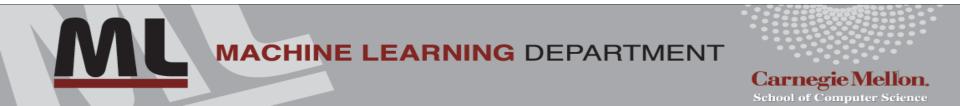
Neural Networks

Pradeep Ravikumar

Co-instructor: Ziv Bar Joseph

Machine Learning 10-701

Slides Courtesy: Previous Instructors



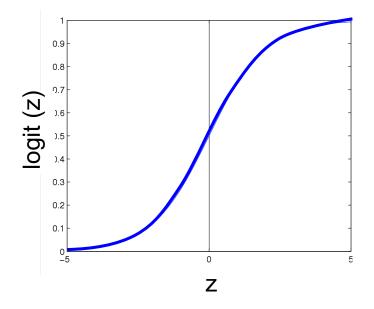
Logistic Regression

Assumes the following functional form for P(Y|X):

$$P(Y = 1|X) = \frac{1}{1 + \exp(-(w_0 + \sum_i w_i X_i))}$$

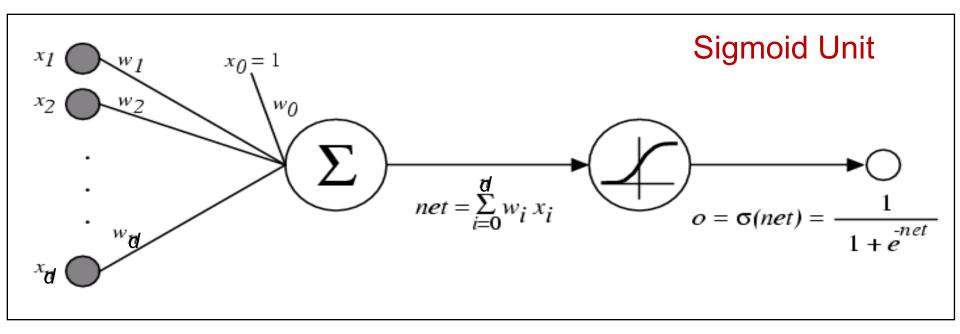
Logistic function applied to a linear function of the data

Logistic function $\frac{1}{1 + exp(-z)}$



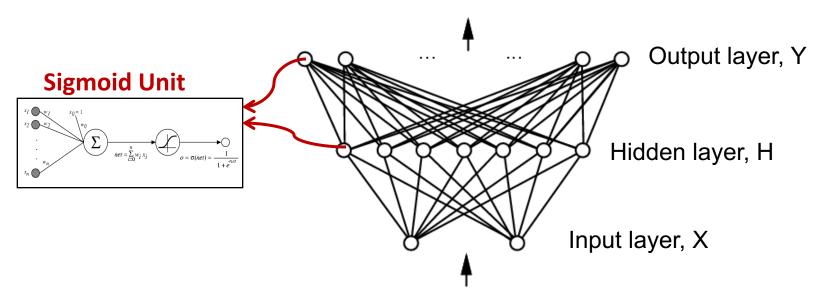
Logistic function as a Graph

Output,
$$o(\mathbf{x}) = \sigma(w_0 + \sum_i w_i X_i) = \frac{1}{1 + \exp(-(w_0 + \sum_i w_i X_i))}$$



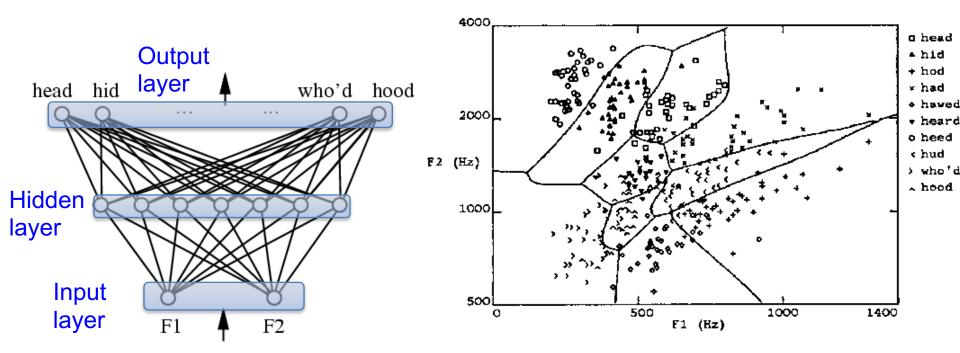
Neural Networks to learn f: $X \rightarrow Y$

