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Types of classifiers

We can divide the large variety of classification approaches into roughly three major
types

1. Instance based classifiers
- Use observation directly (no models)
- e.g. K nearest neighbors

2. Generative:
- build a generative statistical model
- e.g., Bayesian networks

3. Discriminative
- directly estimate a decision rule/boundary
- e.g., decision tree
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Learning Algorithms, ICML 2006



Regression classifiers

Recall our regression classifiers

+1 if sign(w™x+b)>0

-1 if sign(w™x+b)<0




Regression classifiers

Recall our regression classifiers
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Regression classifiers

Recall our regression classifiers
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Regression classifiers

Recall our regression classifiers

- Ty \2
Many more mlan(yi W' X;)
. . pn |
possible classifiers \
/1,7
, -
o ¢ ,’,’:’ , Goes over all points
/ .
o e 7 X (evenin LR
® ! 4 settings
® //II 1,7 g )
r 1 N7
7
/ 21/
® 47y 1
® /il, R ® :
S0 f Line closer to the
//,’ / //’: Py ® blue nodes since
SR ° many of them are
/
) II/ ! ® far away from the
7’
- ) A 1 ® boundary
s /1 I
i I
I
I



Max margin classifiers

* Instead of fitting all points, focus on boundary points

.Learn a boundary that leads to the largest margin from both
sets of points (that is, largest distance to the closest point on

either side)

° ® y From all the
o / possible boundary
° K lines, this leads to
® / the largest margin
/ .
/ on both sides
® o A
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Max margin classifiers

* Instead of fitting all points, focus on boundary points

» Learn a boundary that leads to the largest margin from points on both
sides

PY o //
° . , Why?
® 0\// * Intuitive, ‘makes
Ry sense’
® o //' \ ® « Some theoretical
, support
/// ¢ ¢ o » Works well in practice
// ®
// ®
/




Max margin classifiers

* Instead of fitting all points, focus on boundary points

» Learn a boundary that leads to the largest margin from points on both
sides

® / Also known as linear
support vector
machines (SVMSs)

These are the vectors ° ®

supporting the boundary °
| /
/




Specifying a max margin

pred\c\ c\as® ) Class +1 plane
D boundary
\NTx—\—b;‘\”\ /‘\
W7 g -\ Class -1 plane
. - C\AS
ict ©

Classify as +1 if wWix+b > 1

Classify as -1 If wix+b<-1

Undefined if -1 <wix+b <1



Specifying a max margin
classifier

W Is the linear separation
assumption realistic?
\Nﬁa—\—bz—\"\ /
‘Nw*b’() . ot C\2S° A We will deal with this shortly,

=A G
WP pred! but lets assume it for now
Classify as +1 If wWix+b > 1
Classify as -1 If wix+b<-1

Undefined if -1 <wix+b <1



Maximizing the margin

Classifyas +1 if wix+b>1
Classifyas -1 if wixtb<-1

Y
. . c\as®
M \ W Undefined if -1<wTx+b<1
=+

* Lets define the width of the margin by M

« How can we encode our goal of maximizing M in terms of
our parameters (w and b)?

 Lets start with a few obsevrations



Maximizing the margin

A

. 4 c\asS

ict © W

pred \ Classify as +1 if wTx+b > 1
e Classifyas -1 if wixtb<-1

WO =0 Undefined if -1 <wTx+b <1

Tyr0= A

W S -

. & c\aS

\NT )(—\—‘Og'

* Observation 1: the vector w is orthogonal to the +1 plane

* Why?

