10701
Machine Learning

Ensemble methods and Boosting
Fighting the bias-variance tradeoff

• **Simple (a.k.a. weak) learners are good**
 – e.g., naïve Bayes, logistic regression, decision stumps (or shallow decision trees)
 – Low variance, don’t usually overfit

• **Simple (a.k.a. weak) learners are bad**
 – High bias, can’t solve hard learning problems

• Can we make all weak learners always good???
 – No!!
 – But often yes...
Simplest approach: A “bucket of models”

• Input:
 – your top T favorite learners (or tunings)
 • L_1, \ldots, L_T
 – A dataset D

• Learning algorithm:
 – Use 10-CV to estimate the error of L_1, \ldots, L_T
 – Pick the best (lowest 10-CV error) learner L^*
 – Train L^* on D and return its hypothesis h^*
Pros and cons of a “bucket of models”

• Pros:
 – Simple
 – Will give results not much worse than the best of the “base learners”

• Cons:
 – What if there’s not a single best learner?

• Other approaches:
 – Vote the hypotheses (how would you weight them?)
 – Combine them some other way?
 – How about learning to combine the hypotheses?
Stacked learners: first attempt

• Input:
 – your top T favorite learners (or tunings)
 • L_1, \ldots, L_T
 – A dataset D containing (x,y),

• Learning algorithm:
 – Train L_1, \ldots, L_T on D to get h_1, \ldots, h_T
 – Create a new dataset D' containing (x',y'),
 • x' is a vector of the T predictions $h_1(x), \ldots, h_T(x)$
 • y is the label y for x
 – Train new classifier on D' to get h' --- which combines the predictions!

• To predict on a new x:
 – Construct x' as before and predict h' (x')
Pros and cons of stacking

• Pros:
 – Fairly simple
 – Slow, but easy to parallelize

• Cons:
 – What if there’s not a single best combination scheme?
 – E.g.: for movie recommendation sometimes L1 is best for users with many ratings and L2 is best for users with few ratings.
Voting (Ensemble Methods)

• Instead of learning a single (weak) classifier, learn many weak classifiers that are good at different parts of the input space

• Output class: (Weighted) vote of each classifier
 – Classifiers that are most “sure” will vote with more conviction
 – Classifiers will be most “sure” about a particular part of the space
 – On average, do better than single classifier!

• But how do you ???
 – force classifiers to learn about different parts of the input space?
 – weigh the votes of different classifiers?
Comments

• Ensembles based on blending/stacking were key approaches used in successful applications (for example, the Netflix competition)
 – Winning entries blended many types of classifiers

• Ensembles based on stacking are the main architecture used in Watson
 – Not all of the base classifiers/rankers are learned, however; some are hand-programmed.
Boosting [Schapire, 1989]

- Idea: given a weak learner, run it multiple times on (rewighted) training data, then let the learned classifiers vote

- On each iteration t:
 - weight each training example by how incorrectly it was classified
 - Learn a hypothesis $- h_t$
 - A strength for this hypothesis $- \alpha_t$

- Final classifier:
 - A linear combination of the votes of the different classifiers weighted by their strength

- Practically useful
- Theoretically interesting
Learning from weighted data

• Sometimes not all data points are equal
 – Some data points are more equal than others
• Consider a weighted dataset
 – \(D(i) \) – weight of \(i \) th training example \((x^i, y^i)\)
 – Interpretations:
 • \(i \) th training example counts as \(D(i) \) examples
 • If I were to “resample” data, I would get more samples of “heavier” data points

• Now, in all calculations, whenever used, \(i \) th training example counts as \(D(i) \) “examples”
 – e.g., MLE for Naïve Bayes, redefine \(\text{Count}(Y=y) \) to be weighted count
Given: \((x_1, y_1), \ldots, (x_m, y_m)\) where \(x_i \in X, y_i \in Y = \{-1, +1\}\)

Initialize \(D_1(i) = 1/m\).

For \(t = 1, \ldots, T\):

- Train weak learner using distribution \(D_t\).
- Get weak classifier \(h_t : X \rightarrow \mathbb{R}\).
- Choose \(\alpha_t \in \mathbb{R}\).
- Update:

\[
D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}
\]

where \(Z_t\) is a normalization factor

\[
Z_t = \sum_{i=1}^{m} D_t(i) \exp(-\alpha_t y_i h_t(x_i))
\]

Output the final classifier:

\[
H(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right).
\]

Figure 1: The boosting algorithm AdaBoost.
Boosting: A toy example
Boosting: A toy example

Round 1

\[h_1 \]

\[D_2 \]

\[\varepsilon_1 = 0.30 \]
\[\alpha_1 = 0.42 \]
Boosting: A toy example

Round 2

\[\varepsilon_2 = 0.21 \]
\[\alpha_2 = 0.65 \]
Boosting: A toy example

Thanks, Rob Schapire

Round 3

$\epsilon_3 = 0.14$

$\alpha_3 = 0.92$
Boosting: A toy example

Final Classifier

\[H_{\text{final}} = \text{sign} \left(\begin{pmatrix} 0.42 & +0.65 & +0.92 \end{pmatrix} \right) \]
What α_t to choose for hypothesis h_t?

Training error of final classifier is bounded by:

$$
\frac{1}{m} \sum_{i=1}^{m} \delta(H(x_i) \neq y_i) \leq \frac{1}{m} \sum_{i=1}^{m} \exp(-y_i f(x_i))
$$

Where $f(x) = \sum_{t} \alpha_t h_t(x)$; $H(x) = \text{sign}(f(x))$
What α_t to choose for hypothesis h_t?

