
is hard as well.

Theorem 1 Consider the following decision problem: Given a discrete DGM P over X , a
variable X ∈ X , and a value x ∈ VAL(X), decide whether P (X = x) > 0. This decision
problem is NP-complete.

1

It is common to state such hardness results in terms of decision problems, but one can extend
this to the case of computing the probabilities themselves, since it amounts to computing a
sum over possible configurations, which is an instance of so-called counting problems.

Theorem 2 Consider the following counting problem: Given a discrete DGM P over X , a
variable X ∈ X , and a value x ∈ VAL(X), compute P (X = x). This counting problem is
#P -complete.

One might then think that at the very least one might be able to approximately compute
these quantities, with a guaranteed approximation factor.

We say that an estimate P̂ (XF) for P (XF) has relative error ε if:

P̂ (XF)

1 + ε
≤ P (XF) ≤ P̂ (XF) (1 + ε).

Such a multiplicative approximation factor makes more sense for probabilities than an addi-
tive approximation factor, where we would have the guarantee that: |P̂ (XF)− P (XF)| ≤ ε,
since the conditional probabilities could be very small e.g. 10−3, in which case an additive
factor of even 10−3 is basically useless: we could just output zero for such small proba-
bilities to obtain a small additive error. On the other hand, the estimate of zero would
have a multiplicative approximation factor of infinity. Unfortunately, we have the following
theorem.

Theorem 3 Consider the following problem: Given a discrete DGM P over X , a variable
X ∈ X , and a value x ∈ VAL(X), compute P (X = x) upto a multiplicative approximation
factor of ε. This problem is NP -hard.

It turns out that computing marginal probabilities up to additive approximation factor is
not necessarily NP-hard, and in particular, there is a randomized polynomial time algorithm
to do so (as we will see when we discuss sampling based approaches to inference). But this
does not yield additive approximation guarantees for conditional marginal probabilities, since
these involve ratios of two marginals, and in general this ratio need not have an additive
approximation guarantee. In particular, there does not always exist an ε > 0 such that
ε-additive approximation guarantees for marginals entail ε′ additive factor guarantee for the
conditional:

P̂ (XF)

P̂ (XE = xe)
≤ P (XF) + ε

P (XE = xe)− ε

6= P (XF)

P (XE = xe)
+ ε′.

2

3 Warm Up

Consider the simple DGM over two variables X, Y with the DAG X → Y . Then, if we wish
to compute the marginal P (X), this is already available as a CPD of the DGM. For P (Y),
we can compute:

P (Y) =
∑
x

P (X = x)P (Y |X = x).

Similarly the conditional P (Y |X = x) is already a CPD of the DGM. While P (X|Y = y)
can simply be computed via Bayes rule.

What we now need to do is scale this up to general graphs.

Consider the six node DAG in Figure 3. Consider a discrete RV X = (X1, . . . , X6) associated
with the DAG. Suppose we wish to compute P (X1|X6 = x6) = P (X1, X6 = x6)/P (X6 = x6).
Let us focus on computing the numerator. We first note that:

P (x1, x6) =
∑

x2,x3,x4,x5

P (x),

where we use the shorthand
∑

xs
φ(x) to denote

∑
xs∈Xs φ(x).

Brute Force Approach. One approach is to explicitly construct the probability table for
P (X). Suppose each variable takes K possible values. Then the probability table has size
K6. It can be seen that to compute the numerator above for all values of X1, one would need
to visit K5 entries of the table. This is expensive, even more so if the number of variables

3

were much larger. But the brute force approach does not really leverage the key promise
of PGMs — local representations and hence small representational complexity — since the
computations involved are global.

Distributive Property Consider a product of factors: φ(X) = φ1(X).φ2(X), and suppose
we wish to compute:

∑
xs
φ. Suppose Xs 6∈ scope(φ1). Then,∑

xs

φ1.φ2 = φ1.
∑
xs

φ2.

Thus, the sum and the product terms can be exchanged. Note that after computing the
sum, the residual functions do not depend on Xs i.e. the variable Xs is eliminated. It is thus
also called sum-product elimination of variable Xs.

Let us consider the example in Figure 3, and apply this “sum product variable elimination”
principle.

