10-701

Probability and MLE

http://www.cs.cmu.edu/~pradeepr/701

(brief) intro to probability

Basic notations

- Random variable
- referring to an element / event whose status is unknown:

A = "it will rain tomorrow"

- Domain (usually denoted by Ω)
- The set of values a random variable can take:
- "A = The stock market will go up this year": Binary
- "A = Number of Steelers wins in 2015": Discrete
- "A = \% change in Google stock in 2015": Continuous

Axioms of probability (Kolmogorov's axioms)

A variety of useful facts can be derived from just three axioms:

1. $0 \leq P(A) \leq 1$
2. $P($ true $)=1, P($ false $)=0$
3. $P(A \cup B)=P(A)+P(B)-P(A \cap B)$

There have been several other attempts to provide a foundation for probability theory. Kolmogorov's axioms are the most widely used.

Priors

Degree of belief in an event in the absence of any other information

No rain

P (rain tomorrow) $=0.2$
P (no rain tomorrow $)=0.8$

Conditional probability

- $P(A=1 \mid B=1)$: The fraction of cases where A is true if B is true

$$
\mathrm{P}(\mathrm{~A}=0.2)
$$

$$
P(A \mid B=0.5)
$$

Conditional probability

- In some cases, given knowledge of one or more random variables we can improve upon our prior belief of another random variable
- For example:
$p($ slept in movie $)=0.5$
$p($ slept in movie | liked movie) $=1 / 4$
$p($ didn't sleep in movie | liked movie $)=3 / 4$

Slept	Liked
1	0
0	1
1	1
1	0
0	0
1	0
0	1
0	1

Joint distributions

- The probability that a set of random variables will take a specific value is their joint distribution.
- Notation: $P(A \wedge B)$ or $P(A, B)$
- Example: P(liked movie, slept)

If we assume independence then

$$
P(A, B)=P(A) P(B)
$$

However, in many cases such an assumption may be too strong (more later in the class)

Joint distribution (cont)

Evaluation of classes

```
\(\mathrm{P}(\) class size \(>20)=0.6\)
\(\mathrm{P}(\) summer \()=0.4\)
\(\mathrm{P}(\) class size \(>20\), summer \()=\) ?
```

Size	Time	Eval
30	R	2
70	R	1
12	S	2
8	S	3
56	R	1
24	S	2
10	R	3
23	R	3
9	R	2
45		1

Joint distribution (cont)

Evaluation of classes

```
\(\mathrm{P}(\) class size \(>20)=0.6\)
\(\mathrm{P}(\) summer \()=0.4\)
\(\mathrm{P}(\) class size \(>20\), summer \()=0.1\)
```

Size	Time	Eval
30	R	2
70	R	1
12	S	2
8	S	3
56	R	1
24	S	2
10	R	3
23	R	3
9	R	2
45		1

Joint distribution (cont)

$\mathrm{P}($ class size $>20)=0.6$
$\mathrm{P}($ eval $=1)=0.3$
$P($ class size >20, eval $=1)=0.3$

Size	Time	Eval
30	R	2
70	R	1
12	S	2
8	S	3
56	R	1
24	S	2
10	R	3
23	R	3
9	R	2
45		1

Joint distribution (cont)

Evaluation of classes
$\mathrm{P}($ class size $>20)=0.6$
$\mathrm{P}($ eval $=1)=0.3$
$P($ class size >20, eval $=1)=0.3$

Size	Time	Eval
30	R	2
70	R	1
12	S	2
8	S	3
56	R	1
24	S	2
10	R	3
23	R	3
9	R	2
45		1

Chain rule

- The joint distribution can be specified in terms of conditional probability:

$$
P(A, B)=P(A \mid B)^{*} P(B)
$$

- Together with Bayes rule (which is actually derived from it) this is one of the most powerful rules in probabilistic reasening

Bayes rule

- One of the most important rules for this class.
- Derived from the chain rule:

$$
P(A, B)=P(A \mid B) P(B)=P(B \mid A) P(A)
$$

- Thus,

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

Thomas Bayes was an English clergyman who set out his theory of probability in 1764.