- f can be a **non-linear** function
- X (vector of) continuous and/or discrete variables
- Y (vector of) continuous and/or discrete variables
- Neural networks Represent f by <u>network</u> of logistic/sigmoid units:



Multilayer Networks of Sigmoid Units

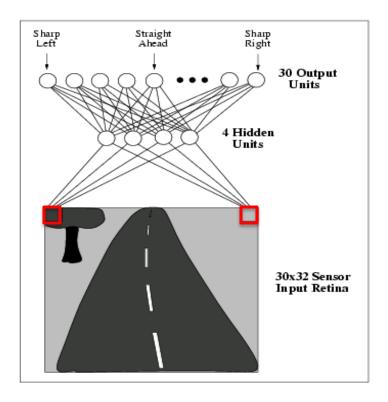
Neural Network trained to distinguish vowel sounds using 2 formants (features)



Two layers of logistic units

Highly non-linear decision surface

Neural Network trained to drive a car!



Weights to output units from one hidden unit

* * *

Weights of each pixel for one hidden unit

Connectionist Models

Consider humans:

- \bullet Neuron switching time $\tilde{}$.001 second
- \bullet Number of neurons ~ 10^{10}
- \bullet Connections per neuron ~ 10^{4-5}
- \bullet Scene recognition time $\tilde{}$.1 second
- 100 inference steps doesn't seem like enough
- \rightarrow much parallel computation

Properties of artificial neural nets (ANN's):

- Many neuron-like threshold switching units
- Many weighted interconnections among units
- Highly parallel, distributed process

Prediction using Neural Networks

Prediction – Given neural network (hidden units and weights), use it to predict the label of a test point

Forward Propagation –

Start from input layer For each subsequent layer, compute output of sigmoid unit

Sigmoid unit:
1-Hidden layer,
1 output NN:

$$o(\mathbf{x}) = \sigma\left(w_0 + \sum_i w_i x_i\right)$$

 $\sigma\left(w_0 + \sum_h w_h \sigma(w_0^h + \sum_i w_i^h x_i)\right)$

M(C)LE Training for Neural Networks

• Consider regression problem $f:X \rightarrow Y$, for scalar Y

$$y = f(x) + \varepsilon \longleftarrow assume noise N(0, \sigma_{\varepsilon}), iid$$

deterministic

Let's maximize the conditional data likelihood

$$W \leftarrow \arg \max_{W} \ln \prod_{l} P(Y^{l}|X^{l}, W)$$
$$W \leftarrow \arg \min_{W} \sum_{l} (y^{l} - \hat{f}(x^{l}))^{2} \qquad \text{Learned} \\ \prod_{l} (y^{l} - \hat{f}(x^{l}))^{2} \qquad \text{Learned} \\ \text{neural network} \end{cases}$$

Train weights of all units to minimize sum of squared errors of predicted network outputs

MAP Training for Neural Networks

• Consider regression problem $f:X \rightarrow Y$, for scalar Y

$$y = f(x) + \varepsilon \qquad \text{noise } N(0,\sigma_{\varepsilon})$$

$$\downarrow deterministic$$

$$Gaussian P(W) = N(0,\sigma I)$$

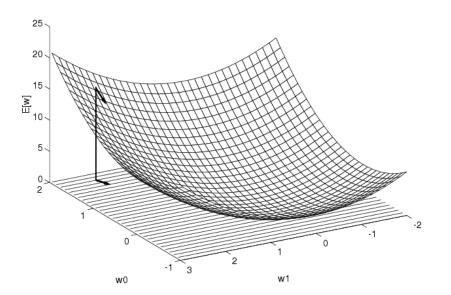
$$\downarrow W \leftarrow \arg \max_{W} \ln P(W) \prod_{l} P(Y^{l}|X^{l},W)$$