P (x1, x6) =
∑

x2,x3,x4,x5

P (x)

=
∑
x2

∑
x3

∑
x4

∑
x5

P (x1)P (x2 |x1)P (x3 |x1)P (x4 |x2)P (x5|x3)P (x6 |x2, x5)

= P (x1)
∑
x2

P (x2 |x1)
∑
x3

P (x3 |x1)
∑
x4

P (x4 |x2)
∑
x5

P (x5|x3)P (x6 |x2, x5)

= P (x1)
∑
x2

P (x2 |x1)
∑
x3

P (x3 |x1)
∑
x4

P (x4 |x2)m5(x3, x2, x6)

= P (x1)
∑
x2

P (x2 |x1)
∑
x3

P (x3 |x1)m5(x3, x2, x6)

= P (x1)
∑
x2

P (x2 |x1)m3(x2, x6)

= P (x1)m2(x1, x6),

and

P (x6) =
∑
x1

P (x1, x6) =
∑
x1

P (x1)m2(x1, x6)

= m1(x6),

so that P (x1 |x6) = P (x1)m2(x1, x6)/m1(x6).

4

4 Variable Elimination

Definition 4 (Factor Marginalization) Let X be a set of variables, and lLet φ(X) be
some factor over these variables. Suppose Y ∈ X. We then define the factor marginalization
of Y in φ(·) as new factor ψ with scope X− {Y } s.t.:

ψ(X− {Y }) =
∑
Y

φ(X).

This is the key operation we will require when performing variable elimination, as shown in
Algorithm 1.

Algorithm 1 Variable Elimination

Input: Set of factors Φ, ordered set of variables to be eliminated Z
for i = 1, . . . , |Z| do

Find all factors in Φ that reference variable Zi, and remove them from Φ
Let Φi(Ti) denote the product of these factors, where Ti = scope(φ) (i.e. set of variables
referenced by φ(·)
Factor marginalize out variable Zi from Φi and suppose mi(Si) is the new factor. Add
this new factor to Φ
Return

∏
φ∈Φ φ

end for

What is the output of this algorithm? The following theorem answers this generalizing the
specific example we had considered earlier.

Theorem 5 Let X be some set of variables, and let Φ be some set of factors over these
variables, so that ∪φ∈Φscope(φ) ⊆ X. Let Z ⊂ X be an ordered set of variables that we
eliminate using the variable elimination algorithm in Algorithm 1, and get the output factor
φ∗. Then, scope(φ∗) ⊆ X− Z, and is given as:

φ∗ =
∑
Z

∏
φ∈Φ

φ.

Thus the variable elimination algorithm takes in a (product of) factors, and marginalizes
out a given ordered subset of variables.

Suppose we wish to compute P (XF |XE). We then first set Φ to be the product of all the
factors involved in the PGM. Note that for UGMs, these factors are simply the clique poten-
tials {φC(XC)}, while for DGMs, these are the node-conditional distributions {P (Xi|XPAi)}.
Since variable elimination only operates on factors, it provides a unified probabilistic infer-
ence procedure encompassing both UGMs and DGMs.

5

Let XR = scope(Φ) − XF − XE. We then set the variables to be eliminated to be XR ∪
XF choosing an ordering such that variables in XF occur after variables in XR. Let
mR(XF , XE) =

∑
XR

Φ(XF , XE, XR) be the factor obtained by just eliminating variables
in XR, and let mF (XE) =

∑
XF

mR(XF , XE) be the factor obtained by further eliminating
variables in XF . The conditional probability P (XF |XE) is then as:

P (XF |XE) = mR(XF , XE)/mF (xE).

5 Computational Complexity: Preliminary Analysis

Suppose we eliminate p random variables, and we have m initial factors. Let τi be the factor
that we obtain when we are about to eliminate variable Xi, and let ψi be the factors that
we obtain after eliminating Xi. Suppose Ni is the number of entries in τi (i.e. its storage
complexity), and let Nmax = maxi∈[p] Ni. The total number of factors that are involved in the
whole process is m + p: m initial factors, and n intermediate factors ψi that are generated
when we eliminate each of the p variables. Each of these factors are multiplied once: because
when we eliminate variable Xi, we multiply all factors involving Xi, and then remove these
factors from further consideration. And the cost of multiplying a factor φ to produce ψi is
atmost Ni. So that the total number of multiplication steps is (m + p)Nmax. And the task
of marginalizing out Xi from ψi in turn only involves Ni addition steps. So that the total
number of addition steps is pNmax. Thus, the total number of work is O((m+p)Nmax). Note
that the number of entries Ni in a factor ψiscales exponentially in the number of variables
in the scope of the factor ψi. This could in general be as large as the number of variables,
but is typically much lower. To get a handle on what this maximum size would be, it is
instructive to view variable elimination via a purely graph-theoretic lens.

6 Graph-theoretic Viewpoint of Variable Elimination

Let Φ be a set of factors over {X1, . . . , Xp}, and let Z be an ordered sequence of variables
to be eliminated. The induced graph GΦ,Z is an undirected graph over {X1, . . . , Xp} where
Xi and Xj are connected by an edge if they both appear in an intermediate factor generated
by variable elimination. We have the following properties of the induced graph.