Bayes rule (cont)

Often it would be useful to derive the rule a bit further:

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}=\frac{P(B \mid A) P(A)}{\sum_{A} P(B \mid A) P(A)}
$$

$$
P(B, A=1)
$$

$P(B, A=0)$
This results from: $P(B)=\sum_{A} P(B, A)$

Recall: Your first consulting job

- A billionaire from the suburbs of Seattle asks you a question:
- He says: I have a coin, if I flip it, what's the probability it will fall with the head up?
- You say: Please flip it a few times:

- You say: The probability is: $3 / 5$ because... frequency of heads in all flips
- He says: But can I put money on this estimate?
- You say: ummm.... Maybe not.
- Not enough flips (less than sample complexity)

What about prior knowledge?

- Billionaire says: Wait, I know that the coin is "close" to $50-50$. What can you do for me now?
- You say: I can learn it the Bayesian way...
- Rather than estimating a single θ, we obtain a distribution over possible values of θ
Before data

Bayesian Learning

- Use Bayes rule:

$$
P(\theta \mid \mathcal{D})=\frac{P(\mathcal{D} \mid \theta) P(\theta)}{P(\mathcal{D})}
$$

- Or equivalently:

$P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta) P(\theta)$
posterior likelihood prior

AIDS test (Bayes rule)

Data

- Approximately 0.1% are infected
- Test detects all infections
- Test reports positive for 1% healthy people

AIDS test (Bayes rule)

Data

- Approximately 0.1% are infected
- Test detects all infections
- Test reports positive for 1% healthy people

Probability of having AIDS if test is positive:

$$
\begin{aligned}
P(a=1 \mid t=1) & =\frac{P(t=1 \mid a=1) P(a=1)}{P(t=1)} \\
& =\frac{P(t=1 \mid a=1) P(a=1)}{P(t=1 \mid a=1) P(a=1)+P(t=1 \mid a=0) P(a=0)} \\
& =\frac{1 \cdot 0.001}{1 \cdot 0.001+0.01 \cdot 0.999}=0.091 \quad \text { Only } 9 \%!\ldots
\end{aligned}
$$

Prior distribution

- From where do we get the prior?
- Represents expert knowledge (philosophical approach)
- Simple posterior form (engineer's approach)
- Uninformative priors:
- Uniform distribution
- Conjugate priors:
- Closed-form representation of posterior
- $P(q)$ and $P(q \mid D)$ have the same algebraic form as a function of \theta

Conjugate Prior

- $P(q)$ and $P(q \mid D)$ have the same form as a function of theta

Eg. 1 Coin flip problem
Likelihood given Bernoulli model:

$$
P(\mathcal{D} \mid \theta)=\theta^{\alpha_{H}}(1-\theta)^{\alpha_{T}}
$$

If prior is Beta distribution,

$$
P(\theta)=\frac{\theta^{\beta_{H}-1}(1-\theta)^{\beta_{T}-1}}{B\left(\beta_{H}, \beta_{T}\right)} \sim \operatorname{Beta}\left(\beta_{H}, \beta_{T}\right)
$$

Then posterior is Beta distribution

$$
P(\theta \mid D) \sim \operatorname{Beta}\left(\beta_{H}+\alpha_{H}, \beta_{T}+\alpha_{T}\right)
$$

Beta distribution

$\operatorname{Beta}\left(\beta_{H}, \beta_{T}\right)$ More concentrated as values of $\beta_{\mathrm{H}}, \beta_{\mathrm{T}}$ increase

Beta conjugate prior

As we get more samples, effect of prior is "washed out"

Conjugate Prior

- $P(\theta)$ and $P(\theta \mid D)$ have the same form

Eg. 2 Dice roll problem (6 outcomes instead of 2)
Likelihood is $\sim \operatorname{Multinomial}\left(\theta=\left\{\theta_{1}, \theta_{2}, \ldots, \theta_{\mathrm{k}}\right\}\right)$

$$
P(\mathcal{D} \mid \theta)=\theta_{1}^{\alpha_{1}} \theta_{2}^{\alpha_{2}} \ldots \theta_{k}^{\alpha_{k}}
$$

If prior is Diricniet aistridution,
$\underset{\text { Then post } \epsilon}{\left.P(\theta)=\frac{\prod_{i=1}^{k} \theta_{i}^{\beta_{i}-1}}{B\left(\beta_{1}, \ldots, \beta_{k}\right)} \sim \operatorname{Dirichlet}\left(\beta_{1}, \ldots, \beta_{k}\right)\right)}$

$$
P(\theta \mid D) \sim \operatorname{Dirichlet}\left(\beta_{1}+\alpha_{1}, \ldots, \beta_{k}+\alpha_{k}\right)
$$

For Multinomial, conjugate prior is Dirichlet distribution.

