
Homework 5

CMU 10-708: Probabilistic Graphical Models (Fall 2020)

November 20, 2020

Instructions:

• Collaboration policy: Collaboration on solving the homework is allowed, after you have thought
about the problems on your own. It is also OK to get clarification (but not solutions) from books
or online resources, again after you have thought about the problems on your own. There are two
requirements: first, cite your collaborators fully and completely (e.g., “Bob explained to me what is
asked in Question 4.3”). Second, write your solution independently : close the book and all of your
notes, and send collaborators out of the room, so that the solution comes from you only.

• Submitting your work: Assignments should be submitted as PDFs using Gradescope unless explicitly
stated otherwise. Each derivation/proof should be completed on a separate page. Submissions can
be handwritten, but should be labeled and clearly legible. Else, submission can be written in LaTeX.
Upon submission, label each question using the tempate provided by Gradescope.
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1 Exponential Family (Chih-Kuan) [20 points]

Recall that exponential family has density of the form pθ(x) = exp{〈θ, φ(x)〉 −A(θ)} with respect to some
base measure v(x), and where its log-normalization constant A(θ) = log{

∫
x
exp{〈θ, φ(x)〉}v(x)dx}.

1. [3 points] Show that ∂A(θ)
∂θi

= E[φi(x)].

2. [3 points] Show that ∂2A(θ)
∂θi∂θj

= Cov(φi(x), φj(x)).

3. [2 points] Show that A(θ) is convex.

4. [4 points] Show that A∗(µ) = supθ∈Ω(〈θ, µ〉 −A(θ)) is convex.

5. [2 points] Suppose we are given n samples {x1, x2, . . . , xn}. Then the likelihood of the data with
respect to the exponential family above can be written as

n∏
i=1

pθ(xi).

Give a compact form of the likelihood of the data based on θ, φ(xi), A(θ).

6. [2 points] Show that the log-likelihood is concave.

7. [2 points] Calculate the derivative of the likelihood of the data with respect to θ.

8. [2 points] Since the likelihood is concave, you can obtain the maximum likelihood distribution θ by
setting the derivative to 0, and solving for θ. Explain the relationship between the mean parameter of
the sufficient statistics (under the maximum likelihood distribution θ) and the empirical average of the
sufficient statistics over the given samples.
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2 Variational Inference [40 points] (Chang)

In this problem, we are going to work with approximate posterior inference via variational inference for a
given topic model.

The standard Latent Dirichlet Allocation model only models the word co-occurrences, without considering
temporal information, i.e. the time when a document is generated. However, a large number of subjects
in documents change dramatically over time. It is important to interpret the topics in the context of the
timestamps of the documents. To address how topics occur and shift over time, Topics on Time (TOT) model
was proposed, by explicitly modeling of time jointly with word co-occurrence patterns [Wang and McCallum,
2006]. The model is shown in Figure 1.

Figure 1: TOT Model

In the model, there are D documents. Each document d contains Nd words wd1, wd2, ..., wdNd
. Each word

wdi has a timestamp tdi ∈ (0, 1), indicating when the document is generated in a relative time scale (0, 1).
All words in the same document have the same timestamp. There are K topics (also T = K topics for the
notation in the paper and Figure 1) in the document corpora. Each topic follows a multinomial distribution
φ over the V words in the vocabulary. Each document follows a multinomial distribution θ over the K topics.
The prior distribution for φ and θ are Dirichlet distributions with parameters β and α respectively. For each
topic k, the temporal occurrence follows a Beta distribution Beta(ψk1, ψk2), where ψk = (ψk1, ψk2) and we
use ψ ∈ RK×2

+ to denote ψk for all topics. Each word wdi and its timestamp tdi are assumed to be generated
from a topic, with a topic label zdi ∈ {1, ...,K}.

The generative process of this model is described as follows.

1. Draw K multinomials φk from a Dirichlet prior β, one for each topic k.
2. For each document d,

– Draw a multinomial θd from a Dirichlet prior α;
– For each word wdi in document d,

(a) Sample a topic zdi from multinomial θd;
(b) Sample a word wdi from multinomial φzdi ;
(c) Sample a timestamp tdi from Beta ψzdi .
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We use variational EM to approximate the posterior of latent variables and learn model parameters. To do
this, a mean field variational distribution needs to be defined, which is parameterized by some parameters
called variational parameters. The variational EM algorithm iteratively performs two steps: 1) in the E step,
variational parameters are updated; 2) in the M step, model parameters are optimized. Same as in the paper,
we consider α and β are predefined fixed hyperparameters with no need to update. Therefore, in M step,
only the other model parameters are optimized. The pseudo-code for the proposed algorithm is shown in
Algorithm 1.

