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Gaussian Mixture Models and Top 
Down Clustering 
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(One) bad case for K-means 

•     Clusters may overlap 

•     Some clusters may be “wider” than others 

•     Clusters may not be linearly separable 



TexPoint fonts used in EMF.  
Read the TexPoint manual before you delete this box.: AAAAAAAAA 

(One) bad case for K-means 

•     Clusters may overlap 

•     Some clusters may be “wider” than others 

•     Clusters may not be linearly separable 



• K-means  
• hard assignment: each object belongs to only one cluster 

 

• Mixture modeling 
• soft assignment: probability that an object belongs to a cluster 

 

Generative approach: think of each cluster as a component distribution, and 
any data point is drawn from a “mixture” of multiple component distributions 

4 

Partitioning Algorithms 
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Mixture of K Gaussian distributions:  (Multi-modal distribution) 
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Gaussian Mixture Model 
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(One) bad case for K-means 

•     Clusters may overlap 

•     Some clusters may be “wider” than others 
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General GMM 
GMM – Gaussian Mixture Model  (Multi-modal distribution) 
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General GMM 
GMM – Gaussian Mixture Model  (Multi-modal distribution) 
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• There are k components 

• Component i has an associated mean vector mi 

•     Each component generates data  
     from a Gaussian with mean mi and  
     covariance matrix Si 
   

Each data point is generated according to the following 
recipe:  

1) Pick a component at random: Choose component i 
with probability P(y=i) 

2) Data-point x ~ N(mi, Si) 
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(One) bad case for K-means 

•     Clusters may overlap 

•     Some clusters may be “wider” than others 

•     Clusters may not be linearly separable 
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General GMM 
GMM – Gaussian Mixture Model  (Multi-modal distribution) 
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p(x|y=i) ~ N(mi, Si) 

Gaussian Bayes Classifier: 
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        Gaussian mixture model 
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Parameters: 

• How to estimate parameters? Maximum Likelihood 
     But don’t know labels Y (recall Gaussian Bayes classifier) 

Learning General GMM 
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Learning General GMM 
Maximize marginal likelihood: 

argmax j P(xj) = argmax j i=1 P(yj=i,xj)           … marginalizing yj   

          = argmax j i=1 P(yj=i)p(xj|yj=i) 
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P(yj=i) = P(y=i)  Mixture component i is chosen with prob P(y = i) 

How do we find the μi‘s and P(y=i)s which give max. marginal likelihood? 
 

* Set       log Prob (….) = 0 and solve for μi‘s.     Non-linear non-analytically solvable 
            μi 

 * Use gradient descent:  Doable, but often slow 



TexPoint fonts used in EMF.  
Read the TexPoint manual before you delete this box.: AAAAAAAAA 

GMM vs. k-means 
Maximize marginal likelihood: 

argmax j P(xj) = argmax j i=1 P(yj=i,xj) 

          = argmax j i=1 P(yj=i)p(xj|yj=i) 

 

 

 

 
 

argmax j P(xj) = argmax j p(xj|yj=C(j)) 
 

           = argmax  

 

           = argmin 

K 

K 

Same as k-means (if 
we assume equal 
covariance matrix)! 
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Expectation-Maximization (EM) 
A general algorithm to deal with hidden data, but we will study it in 
the context of unsupervised learning (hidden labels) first 

 

•    No need to choose step size as in Gradient methods. 
 

•    EM is an Iterative algorithm with two linked steps: 
E-step: fill-in hidden data (Y) using inference 

M-step: apply standard MLE/MAP method to estimate parameters 

         {pi, μi, Σi}
k
i=1

 

 

• We will see that this procedure monotonically improves the 
likelihood (or leaves it unchanged). Thus it always converges 
to a local optimum of the likelihood. 

k 
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EM for spherical, same variance GMMs 
 
 
 
 

E-step 
        Compute “expected” classes of all datapoints for each class 

M-step 

 Compute MLE for pi, μ and S given our data’s class membership distributions 
(weights) 
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In K-means “E-step” 
we do hard assignment 
 
EM does soft assignment 

Iterate. 

Similar to K-means, but with 
weighted data 
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EM for general GMMs  
 
 
 

E-step 
        Compute “expected” classes of all datapoints for each class 

M-step 

 Compute MLEs given our data’s class membership distributions (weights) 

Just evaluate a 
Gaussian at xj 

Iterate.  On iteration t let our estimates be 
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(t), μ2
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(t) is shorthand for 

estimate of P(y=i) on 
t’th iteration 
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EM for general GMMs: Example 

m1 

m2 

m3 
S1 

S2 S3 

P(y =  |xj,m1,m2,m3,S1,S2,S3,p1,p2,p3) 



After 1st iteration 



After 2nd iteration 



After 3rd iteration 



After 4th iteration 



After 5th iteration 



After 6th iteration 



After 20th iteration 



Example: GMM clustering 
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General EM algorithm 
Marginal likelihood – x is observed, z is missing: 

 

 

 

log 
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Convergence of EM 

Marginal  
Likelihood function 

Sequence of EM lower bound F-functions 

EM monotonically converges to a local maximum of likelihood ! 

F(θ, Qt+1) 
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EM & Local Maxima 
Typical likelihood function 

Different sequence of EM lower bound  
F-functions depending on initialization 

Use multiple, randomized initializations in practice 
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Summary: EM Algorithm 
• A way of maximizing likelihood function for hidden variable models. Finds 

MLE of parameters when the original (hard) problem can be broken up 
into two (easy) pieces: 
1. Estimate some “missing” or “unobserved” data from observed data and current  
     parameters. 
2. Using this “complete” data, find the maximum likelihood parameter estimates. 