Posterior Distribution

- The approach seen so far is what is known as a Bayesian approach
- Prior information encoded as a distribution over possible values of parameter
- Using the Bayes rule, you get an updated posterior distribution over parameters, which you provide with flourish to the Billionaire
- But the billionaire is not impressed
- Distribution? I just asked for one number: is it $3 / 5,1 / 2$, what is it?
- How do we go from a distribution over parameters, to a single estimate of the true parameters?

Maximum A Posteriori Estimation

Choose θ that maximizes a posterior probability

$$
\begin{aligned}
\hat{\theta}_{M A P} & =\arg \max _{\theta} P(\theta \mid D) \\
& =\arg \max _{\theta} P(D \mid \theta) P(\theta)
\end{aligned}
$$

MAP estimate of probability of head:

$$
\begin{aligned}
& P(\theta \mid D) \sim \operatorname{Beta}\left(\beta_{H}+\alpha_{H}, \beta_{T}+\alpha_{T}\right) \\
& \hat{\theta}_{M A P}=\frac{\alpha_{H}+\beta_{H}-1}{\alpha_{H}+\beta_{H}+\alpha_{T}+\beta_{T}-2} \quad \begin{array}{l}
\text { Mode of Beta } \\
\text { distribution }
\end{array}
\end{aligned}
$$

Density estimation

Density Estimation

- A Density Estimator learns a mapping from a set of attributes to a Probability

Density estimation

- Estimate the distribution (or conditional distribution) of a random variable
- Types of variables:
- Binary
coin flip, alarm
- Discrete
dice, car model year
- Continuous
height, weight, temp.,

When do we need to estimate densities?

- Density estimators are critical ingredients in several of the ML algorithms we will discuss
- In some cases these are combined with other inference types for more involved algorithms (i.e. EM) while in others they are part of a more general process (learning in BNs and HMMs)

Density estimation

- Binary and discrete variables:

Easy: Just count!

- Continuous variables:

Harder (but just a bit): Fit a model

Learning a density estimator for discrete variables

$$
\hat{P}\left(x_{i}=u\right)=\frac{\# \text { records in which } x_{i}=u}{\text { total number of records }}
$$

A trivial learning algorithm!

But why is this true?

Maximum Likelihood Principle

We can define the likelihood of the data given the model as follows:
$\hat{P}($ dataset $\mid M)=\hat{P}\left(x_{1} \wedge x_{2} \ldots \wedge x_{n} \mid M\right)=\prod_{k=1}^{n} \hat{P}\left(x_{k} \mid M\right)$
For example M is

- The probability of 'head' for a coin flip
- The probabilities of observing 1,2,3,4 and 5 for a dice
- etc.

Maximum Likelihood Principle

$$
\hat{P}(\text { dataset } \mid M)=\hat{P}\left(x_{1} \wedge x_{2} \ldots \wedge x_{n} \mid M\right)=\prod^{n} \hat{P}\left(x_{k} \mid M\right)
$$

- Our goal is to determine the values for the parameters in M
- We can do this by maximizing the probability of generating the observed samples
- For example, let Θ be the probabilities for a coin flip
- Then

$$
L\left(x_{1}, \ldots, x_{n} \mid \Theta\right)=p\left(x_{1} \mid \Theta\right) \ldots p\left(x_{n} \mid \Theta\right)
$$

- The observations (different flips) are assumed to be independent
- For such a coin flip with $P(H)=q$ the best assignment for Θ_{h} is

$$
\operatorname{argmax}_{q}=\# H / \# \text { samples }
$$

- Why?

Maximum Likelihood Principle: Binary variables

- For a binary random variable A with $P(A=1)=q$ $\operatorname{argmax}_{\mathrm{q}}=$ \#1/\#samples
- Why?