Algorithm 1 Pseudo-code of variational EM algorithm for TOT model

1: Input: Observations, Topic number K, MaxIter, and other optional parameters
2: Output: Posterior distributions for latent variables, optimized model parameters
3: Initialize parameters;
4: Compute and record ELBO with initial parameters
5: for k ← 1 to MaxIter do
6: Update variational variables . Stage 1: E-Step
7: Update ψ with projected Newton method . Stage 2: M-Step
8: Compute and record ELBO
9: end for

In the TOT model, θ, z,φ are latent variables and ψ is the model parameter to be learned. As a start, we
use mean-field variational inference and the variational distribution has the form:

q(θ,φ, z|γ,λ,π) =

K∏
k=1

q(φk|λk)

D∏
d=1

[
q(θd|γd)

Nd∏
n=1

q(zdn|πdn)
]
, (1)

where γ,λ,π are variational parameters that need to be updated in E-step.

Next, we write out the joint distribution of latent and observed variables:

p(x, t,φ,θ, z|α, β,ψ) =

K∏
k=1

p(φk|β)

D∏
d=1

[p(θd|α)

Nd∏
n=1

p(zdn|θd)p(xdn|zdn,φ)p(tdn|zdn,ψ)] (2)

Given Eq. 1 and 2, we can write out ELBO with:

ELBO = Eq(θ,φ,z)[log p(x, t,φ,θ, z)− log q(θ,φ, z)]. (3)

Variational EM basically maximizes ELBO w.r.t. variational parameters and model parameters in E- and
M-step respectively.

Questions:

1. [10 points] Update variational parameters
Derive the update equations of variational parameters, and also specify their distributions. Here you
can directly use the conclusion below for the derivation.

q∗j ∝ exp{Eq−j [log p(x, t,φ,θ, z)]},

where Eq−j
denotes expectation over all latent variables excluding variable j.

2. [10 points]Update model parameters
Derive the update equations of model parameters, as mentioned before, there is no need to update α
and β. For the updating rule of ψ, please be careful that ψ should be constrained as positive. Hint:
For a problem with positive solution (x > 0), a projected Newton method could be applied:

y = (x−H−1g)+
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x+ = x+ λ(y − x)

where x is the current variable, y is the projected update, g and H are gradient and Hessian matrix
respectively, λ is the step size and x+ is the updated variable. (·)+ is defined as s+ := max(0, s).

3. [20 points] Detailed variational lower bound
Based on the variational distributions, expand Eq. 3 to obtain detailed variational lower bound. The
result should be as specific as possible, that is, it can be directly used in the implementation.

Hint: the problem is designed based on the paper [Wang and McCallum, 2006]. In the paper,
Gibbs sampling was used for posterior inference, and here we are working with variational
inference. You may gain better understanding of the model and get some ideas of how to solve
the problem by reading the paper.
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3 Markov Chain Monte Carlo [20 pts] (Chirag)

Nowadays, statistical modelling of sport data has become an important part of sports analytics and is often
a critical reference for the managers in their decision-making process. In this part, we will work on a real
world example in professional sports. Specifically, we are going to use the data from the 2013-2014 Premier
League, the top-flight English professional league for men’s football clubs, and build a predictive model on
the number of goals scored in a single game by the two opponents. A Bayesian hierarchical model is a good
candidate for this kind of modeling task. We model each team’s strength (both attacking and defending) as
latent variables. Then in each game, the goals scored by the home team is a random variable conditioned
on the attacking strength of the home team and the defending strength of the away team. Similarly, the
goals scored by the away team is a random variable conditioned on the attack strength of the away team
and the defense strength of the home team. Therefore, the distribution of the scoreline of a specific game is
dependent on the relative strength between the home team A and the away team B, which also depends on
the relative strength between those teams with their other opponents.