$$W \leftarrow \arg \min_{W} \left[c \sum_{i} w_{i}^{2} \right] + \left[\sum_{l} (y^{l} - \widehat{f}_{W}(x^{l}))^{2} \right]$$

$$\downarrow \ln P(W) \leftrightarrow c \sum_{i} w_{i}^{2}$$

Train weights of all units to minimize sum of squared errors of predicted network outputs plus weight magnitudes

Gradient Descent



E – Mean Square Error

Gradient

$$\nabla E[\vec{w}] \equiv \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \cdots, \frac{\partial E}{\partial w_d}\right]$$

Training rule:

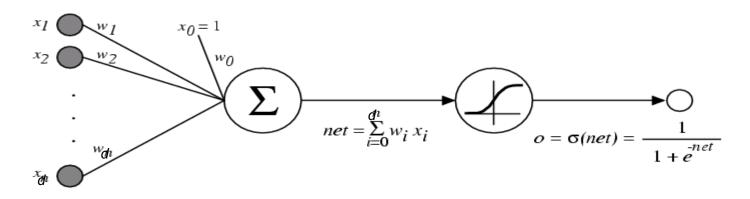
$$\Delta \vec{w} = -\eta \nabla E[\vec{w}]$$

i.e.,

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i}$$

For Neural Networks, *E*[*w*] no longer convex in w

Training Neural Networks



 $\sigma(x)$ is the sigmoid function

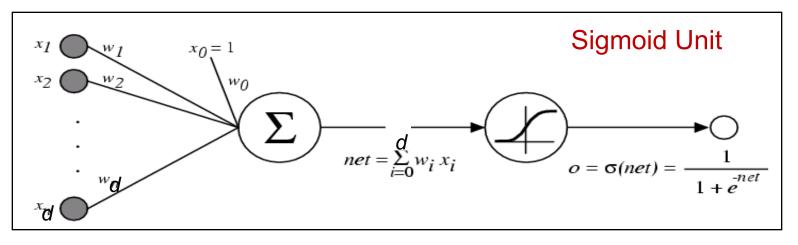
$$\frac{1}{1+e^{-x}}$$

Nice property: $\frac{d\sigma(x)}{dx} = \sigma(x)(1 - \sigma(x))$ Differentiable

We can derive gradient decent rules to train

- One sigmoid unit
- Multilayer networks of sigmoid units \rightarrow Backpropagation

Error Gradient for a Sigmoid Unit



$$\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{\perp \in D} (y^{\parallel} - o^{\parallel})^2 \qquad \text{But}$$

$$= \frac{1}{2} \sum_{\perp} \frac{\partial}{\partial w_i} (y^{\parallel} - o^{\parallel})^2$$

$$= \frac{1}{2} \sum_{\perp} 2(y^{\parallel} - o^{\parallel}) \frac{\partial}{\partial w_i} (y^{\parallel} - o^{\parallel})$$

$$= \sum_{\perp} (y^{\parallel} - o^{\parallel}) \left(-\frac{\partial o^{\parallel}}{\partial w_i} \right) \qquad \text{So:}$$

$$= -\sum_{\perp} (y^{\parallel} - o^{\parallel}) \frac{\partial o^{\parallel}}{\partial net_{\perp}^{\parallel}} \frac{\partial net^{\parallel}}{\partial w_i}$$

But we know: $\frac{\partial o!}{\partial net^{!}} = \frac{\partial \sigma(net^{!})}{\partial net^{!}} = o!(1 - o^{!})$ $\frac{\partial net^{!}}{\partial w_{i}} = \frac{\partial(\vec{w} \cdot \vec{x}^{!})}{\partial w_{i}} = x_{i}^{!}$

$$\frac{\partial E}{\partial w_i} = -\sum_{\mathbf{I} \in D} (\mathbf{y} - \mathbf{o}) o(1 - \mathbf{o}) x_i^{\mathbf{I}}$$