Data likelihood: $\quad P(D \mid M)=q^{n_{1}}(1-q)^{n_{2}}$
We would like to find: $\quad \arg \max _{q} q^{n_{1}}(1-q)^{n_{2}}$

Omitting terms that
 do not depend on q

Maximum Likelihood Principle

Data likelihood: $\quad P(D \mid M)=q^{n_{1}}(1-q)^{n_{2}}$
We would like to find: $\quad \arg \max _{q} q^{n_{1}}(1-q)^{n_{2}}$

$$
\begin{aligned}
& \frac{\partial}{\partial q} q^{n_{1}}(1-q)^{n_{2}}=n_{1} q^{n_{1}-1}(1-q)^{n_{2}}-q^{n_{1}} n_{2}(1-q)^{n_{2}-1} \\
& \frac{\partial}{\partial q}=0 \Rightarrow \\
& n_{1} q^{n_{1}-1}(1-q)^{n_{2}}-q^{n_{1}} n_{2}(1-q)^{n_{2}-1}=0 \Rightarrow \\
& q^{n_{1}-1}(1-q)^{n_{2}-1}\left(n_{1}(1-q)-q n_{2}\right)=0 \Rightarrow \\
& n_{1}(1-q)-q n_{2}=0 \Rightarrow \\
& n_{1}=n_{1} q+n_{2} q \Rightarrow \\
& q=\frac{n_{1}}{n_{1}+n_{2}}
\end{aligned}
$$

Log Probabilities

When working with products, probabilities of entire datasets often get too small. A possible solution is to use the log of probabilities, often termed 'log likelihood'

$$
\log \hat{P}(\text { dataset } \mid M)=\log \prod_{k=1}^{n} \hat{P}\left(x_{k} \mid M\right)=\sum_{k=1}^{n} \log \hat{P}\left(x_{k} \mid M\right)
$$

Maximizing this likelihood function is the
same as maximizing P (dataset | M)

How much do grad students sleep?

- Lets try to estimate the distribution of the time students spend sleeping (outside class).

Possible statistics

- X

Sleep time
-Mean of X :

$$
\begin{aligned}
& E\{X\} \\
& 7.03
\end{aligned}
$$

- Variance of X :
$\operatorname{Var}\{X\}=E\left\{(X-E\{X\})^{\wedge} 2\right\}$ 3.05

Sleep

Covariance: Sleep vs. GPA

-Co-Variance of X1,

X2:

Covariance $\{X 1, X 2\}=$ $E\{(X 1-E\{X 1\})(X 2-E\{X 2\})\}$ $=0.88$

Sleep / GPA

Statistical Models

- Statistical models attempt to characterize properties of the population of interest
- For example, we might believe that repeated measurements follow a normal (Gaussian) distribution with some mean μ and variance $\sigma^{2}, \mathrm{x} \sim \mathrm{N}\left(\mu, \sigma^{2}\right)$
where

$$
p(x \mid \Theta)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}}
$$

and $\Theta=\left(\mu, \sigma^{2}\right)$ defines the parameters (mean and variance) of the model.

The Parameters of Our Model

- A statistical model is a collection of distributions; the parameters specify individual distributions $\mathrm{x} \sim \mathrm{N}\left(\mu, \sigma^{2}\right)$
- We need to adjust the parameters so that the resulting distribution fits the data well

The Parameters of Our Model

- A statistical model is a collection of distributions; the parameters specify individual distributions $\mathrm{x} \sim \mathrm{N}\left(\mu, \sigma^{2}\right)$
- We need to adjust the parameters so that the resulting distribution fits the data well

Computing the parameters of our model

- Lets assume a Guassian distribution for our sleep data
- How do we compute the parameters of the model?

Maximum Likelihood Principle

- We can fit statistical models by maximizing the probability of generating the observed samples:
$L\left(x_{1}, \ldots, x_{n} \mid \Theta\right)=p\left(x_{1} \mid \Theta\right) \ldots p\left(x_{n} \mid \Theta\right)$
(the samples are assumed to be independent)
- In the Gaussian case we simply set the mean and the variance to the sample mean and the sample variance:

$$
\bar{\mu}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \quad \overline{\sigma^{2}}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{\mu}^{2}\right.
$$

Why?