Proposition 6 Let GΦ,Z be the induced graph given VE of Z over factors Φ over {X1, . . . , Xp}.
Suppose {ψi}mi=1 are the intermediate factors generated by VE. Then:

• For all i ∈ [m], scope(ψi) is a clique in GΦ,Z.

• Every maximal clique in GΦ,Z is the scope of some intermediate factor ψi.

6

Proof. The first statement follows by construction of the induced graph. For the second
statement, consider a maximal clique over variables Y1, . . . , Yk, and suppose Y1 is the first
to be eliminated. After eliminating Y1 no further factors involving Y1 will be multiplied
together. Then, existence of edges from Y1 to Yi for i ∈ {2, . . . , k} means that during the
VE step for Y1, there are factors involving Y1 and Yi. And the VE step for Y1 would then
multiply them all together, so that there is a factor involving all of Y1, . . . , Yk. But there
cannot be other variables in this factor because then Y1 would be connected to that variable,
and the induced graph would in turn connect this other variable to Yi for i ∈ {2, . . . , k}.
This would entail that Y1, . . . , Yk is not a maximal clique. �

Thus there is a direct correspondence between maximal cliques in the induced graph GΦ,Z

and the sizes of the intermediate factors generated in VE. Note that the induced graph does
not depend on the specific functional form of the factors Φ beyond their scopes. Given a UG
G, the factors Φ have scopes corresponding to the cliques in G. Similarly, for a DAG G, the
factors G have scopes corresponding to nodes and their parents. For any UG or DAG G, we
then let GZ be the induced graph with respect to corresponding UG or DAG scoped factors.

Definition 7 (Treewidth) The width width(G) of a graph G is the size of its largest clique
minus one. We then define the tree-width of a graph G as:

tree-width(G) = min
σ∈Sp

width(GXσ),

where Xσ is an specific ordering wrt permutation σ of all the variables X = (X1, . . . , Xp),
and Sp is the set of all permutations of p elements.

Examples.

• The tree-width of a tree graph is equal to one. This can be seen by eliminating the
graphs “bottom-up” from leaves on to the root. This will only create factors of size
atmost two: a node and its parent; so that the tree-width is one.

• The tree-width of an n×n grid graph is n. This is because the size of the largest clique
in the optimal induced graph is n + 1 which can be seen by eliminating variables row
by row, or column by column.

Thus, the tree-width is the (one minus the) size of the largest clique in the VE induced
graph with respect to the best possible ordering i.e. the ordering where the largest clique
is as small as possible. We thus see that the computational complexity of VE is at least
exponential in the tree-width. But in practice it could actually be worse, because we may
not have the optimal ordering that specifies the tree-width. And unfortunately, finding this
optimal ordering in general is NP-Hard.

7

Theorem 8 Given a graph G, and some bound K, determining whether there exists an
elimination ordering such that the induced graph has width ≤ K is NP-Hard.

There is however a class of graphs for which computing the optimal ordering is simple. We
first have the following proposition.

Proposition 9 Every VE induced graph is chordal.

Proof. Cosnider any cycle X1 − . . .−Xk with k ≥ 4. Suppose wlog X1 is the first node to
be eliminated. Then, no edge incident to X1 is added after it is eliminated: so edges X1−X2

and X1 −Xk exist when X1 is about to be eliminated. But by the same argument as in an
earlier proof, the only way for this to happen is for there to be a factor involving X1, X2, Xk

at the time of elimination of X1, so that the induced graph will have a chordal edge X2−Xk.
�

We next see that for a chordal graph, one can compute the optimal elimination ordering
very simply, and which moreover does not introduce any additional fill edges in the induced
graph.

Proposition 10 Any chordal graph admits an elimination ordering σ that does not introduce
any fill edges i.e. the induced graph is simply the skeleton of the original graph.

Proof. We know that a chordal graph has a simplicial vertex v such that its neighbors are
fully connected. Suppose we eliminate v first. Then this does not introduce any additional
edges since the factor created right before elimination of v would simply have v and all
its neighbors: and the neighbors of v are already fully connected. By induction, since the
remaining graph G[V − {v}] is chordal, it admits an elimination ordering that does not
introduce fill edges. �

When the underlying graph is non-chordal, then as noted earlier, finding the optimal elim-
ination ordering is intractable in general. There are however a number of heuristics that
seem to have good empirical performance. These heuristics are all based on picking the
next vertex to eliminate greedily, based on some criterion. We discuss some popular criteria
below:

• Min-degree: we pick the vertex with the smallest degree (so that we would fully connect
a smaller number of nodes)

• Min-fill: we pick the vertex that would lead to the smallest number of additional “fill”
edges

8