[Schapire, 1989]

\[D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t} \]

Training error of final classifier is bounded by:

\[\frac{1}{m} \sum_{i=1}^{m} \delta(H(x_i) \neq y_i) \leq \frac{1}{m} \sum_{i=1}^{m} \exp(-y_i f(x_i)) = \prod_{t} Z_t \]

Where

\[f(x) = \sum_{t} \alpha_t h_t(x); H(x) = \text{sign}(f(x)) \]

\[Z_t = \sum_{i=1}^{m} D_t(i) \exp(-\alpha_t y_i h_t(x_i)) \]
What α_t to choose for hypothesis h_t?

[Schapire, 1989]

Training error of final classifier is bounded by:

$$\frac{1}{m} \sum_{i=1}^{m} \delta(H(x_i) \neq y_i) \leq \frac{1}{m} \sum_{i} \exp(-y_i f(x_i)) = \prod_{t} Z_t$$

Where $f(x) = \sum_{t} \alpha_t h_t(x); H(x) = \text{sign}(f(x))$

If we minimize $\prod_{t} Z_t$, we minimize our training error

We can tighten this bound greedily, by choosing α_t and h_t on each iteration to minimize Z_t.

$$Z_t = \sum_{i=1}^{m} D_t(i) \exp(-\alpha_t y_i h_t(x_i))$$
What α_t to choose for hypothesis h_t?

We can minimize this bound by choosing α_t on each iteration to minimize Z_t.

\[
Z_t = \sum_{i=1}^{m} D_t(i) \exp(-\alpha_t y_i h_t(x_i))
\]

Define

\[
\epsilon_t = \sum_{i=1}^{m} D_t(i) \delta(h_t(x_i) \neq y_i)
\]

We can show that:

\[
Z_t = (1 - \epsilon_t) \exp^{-\alpha_t} + \epsilon_t \exp^{\alpha_t}
\]
What α_t to choose for hypothesis h_t?

We can minimize this bound by choosing α_t on each iteration to minimize Z_t.

$$Z_t = (1 - \varepsilon_t) \exp^{-\alpha_t} + \varepsilon_t \exp^{\alpha_t}$$

For Boolean target function, this is accomplished by [Freund & Schapire ’97]:

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_t}{\varepsilon_t} \right)$$

Where:

$$\varepsilon_t = \sum_{i=1}^{m} D_t(i) \delta(h_t(x_i) \neq y_i)$$
Given: \((x_1, y_1), \ldots, (x_m, y_m)\) where \(x_i \in X, y_i \in Y = \{-1, +1\}\)

Initialize \(D_1(i) = 1/m\).

For \(t = 1, \ldots, T:\)

- Train base learner using distribution \(D_t\).
- Get base classifier \(h_t : X \rightarrow \mathbb{R}\).
- Choose \(\alpha_t \in \mathbb{R}\).
- Update:

\[
D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}
\]

\[
\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)
\]
Strong, weak classifiers

\[Z_t = \sum_{i=1}^{m} D_t(i) \exp(-\alpha_t y_i h_t(x_i)) \]

- If each classifier is (at least slightly) better than random
 \[\varepsilon_t < 0.5 \]

- With a few extra steps it can be shown that AdaBoost will achieve zero training error (exponentially fast):

\[
\frac{1}{m} \sum_{i=1}^{m} \delta(H(x_i) \neq y_i) \leq \prod_{t} Z_t \leq \exp \left(-2 \sum_{t=1}^{T} \left(\frac{1}{2} - \varepsilon_t \right)^2 \right)
\]
• Boosting often
 – Robust to overfitting
 – Test set error decreases even after training error is zero

[Schapire, 1989]
Boosting: Experimental Results

Comparison of C4.5, Boosting C4.5, Boosting decision stumps (depth 1 trees), 27 benchmark datasets
AdaBoost and AdaBoost.MH on Train (left) and Test (right) data from Irvine repository. [Schapire and Singer, ML 1999]
Random forest

• A collection of decision trees
• For each tree we select a subset of the attributes (recommended square root of \(|A|\)) and build tree using just these attributes
• An input sample is classified using majority voting
What you need to know about Boosting

• Combine weak classifiers to obtain very strong classifier
 – Weak classifier – slightly better than random on training data
 – Resulting very strong classifier – can eventually provide zero training error

• AdaBoost algorithm

• Most popular application of Boosting:
 – Boosted decision stumps!
 – Very simple to implement, very effective classifier
Boosting and Logistic Regression

Logistic regression assumes:

\[P(Y = 1|X) = \frac{1}{1 + \exp(f(x))} \]

And tries to maximize data likelihood:

\[P(D|H) = \prod_{i=1}^{m} \frac{1}{1 + \exp(-y_i f(x_i))} \]

Equivalent to minimizing log loss

\[\sum_{i=1}^{m} \ln(1 + \exp(-y_i f(x_i))) \]
Boosting and Logistic Regression

Logistic regression equivalent to minimizing log loss

$$\sum_{i=1}^{m} \ln(1 + \exp(-y_if(x_i)))$$

Boosting minimizes similar loss function!!

$$\frac{1}{m} \sum_{i} \exp(-y_if(x_i)) = \prod_{t} Z_t$$

Both smooth approximations of 0/1 loss!
Logistic regression and Boosting

Logistic regression:

- Minimize loss fn
 \[\sum_{i=1}^{m} \ln(1 + \exp(-y_i f(x_i))) \]
- Define
 \[f(x) = \sum_{j} w_j x_j \]
 where \(x_j \) predefined

Boosting:

- Minimize loss fn
 \[\sum_{i=1}^{m} \exp(-y_i f(x_i)) \]
- Define
 \[f(x) = \sum_{t} \alpha_t h_t(x) \]
 where \(h_t(x_i) \) defined dynamically to fit data
 (not a linear classifier)
- Weights \(\alpha_j \) learned incrementally