Density estimation

- Binary and discrete variables:

Easy: Just count!

- Continuous variables:

> Harder (but just a bit): Fit a model

MLE vs. MAP

- Maximum Likelihood estimation (MLE)

Choose value that maximizes the probability of observed data

$$
\hat{\theta}_{M L E}=\arg \max _{\theta} P(D \mid \theta)
$$

- Maximum a posteriori (MAP) estimation Choose value that is most probable given observed data and prior belief

$$
\begin{aligned}
\hat{\theta}_{M A P} & =\arg \max _{\theta} P(\theta \mid D) \\
& =\arg \max _{\theta} P(D \mid \theta) P(\theta)
\end{aligned}
$$

Important points

- Random variables
- Chain rule
- Bayes rule
- Joint distribution, independence, conditional independence
- MLE

Assume we performed n coin flips and used the outcome to learn the probability of heads, defined as q. In the questions below assume that $0<q<1$ unless stated otherwise.

1. We have performed an additional coin flip and learned a new probability for heads, $q 1$, based on the $n+1$ observations. The following holds:
a. $q 1=q$
b. $q 1 \neq q$
c. it depends on q and the value of the new observation
2. We have performed two additional coin flips and learned a new probability for heads, $q 1$, based on the $n+2$ observations. The following holds:
a. $q 1=q$
b. $q 1 \neq q$
c. it depends on q and the values of the new observations
3. Now assume that $0.6<q<1$. Similar to (2) we have performed two additional coin flips and learned a new probability for heads, q1, based on the $n+2$ observations. The following holds:
4. $q 1=q$
5. $q 1 \neq q$
6. it depends on q and the values of the new observations

Probability Density Function

- Discrete distributions
$\square \square \square \square \square \sum_{i} P\left(X=x_{i}\right)=1$
$\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6\end{array}$
- Continuous: Cumulative Density Function (CDF): F(a)

Cumulative Density Functions

- Total probability $\quad P(\Omega)=\int_{-\infty}^{\infty} f(x) d x=1$
- Probability Density Function (PDF)

$$
\frac{d}{d x} F(x)=f(x)
$$

- Properties:

$$
P(a \leq x \leq b)=\int_{b}^{a} f(x) d x=F(b)-F(a)
$$

$\lim _{x \rightarrow-\infty} F(x)=0$

$$
\lim _{x \rightarrow \infty} F(x)=1
$$

$F(a) \geq F(b) \forall a \geq b$

Expectations

- Mean/Expected Value:

$$
E[x]=\bar{x}=\int x f(x) d x
$$

- Variance:

$$
\operatorname{Var}(x)=E\left[(x-\bar{x})^{2}\right]=E\left[x^{2}\right]-(\bar{x})^{2}
$$

- In general:

$$
\begin{aligned}
E\left[x^{2}\right] & =\int x^{2} f(x) d x \\
E[g(x)] & =\int g(x) f(x) d x
\end{aligned}
$$

Multivariate

- Joint for (x, y)

$$
P((x, y) \in A)=\iint_{A} f(x, y) d x d y
$$

- Marginal:

$$
f(x)=\int f(x, y) d y
$$

- Conditionals:

$$
f(x \mid y)=\frac{f(x, y)}{f(y)}
$$

- Chain rule:

$$
f(x, y)=f(x \mid y) f(y)=f(y \mid x) f(x)
$$

Bayes Rule

- Standard form:

$$
f(x \mid y)=\frac{f(y \mid x) f(x)}{f(y)}
$$

- Replacing the bottom:

$$
f(x \mid y)=\frac{f(y \mid x) f(x)}{\int f(y \mid x) f(x) d x}
$$

Binomial

- Distribution:

$$
x \sim \operatorname{Binomial}(p, n)
$$

$$
P(x=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

- Mean/Var:

$$
\begin{gathered}
E[x]=n p \\
\operatorname{Var}(x)=n p(1-p)
\end{gathered}
$$

Uniform

- Anything is equally likely in the region [a,b]
- Distribution:

$$
x \sim U(a, b)
$$

- Mean/Var

$$
\begin{gathered}
f(x)= \begin{cases}\frac{1}{b-a} & a \leq x \leq b \\
0 & \text { otherwise }\end{cases} \\
E[x]=\frac{a+b}{2} \\
\operatorname{Var}(x)=\frac{a^{2}+a b+b^{2}}{3} \\
\frac{\mathrm{a}}{\mathrm{a}}
\end{gathered}
$$