Let u and v be two points on the +1 plane,
then for the vector defined by u and v we have

wT(u-v) =0

Corollary: the vector w is orthogonal to the -1 plane



Maximizing the margin

'
. & c\as®
P‘-ed// \ Classify as +1 if wix+b > 1
+A ; Classifyas -1 if wix+tb<-1

Ty D= Undefined if -1 <wTx+b <1

W
\NT )(—\—‘0;0

=A
\NT )(—\—‘0

* Observation 1: the vector w is orthogonal to the +1 and -1 planes

* Observation 2: if x* is a point on the +1 plane and x is the closest point
to x* on the -1 plane then

X" =AW + X
Since w is orthogonal to both planes

we need to ‘travel’ some distance
along w to get from x* to x



Putting It together

\NT)H‘O’ wix*+b=+1
=0
\NTer‘O‘A P\’ed“c”t ©

wlh (Aw +x)+b=+1
—

eWIX*+b=+1
wix +b +AwTw =+1

W' X +b=-1
j—

o Xt = AW + X

-1 +aw'w=+1
| Xt-x|=M

=

We can now define M In A= 2/wWTw
terms of wand b



Putting It together

Y
predict c\as® . \ \)
A - M = |x* - x|

\NT )(—\"O;
\NT)(—\—‘Ogo =
J= predt M= Aw E A |w = AVwTw

Wl Xt+b=+1

WX +b=-1
* X" =AW + X
| Xt-x|=M
o A =2/wTw

We can now define M in
terms of wand b



Finding the optimal parameters

We can now search for the optimal parameters by finding a
solution that:

1. Correctly classifies all points

2. Maximizes the margin (or equivalently minimizes w'w)

Several optimization methods can be used:
Gradient descent, simulated annealing, EM
etc.



Quadratic programming (QP)

Quadratic programming solves optimization problems of the following form:

. u'Ru u -vector (unknown)
mm,; 7 +d utces R — squared matrix
. . . d — vector
subject to n inequality cons c - scalar

a, u, + a,u, +...< b,

Quadratic term

au+a u,+..<b When a problem can be
specified as a QP problem we
can use solvers that are better
than gradient descent or
a, U +a, u+..=b,, simulated annealing

and k equivalency constraints:

Ay T a, g oUy .= D,



SVM as a QP problem

Min (w'w)/2

subject to the following inequality
constraints:

Forall xinclass + 1

wTx+b > 1 A total of n
_ constraints if
For all xinclass -1 we have n

wix+b < -1 input samples

T
W . U Ru

min,, +d'u+c

subject to n inequality constraints:

a, u, + a,u, +...< b,

a u +a u,+..<b

and k equivalency constraints:

A, U+ a,, U, +..= b, ..

Ay + Ay Uy + o= b

n+k



Non linearly separable case

« So far we assumed that a linear plane can perfectly
separate the points

* But this is not usally the case _
How can we convert this to a

- noise, outliers QP problem?
Hard to solve (two - Minimize training errors?
o o® minimization problems) min wTw
o © min #errors
® ° - Penalize training errors:
L .
° o o o min w'w+C*(#errors)
o ® ¢

o Hard to encode in a QP
problem




Non linearly separable case

* Instead of minimizing the number of misclassified points we can
minimize the distance between these points and their correct plane

These are also support vectors since The new optimization problem is:
they impact the parameters of the
decision boundary min , —— +ch

+1 plane :
2 subject to the following inequality

constraints:
For all x;inclass + 1

wix+b > 1- ¢
® For all x;inclass -1
WTx+b < -1+ g

Wait. Are we missing
something?




Final optimization for non
linearly separable case

The new optimization problem is:
min —+ch

subject to the foIIowmg inequality
+1 plane constraints:

For all x;inclass + 1
WiX+h > 1- g, A total of n
. constraints
For all x;inclass -1

WTx+b < -1+ g

For all |
Another n
=0 constraints




Where we are

Two optimization problems: For the separable and non separable cases

Y2

Forall xinclass + 1

For aII X; In class + 1

: For all x;inclass -1
For all xinclass -1
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Where we are

Two optimization problems: For the separable and non separable cases

min —+ZC8

Min (wTw)/2
For all xinclass + 1 For aII x in class + 1

: For all x;inclass -1
For all xinclass -1

Wix+b < -1+ ¢
wWix+b < -1 &
For all |

=0

* Instead of solving these QPs directly we will solve a dual
formulation of the SVM optimization problem