Incremental (Stochastic) Gradient Descent

Batch mode Gradient Descent: Do until satisfied

1. Compute the gradient $\nabla E_D[\vec{w}]$

2.
$$\vec{w} \leftarrow \vec{w} - \eta \nabla E_D[\vec{w}]$$

$$E_D[\vec{w}] \equiv \frac{1}{2} \sum_{i \in D} (y^i - o_i^{\perp})^2$$

Using all training data D

Incremental mode Gradient Descent: Do until satisfied

 \bullet For each training example | in D

also known as Stochastic Gradient Descent (SGD)

1. Compute the gradient $\nabla E_{|} [\vec{w}]$ 2. $\vec{w} \leftarrow \vec{w} - \eta \nabla E_{|} [\vec{w}]$ $E_{|} [\vec{w}] \equiv \frac{1}{2} (y^{|} - o^{|})^{2}$

Incremental Gradient Descent can approximate Batch Gradient Descent arbitrarily closely if η made small enough Backpropagation Algorithm (MLE)

Initialize all weights to small random numbers. Until satisfied, Do

- For each training example, Do
 - 1. Input the training example to the network and compute the network outputs
 - 2. For each output unit \boldsymbol{k}

$$\delta_k^{\mathsf{I}} \leftarrow o_k^{\mathsf{I}} (1 - o_k^{\mathsf{I}}) (\mathbf{y}_k^{\mathsf{I}} - o_k^{\mathsf{I}})$$

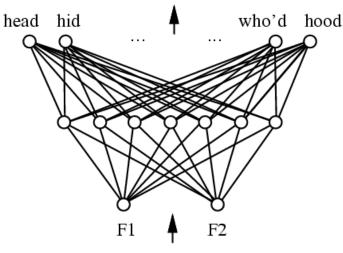
3. For each hidden unit h

$$\delta_h^{\mathsf{I}} \leftarrow o_h^{\mathsf{I}}(1 - o_h^{\mathsf{I}}) \sum_{k \in outputs} w_{h,k} \delta_k^{\mathsf{I}}$$

4. Update each network weight $w_{i,j}$ $w_{i,j} \leftarrow w_{i,j} + \Delta w_{i,j}^{\dagger}$

where

$$\Delta w_{i,j}^{\mathsf{I}} = \eta \delta_j^{\mathsf{I}} \mathbf{o}_{i}^{\mathsf{I}}$$



Using Forward propagation

I = training example

y_k = target output (label) of output unit k

 $o_{k(h)}$ = unit output (obtained by forward propagation)

w_{ij} = wt from i to j

<u>Note</u>: if i is input variable, $o_i = x_i$

More on Backpropagation

- Gradient descent over entire *network* weight vector
- Easily generalized to arbitrary directed graphs
- Will find a local, not necessarily global error minimum
 - $\, {\rm In}$ practice, often works well (can run multiple times)
- \bullet Often include weight momentum α

 $\Delta w_{i,j}(n) = \eta \delta_j x_{i,j} + \alpha \Delta w_{i,j}(n-1)$

- \bullet Minimizes error over training examples
 - Will it generalize well to subsequent examples?
- Training can take thousands of iterations \rightarrow slow!
- Using network after training is very fast

Objective/Error no longer convex in weights

Expressive Capabilities of ANNs

Boolean functions:

- Every boolean function can be represented by network with single hidden layer
- but might require exponential (in number of inputs) hidden units

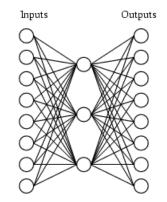
Continuous functions:

- Every bounded continuous function can be approximated with arbitrarily small error, by network with one hidden layer [Cybenko 1989; Hornik et al. 1989]
- Any function can be approximated to arbitrary accuracy by a network with two hidden layers [Cybenko 1988].

Limited by amount of labeled data. What about unsupervised problems?