Table 1: 2013-2014 Premier League Teams

Index 0 1 2 3 4
Team Arsenal Aston Villa Cardiff City Chelsea Crystal Palace

Index 5 6 7 8 9
Team Everton Fulham Hull City Liverpool Manchester City

Index 10 11 12 13 14
Team Manchester United Newcastle United Norwich City Southampton Stoke City

Index 15 16 17 18 19
Team Sunderland Swansea City Tottenham

Hotspurs
West Bromwich

Albion
West Ham United

Here we consider using the same model as described by Baio and Blangiardo [2010]. The Premier League has
20 teams, and we index them as in Table 1. Each team would play 38 matches every season (playing each of
the other 19 teams home and away), which totals 380 games in the entire season. For the g-th game, assume
that the index of home team is h(g) and the index of the away team is a(g). The observed number of goals
(yg0, yg1) of home and away team is modeled as independent Poisson random variables:

ygj |θgj ∼ Poisson(θgj), j = 0, 1 (4)

where θ = (θg0, θg1) represents the scoring intensity in the g-th game for the team playing at home (j = 0)
and away (j = 1), respectively. We use a log-linear model for the θs:

log θg0 = home+ atth(g) − defa(g) (5)

log θg1 = atta(g) − defh(g) (6)

Note that team strength is broken into attacking and defending strength. And home represents home-team
advantage, and in this model is assumed to be constant across teams. The prior on the home is a normal
distribution:

home ∼ N (0, τ−1
0 ) (7)

where we set the precision τ0 = 0.0001.

The team-specific attacking and defending effects are modeled as:

attt ∼ N (µatt, τ
−1
att ) (8)

deft ∼ N (µdef , τ
−1
def ) (9)
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We use conjugate priors as the hyper-priors on the attack and defense means and precisions:

µatt ∼ N (0, τ−1
1 ) (10)

µdef ∼ N (0, τ−1
1 ) (11)

τatt ∼ Gamma(α, β) (12)

τdef ∼ Gamma(α, β) (13)

where the precision τ1 = 0.0001, and we set parameters α = β = 0.1.

This hierarchical Bayesian model can be represented using a directed acyclic graph as shown in Figure 2.

yg0 yg1

θg0 θg1

atta(g) defh(g)home atth(g) defa(g)

τattµatt µdef τdef

Figure 2: The DAG representation of the hierarchical Bayesian model. Figure adapted from ?.

The goals of each game are y = {ygj |g = 0, 1, ..., 379, j = 0, 1} are the observed variables, and parameters θ =
{home, att0, def0, ..., att19, def19} and hyper-parameters η = (µatt, µdef , τatt, τdef ) are unobserved variables
that we need to make inference on. To ensure identifiability, we enforce a corner constraint on the parameters
(pinning one team’s parameters to 0,0). Here we use the first team as reference and assign its attacking and
defending strength to be 0:

att0 = def0 = 0 (14)

In this question, we want to estimate the posterior mean of the attacking and defending strength for each
team, i.e. Ep(θ,η|y)[atti], Ep(θ,η|y)[defi], and Ep(θ,η|y)[home].

1. [4 points] Find the joint likelihood p(y,θ,η).

2. [4 points] Write down the Metropolis-Hastings algorithm for sampling from posterior p(θ,η|y), and
derive the acceptance function for a proposal distribution of your choice (e.g. isotropic Gaussian).
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3. [12 points] Implement the Metropolis-Hastings algorithm to inference the posterior distribution.
The data can be found from http://cs.cmu.edu/~pradeepr/708/resources/premier_league_2013_

2014.dat, which contains a 380× 4 matrix. The first column is the number of goals yg0 scored by the
home team, the second column is the number of goals yg1 scored by the away team, the third column is
the index for the home team h(g), and the fourth column is the index for the away team a(g).

• Use an isotropic Gaussian proposal distribution N (0, σ2I) and use 0.1 as the starting point.

• Run the MCMC chain for 5000 steps to burn in and then collect 5000 samples with t steps in
between (i.e., run M-H for 5000t steps and collect only each t-th sample). This is called thinning,
which reduces the autocorrelation of the MCMC samples introduced by the Markovian process.
The parameter sets are σ = 0.005, 0.05, 0.5, and t = 1, 5, 20, 50.

• Plot the trace plot of the burn in phase and the MCMC samples for the latent variable home
using proposal distributions with different σ and t.

• Estimate the rejection ratio for each parameter setting, report your results in a table.

• Comment on the results. Which parameter setting worked the best for the algorithm?

• Use the results from the optimal parameter setting:

(a) plot the posterior histogram of variable home from the MCMC samples.

(b) plot the estimated attacking strength Ep(θ,η|y)[atti] against the estimated defending strength
Ep(θ,η|y)[defi] for each the team in one scatter plot. Please make sure to identify the team
index of each point on your scatter plot using the index to team mapping in Table 1.

4. [0 points] Despite what the data says, conclude that Manchester United is the best team in the Premier
League!

Note: You are free to use Python or MATLAB for your implementation. You are NOT allowed
to use any existing implementations of Metropolis-Hastings in this problem. Please include
all the required results (figures + tables) in your writeup PDF submission, as well as submit
your code to Gradescope separately.
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