» The main reason for switching to this type of representation
IS that it would allow us to use a neat trick that will make our
lives easier (and the run time faster)



An alternative (dual)
representation of the SVM QP

Min (w'w)/2
. . . I +
« We will start with the linearly separable case Forall xin class +1

. L T
* Instead of encoding the correct classification rule Wix+b >1

and constraint we will use LaGrange multiplies to For all xin class -1

encode it as part of the our minimization problem
wTx+b < -1

Why? U

Min (wTw)/2
(WTx+b)y. > 1



An alternative (dual)
representation of the SVM QP

Min (wTw)/2

. . . (Wix+b)y; > 1
» We will start with the linearly separable case

* Instead of encoding the correct classification rule a
constraint we will use Lagrange multiplies to encode it as
part of the our minimization problem

Recall that Lagrange multipliers can be
applied to turn the following problem:

I 2
min,, X

st.x>Db ’ Allowed mi
N / owed min
T S A
0 N ,
~ ~ . P
min,, max_ x2 -o.(x-b) T

st.a>0 t|)

Global min




Lagrange multiplier for SVMs

Dual formulation Original formulation

T
PN o [(wx, + b)y, —1] Min (WTw)/2

1

min , , max,,

Ty. >
220 Vi (WTx+b)y, > 1

Using this new formulation we can derive w and b by
taking the derivative w.r.t. w and o leading to:

w :Zaixiyi
i

bzyl.—WTx.

l

for i st. a;>0

Finally, taking the derivative w.r.t. b we get:

Zaiyi:()



Dual SVM - Interpretation

szgixiyi
i i
‘ /

For o’s that are not




Dual SVM for linearly separable
case

.
: W' W

Substituting w into our target min,, max, — _Zai [(w'x +b)y, —1]

function and using the g _ |

additional constraint we get: ;20 vi

: W= Zaixiyi
Dual formulation ,.

T
1 T b:yl_w xi
| 1]

for i st. a;>0
Zaiyi =0 Zaiyi:()

a. >0 Vi



Dual SVM for linearly separable
case

J

Our dual target function: 1
i I ]

Z:Otiyi =0 Dot product for all
i training samples

a; 20 Vi Dot product with
training samples

To evaluate a new sample x, /

we need to compute: T T
W X; +b= Z“oziyixi x, +b
i

Is this too much computational work (for
example when using transformation of the

data)?



Classifying in 1-d

Can an SVM correctly What about this?
classify this data?




Classifying in 1-d

Can an SVM correctly

classify this data?

XZ

And now?




X=(Xq,X5)

Non-linear SVMs: 2D

« The original input space (x) can be mapped to some higher-dimensional
feature space (@(x) )where the training set is separable:

. e e
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. e
.
”‘ .
o .
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.
;
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! B
e, *
. .
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e 1T

¢(X) :(X12,X22,\/2X1X2)

.
o 2
‘e
> 2
>
=
.

This slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm _tutorial.ppt



Non-linear SVMs: 2D

« The original input space (x) can be mapped to some higher-dimensional
feature space (@(x) )where the training set is separable:

X=(X1,X)) ¢(X) :(X12,X22,\/2X1X2)

; V2X.X,
If data 1s mapped into sufficiently high dimension, then
‘e samples will in general be linearly separable;
# N data points are in general separable in a space of N-1
o ! dimensions or more!!!

. *,
® ; .
® ; o “, @
; g o
] K . -
. ‘e, *
K e, *o,
- e »

This slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm _tutorial.ppt



Transformation of Inputs

* Possible problems

- High computation burden due to high-dimensionality
- Many more parameters

« SVM solves these two issues simultaneously

—“Kernel tricks” for efficient computation

—Dual formulation only assigns parameters to samples, not
features

A

Input space

Feature space



Quadratic kernels

« While working in higher dimensions is max, ), - a.a,;yy,OEx)P(X,)
beneficial, it also increases our run time " .
because of the dot product computation > ay, =0

 However, there is a neat trick we can use .
a.>0 Vi

l

. : : 1 y2 m
consider all quadratic terms for x*, x= ... X T misthe

number of
The V2 1 features in
. T — 2¢ .
term will . «—— m+1 linear terms each vector
become oy
clear in the D(X) =
next slide ()’

. ¥ m quadratic terms
(x")*
V2xix?