Auto-Encoders Deep Generative Models

Learning Hidden Layer Representations

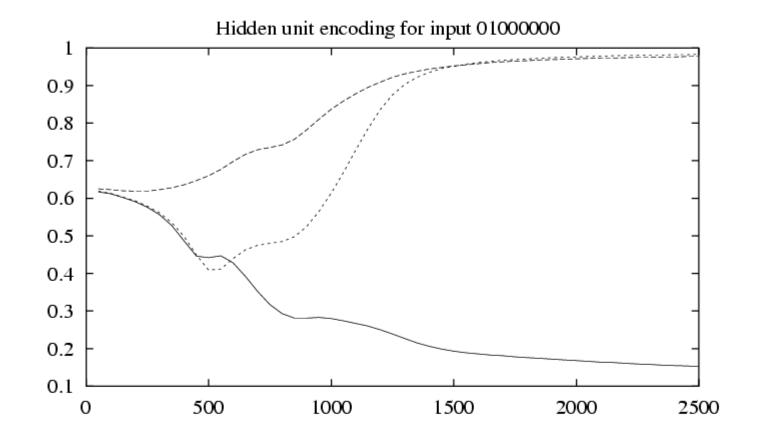


A target function:

Input		Output
10000000	\rightarrow	10000000
01000000	\rightarrow	01000000
00100000	\rightarrow	00100000
00010000	\rightarrow	00010000
00001000	\rightarrow	00001000
00000100	\rightarrow	00000100
00000010	\rightarrow	00000010
00000001	\rightarrow	00000001

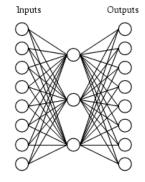
Can this be learned??

Training



Learning Hidden Layer Representations

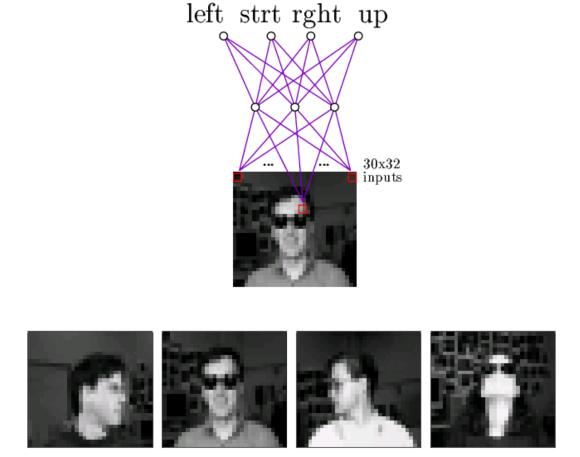
A network:



Learned hidden layer representation:

Input		Hidden			Output			
Values								
10000000	\rightarrow	.89	.04	.08	\rightarrow	10000000		
01000000	\rightarrow	.01	.11	.88	\rightarrow	01000000		
00100000	\rightarrow	.01	.97	.27	\rightarrow	00100000		
00010000	\rightarrow	.99	.97	.71	\rightarrow	00010000		
00001000	\rightarrow	.03	.05	.02	\rightarrow	00001000		
00000100	\rightarrow	.22	.99	.99	\rightarrow	00000100		
00000010	\rightarrow	.80	.01	.98	\rightarrow	0000010		
00000001	\rightarrow	.60	.94	.01	\rightarrow	00000001		