 
 

• Alternate between filling in the latent variables using the best guess 
(posterior) and updating the parameters based on this guess: 

1. E-step:  

2. M-step:  
 
 
 

• In the M-step we optimize a lower bound on the likelihood. In the E-step 
we close the gap, making bound=likelihood. 
 

• EM performs coordinate ascent on F, but can get stuck in local minima. 
 

• Extremely popular and useful in practice. 
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Strength of Gaussian Mixture Models 

• Interpretability: learns a generative model of each cluster 
• you can generate new data based on the learned model 

• Relatively efficient: O(tkn), where n is # objects, k is # clusters, and t  is # 
iterations. Normally, k, t << n. 

• Intuitive (?) objective function: optimizes data likelihood 

 



Weakness of Gaussian Mixture Models 

• Often terminates at a local optimum. Initialization is important. 

• Need to specify K, the number of clusters, in advance 

• Not suitable to discover clusters with non-convex shapes 

 

• Summary 
• To learn Gaussian mixture, assign probabilistic membership based on current 

parameters, and re-estimate parameters based on current membership 



1. Decide on a value for K, the number of clusters.  

2. Initialize the K cluster centers / parameters (randomly). 

3. Decide the class memberships of the N objects 
by assigning them to the nearest cluster center.
  

4. Re-estimate the K cluster centers, by assuming 
the memberships found above are correct.  

Algorithm: K-means and GMM 

5. Repeat 3 and 4 until parameters do not change. 

3. E-step: assign probabilistic membership 

 

4. M-step: re-estimate parameters based on 
probabilistic membership 

K-means GMM 



Clustering methods: Comparison 

Hierarchical K-means GMM 

Running time naively, O(N3) fastest (each iteration 

is linear) 

fast (each iteration is 

linear) 

Assumptions requires a similarity / 

distance measure 

strong assumptions strongest 

assumptions 

Input parameters none K (number of 

clusters) 

K (number of 

clusters) 

Clusters subjective (only a tree is 

returned) 

exactly K clusters exactly K clusters 



Top down: Graph based clustering 

• Many top down clustering algorithms work by first constructing a neighborhood 
graph and then trying to infer some sort of connected components in that graph 



Graph based clustering 

• We need to clarify how to perform the following three steps: 

      1. construct the neighborhood graph 

      2. assign weights to the edges (similarity) 

      3. partition the nodes using the graph structure 

 



Example 
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How can we tell the right number of clusters? 

 
In general, this is a unsolved problem. However there are many approximate methods. In the next few slides we will see an 

example. 
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 When k = 1, the objective function is 873.0 



1 2 3 4 5 6 7 8 9 10 

 When k = 2, the objective function is 173.1 



1 2 3 4 5 6 7 8 9 10 

 When k = 3, the objective function is 133.6 
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We can plot the objective function values for k equals 1 to 6… 
 
The abrupt change at k = 2, is highly suggestive of two clusters in the data. This technique for determining the 
number of clusters is known as “knee finding” or “elbow finding”. 

Note that the results are not always as clear cut as in this toy example 
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Cross validation 
• We can also use cross validation to determine the correct number of classes 

• Recall that GMMs is a generative model. We can compute the likelihood of the left out data to 
determine which model (number of clusters) is more accurate 
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Cross validation 



Cluster validation 

• We wish to determine whether the clusters are real or compare 
different clustering methods.   

     - internal validation (stability, coherence) 

     - external validation (match to known categories) 



Internal validation: Coherence 

• A simple method is to compare clustering algorithm based on the coherence of 
their results 

• We compute the average inter-cluster similarity and the average intra-cluster 
similarity 

• Requires the definition of the similarity / distance metric 



Internal validation: Stability 

• If the clusters capture real structure in the data they should be stable to minor 
perturbation (e.g., subsampling) of the data.  

• To characterize stability we need a measure of similarity between any two k-
clusterings.  

• For any set of clusters C we define L(C) as the matrix of 0/1 labels such that L(C)ij 
=1 if objects i and j belong to the same cluster and zero otherwise. 

• We can compare any two k clusterings C and C' by comparing the corresponding 
label matrices L(C) and L(C').  

 



Validation by subsampling 

• C is the set of k clusters based on all the objects 

• C' denotes the set of k clusters resulting from a randomly chosen subset (80-90%) 
of objects 

• We have high confidence in the original clustering if Sim(L(C),L(C')) approaches 1 
with high probability, where the comparison is done over the objects common to 
both 

 

 



External validation 
• For this we need an external source that contains related, but usually not identical 

information. 

• For example, assume we are clustering web pages based on the car pictures they 
contain. 

• We have independently grouped these pages based on the text description they 
contain. 

• Can we use the text based grouping to determine how well our clustering works? 

 



External validation 
• Suppose we have generated k clusters C1,…,Ck. How do we assess the significance 

of their relation to m known (potentially overlapping) categories G1,…,Gm? 

• Let's start by comparing a single cluster C with a single category Gj. The p-value for 
such a match is based on the hyper-geometric distribution. 

• Board. 

• This is the probability that a randomly chosen |Ci| elements out of n would have l 
elements in common with Gj. 

 



P-value (cont.) 
• If the observed overlap between the sets (cluster and category) is l elements 

(genes), then the p-value is 

 

 

 

• Since the categories G1,…,Gm typically overlap we cannot assume that each 
cluster-category pair represents an independent comparison 

• In addition, we have to account for the multiple hypothesis we are testing. 

•  Solution ? 
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External validation: Example 

P-value comparison
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