: —— m(m-1)/2 pairwise terms
\/Exm—lxm



Dot product for quadratic kernels

How many operations do we need for the dot product?

1 1
Jaxt V27
\Exl \Ezz
O(X)D(z) = —ZZX'Z'+Z(X) (') +> Y 2x'xlz'z) +1
(x1)2 . (Zl) i i j=i+l

. . _ — 2
(X™)> (X™)? m m m(m-1)/2 m
J2xixe 27472

\/Exm—lxm \/Ezm—lzm



The kernel trick

How many operations do we need for the dot product?

=Y 2x'z! +Z(x) (2')?+> > 2x'xlz'z) +1

i i j=i+l

m m m(m-1)/2 =—m*

However, we can obtain dramatic savings by noting that

(x.z+1)?* = (x.2)* +2(x.2) +1
e = (inz‘)2+22x‘z‘+l
dot product
/ZZX'Z'+Z(X) (z')° +Z ZZxx z'z) +1
i j=i+l
We only need m Note that to evaluate a new sample
operations! we are also using dot products so

we save there as well



Where we are

Our dual target function: To evaluate a new sample x;
we need to compute:

W' +b= ZaiyixiTx+b

/

mr operations where r
are the number of
support vectors (o;>0)

mn? operations at each
iteration



Other kernels

» The kernel trick works for higher order polynomials as well.

* For example, a polynomial of degree 4 can be computed using
(x.z+1)*and, for a polynomial of degree d (x.z+1)d

* Beyond polynomials there are other very high dimensional basis
functions that can be made practical by finding the right Kernel
Function

. . . (x-2)’
-Radial-Basis-style Kernel Function: K(x,2) =exp| - 252

- Neural-net-style Kernel Function: K(x,z) = tanh(xx.z —0)



Dual formulation for non linearly
separable case

Dual target function: To evaluate a new sample X,
we need to compute:

1
max, Zai _EZaianiijin
i i

day =0 wix, +b=D ayxx; +b

C>a 20 Vi

\ The only difference is

that the o,’'s are now
bounded



Why do SVMs work?

* If we are using huge features spaces (with kernels) how come we
are not overfitting the data?

- Number of parameters remains the same (and most are set to 0)

- While we have a lot of input values, at the end we only care
about the support vectors and these are usually a small group of
samples

- The minimization (or the maximizing of the margin) function acts
as a sort of regularization term leading to reduced overfitting



Software

A list of SVM implementation can be found at
http://www.kernel-machines.org/software.html

Some implementation (such as LIBSVM) can handle
multi-class classification

SVMLight is among one of the earliest implementation of
SVM

Several Matlab toolboxes for SVM are also available



Multi-class classification with
SVMs

What if we have data from more than two

classes?
« Most common solution: One vs. all
o - create a classifier for each class against
O ® all other data
e ® 9 . .
Py - for a new point use all classifiers and
¢ ® o compare the margin for all selected
o classes
® 9 e
® ® Note that this is not necessarily valid
® ® since this is not what we trained the

SVM for, but often works well in
practice




Applications of SVMs

Bioinformatics

Machine Vision

Text Categorization

Ranking (e.g., Google searches)
Handwritten Character Recognition
Time series analysis

—>Lots of very successful applications!!!



Handwritten digit recognition
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3-nearest-neighbor = 2.4% error

400-300-10 unit MLP = 1.6% error

9)

&
o

LeNet: 768-192-30-10 unit MLP = 0.9% error

4
9

Current best (kernel machines, vision algorithms) ~ 0.6% error

7
9




Important points

* Difference between regression classifiers and SVMs’
« Maximum margin principle

 Target function for SVMs

* Linearly separable and non separable cases

 Dual formulation of SVMs

» Kernel trick and computational complexity