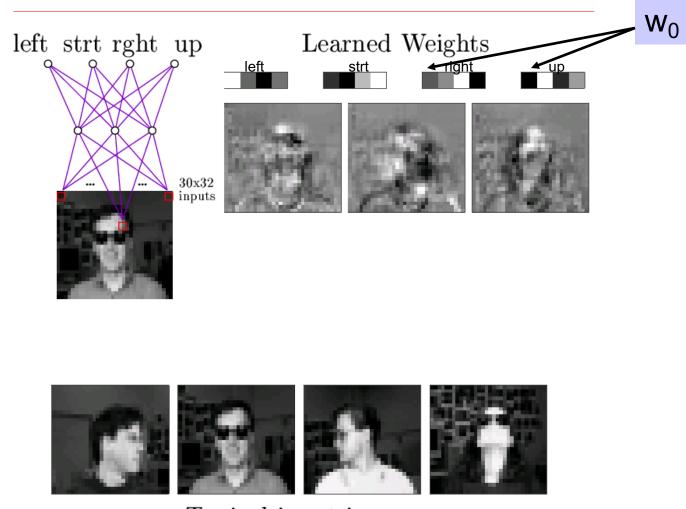
Neural Nets for Face Recognition



Typical input images

90% accurate learning head pose, and recognizing 1-of-20 faces

Learned Hidden Unit Weights



Typical input images

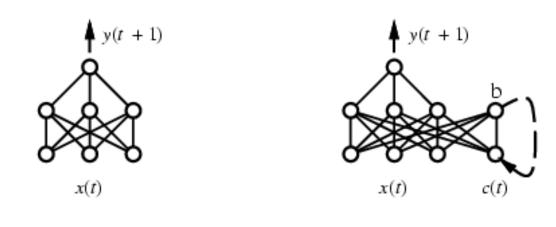
http://www.cs.cmu.edu/~tom/faces.html

Training Networks on Time Series

- Suppose we want to predict next state of world
 - and it depends on history of unknown length
 - e.g., robot with forward-facing sensors trying to predict next sensor reading as it moves and turns

Training Networks on Time Series

- Suppose we want to predict next state of world
 - and it depends on history of unknown length
 - e.g., robot with forward-facing sensors trying to predict next sensor reading as it moves and turns
- Idea: use hidden layer in network to capture state history

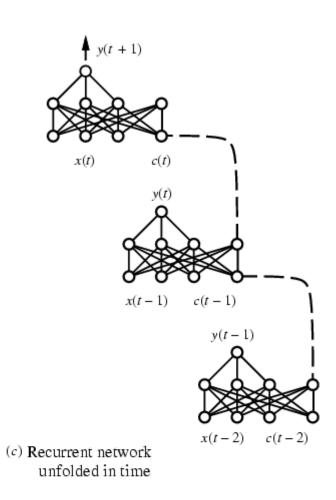


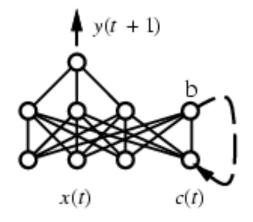
(a) Feedforward network

(b) Recurrent network

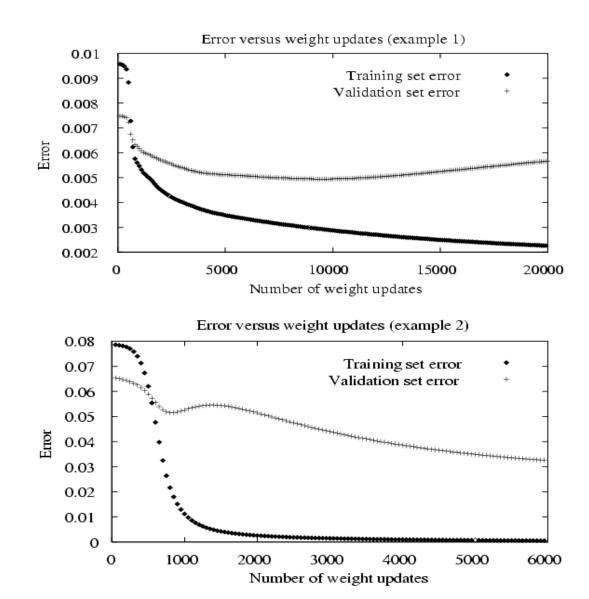
Training Networks on Time Series

How can we train recurrent net??





Overfitting in ANNs



How to avoid overfitting?

Regularization – train neural network by maximize M(C)AP

Early stopping

Regulate # hidden units – prevents overly complex models ≡ dimensionality reduction

Artificial Neural Networks: Summary

- Actively used to model distributed computation in brain
- Highly non-linear regression/classification
- Vector-valued inputs and outputs
- Potentially millions of parameters to estimate overfitting
- Hidden layers learn intermediate representations how many to use?
- Prediction Forward propagation
- Gradient descent (Back-propagation), local minima problems
- Coming back in new form as deep networks