Gaussian (Normal)

- If I look at the height of women in country xx, it will look approximately Gaussian
- Small random noise errors, look Gaussian/Normal
- Distribution:

$$
x \sim N\left(\mu, \sigma^{2}\right) \quad f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}}
$$

- Mean/var

$$
\begin{gathered}
E[x]=\mu \\
\operatorname{Var}(x)=\sigma^{2}
\end{gathered}
$$

Why Do People Use Gaussians

- Central Limit Theorem: (loosely)
- Sum of a large number of IID random variables is approximately Gaussian

Multivariate Gaussians

- Distribution for vector x

$$
x=\left(x_{1}, \ldots, x_{N}\right)^{T}, \quad x \sim N(\mu, \Sigma)
$$

- PDF:

$$
f(x)=\frac{1}{(2 \pi)^{\frac{N}{2}}|\Sigma|^{\frac{1}{2}}} e^{-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)}
$$

$$
E[x]=\mu=\left(E\left[x_{1}\right], \ldots, E\left[x_{N}\right]\right)^{T}
$$

$$
\operatorname{Var}(x) \rightarrow \Sigma=\left(\begin{array}{cccc}
\operatorname{Var}\left(x_{1}\right) & \operatorname{Cov}\left(x_{1}, x_{2}\right) & \ldots & \operatorname{Cov}\left(x_{1}, x_{N}\right) \\
\operatorname{Cov}\left(x_{2}, x_{1}\right) & \operatorname{Var}\left(x_{2}\right) & \ldots & \operatorname{Cov}\left(x_{2}, x_{N}\right) \\
\vdots & & \ddots & \vdots \\
\operatorname{Cov}\left(x_{N}, x_{1}\right) & \operatorname{Cov}\left(x_{N}, x_{2}\right) & \ldots & \operatorname{Var}\left(x_{N}\right)
\end{array}\right)
$$

Multivariate Gaussians

$$
\begin{gathered}
f(x)=\frac{1}{(2 \pi)^{\frac{N}{2}}|\Sigma|^{\frac{1}{2}}} e^{-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)} \\
E[x]=\mu=\left(E\left[x_{1}\right], \ldots, E\left[x_{N}\right]\right)^{T} \\
\operatorname{Var}(x) \rightarrow \Sigma=\left(\begin{array}{cccc}
\operatorname{Var}\left(x_{1}\right) & \operatorname{Cov}\left(x_{1}, x_{2}\right) & \ldots & \operatorname{Cov}\left(x_{1}, x_{N}\right) \\
\operatorname{Cov}\left(x_{2}, x_{1}\right) & \operatorname{Var}\left(x_{2}\right) & \ldots & \operatorname{Cov}\left(x_{2}, x_{N}\right) \\
\vdots & & \ddots & \vdots \\
\operatorname{Cov}\left(x_{N}, x_{1}\right) & \operatorname{Cov}\left(x_{N}, x_{2}\right) & \ldots & \operatorname{Var}\left(x_{N}\right)
\end{array}\right) \\
\operatorname{cov}\left(X_{1}, \boldsymbol{X}_{2}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(x_{1, i}-\mu_{1}\right)\left(x_{2, i}-\mu_{2}\right)
\end{gathered}
$$

Covariance examples

Covariance: -9.2

Correlated

Covariance: 18.33

Covariance: 0.6

Sum of Gaussians

- The sum of two Gaussians is a Gaussian:

$$
\begin{aligned}
& x \sim N\left(\mu, \sigma^{2}\right) y \sim N\left(\mu_{y}, \sigma_{y}^{2}\right) \\
& a x+b \sim N\left(a \mu+b,(a \sigma)^{2}\right) \\
& x+y \sim N\left(\mu+\mu_{y}, \sigma^{2}+\sigma_{y}^{2}\right)
\end{aligned}
$$

