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(brief) intro to probability  



Basic notations 

• Random variable 

    - referring to an element / event whose status is unknown: 

      A = “it will rain tomorrow” 

• Domain (usually denoted by ) 

    - The set of values a random variable can take: 

      - “A = The stock market will go up this year”: Binary 

      - “A = Number of Steelers wins in 2015”: Discrete 

      - “A = % change in Google stock in 2015”: Continuous 



Axioms of probability (Kolmogorov’s axioms) 

A variety of useful facts can be derived from just three axioms: 

1. 0 ≤ P(A) ≤ 1 

2. P(true) = 1,  P(false) = 0 

3. P(A  B) = P(A) + P(B) – P(A  B) 

There have been several 

other attempts to provide a 

foundation for probability 

theory. Kolmogorov’s axioms 

are the most widely used. 



Priors 

P(rain tomorrow) = 0.2 

P(no rain tomorrow) = 0.8 

Rain 

No rain 
Degree of belief 

in an event in the 

absence of any 

other information 



Conditional probability 

• P(A = 1 | B = 1): The fraction of cases where A is true if B is true 

P(A = 0.2) P(A|B = 0.5) 



Conditional probability 

• In some cases, given knowledge of one or 

more random variables we can improve upon 

our prior belief of another random variable 

• For example: 

   p(slept in movie) = 0.5 

    p(slept in movie | liked movie) = 1/4 

    p(didn’t sleep in movie | liked movie) = 3/4 

Slept Liked 

1 0 

0 1 

1 1 

1 0 

0 0 

1 0 

0 1 

0 1 



Joint distributions 

• The probability that a set of random variables will take a 

specific value is their joint distribution. 

• Notation: P(A  B) or P(A,B) 

• Example:  P(liked movie, slept)   

If we assume independence then 

 

 P(A,B)=P(A)P(B) 

 

However, in many cases such an 

assumption may be too strong 

(more later in the class) 



Joint distribution (cont) 

P(class size > 20) = 0.6 

P(summer) = 0.4 

Evaluation of classes 

P(class size > 20, summer) = ? 

Size Time Eval 

30 R 2 

70 R 1 

12 S 2 

8 S 3 

56 R 1 

24 S 2 

10 S 3 

23 R 3 

9 R 2 

45 R 1 



Joint distribution (cont) 
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P(class size > 20) = 0.6 

P(summer) = 0.4 

P(class size > 20, summer) = 0.1 

Evaluation of classes 

Size Time Eval 

30 R 2 

70 R 1 

12 S 2 

8 S 3 

56 R 1 

24 S 2 

10 S 3 

23 R 3 

9 R 2 

45 R 1 



Joint distribution (cont) 

P(class size > 20) = 0.6 

P(eval = 1) = 0.3 

P(class size > 20, eval = 1) = 0.3 

Size Time Eval 

30 R 2 

70 R 1 

12 S 2 

8 S 3 

56 R 1 

24 S 2 

10 S 3 

23 R 3 

9 R 2 

45 R 1 



Joint distribution (cont) 

P(class size > 20) = 0.6 

P(eval = 1) = 0.3 

P(class size > 20, eval = 1) = 0.3 

Evaluation of classes 

Size Time Eval 

30 R 2 

70 R 1 

12 S 2 

8 S 3 

56 R 1 

24 S 2 

10 S 3 

23 R 3 

9 R 2 

45 R 1 



Chain rule 
• The joint distribution can be specified in terms of conditional probability: 

                P(A,B) = P(A|B)*P(B) 

• Together with Bayes rule (which is actually derived from it) this is one of the most 

powerful rules in probabilistic reasoning  

 



Bayes rule 

• One of the most important rules for this class. 

• Derived from the chain rule: 

     P(A,B) = P(A | B)P(B) = P(B | A)P(A) 

• Thus, 

Thomas Bayes was 

an English 

clergyman who set 

out his theory of 

probability in 1764.  
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Bayes rule (cont) 

Often it would be useful to derive the rule a bit further: 



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This results from: 

P(B) = ∑AP(B,A) 
A 

B 
A 

B 

P(B,A=1) P(B,A=0) 



Recall: Your first consulting job 

• A billionaire from the suburbs of Seattle asks you a question: 

–He says: I have a coin, if I flip it, what’s the probability it will fall with the head 

up? 

–You say: Please flip it a few times: 

 

 

 

 

–You say: The probability is: 3/5 because… frequency of heads in all flips 

–He says: But can I put money on this estimate? 

–You say: ummm…. Maybe not.  

– Not enough flips (less than sample complexity) 



What about prior knowledge? 

• Billionaire says: Wait, I know that the coin is “close” to 50-50. What can 

you do for me now? 

• You say: I can learn it the Bayesian way… 

 

• Rather than estimating a single , we obtain a distribution over possible 

values of  

 

 

50-50 

Before data After data 



Bayesian Learning 

18 

• Use Bayes rule: 

 

 

 

• Or equivalently: 

posterior likelihood prior 



AIDS test (Bayes rule) 

Data 

Approximately 0.1% are infected 

Test detects all infections 

Test reports positive for 1% healthy people 

10 

Only 9%!... 

Probability of having AIDS if test is positive: 



AIDS test (Bayes rule) 

Data 

Approximately 0.1% are infected 

Test detects all infections 

Test reports positive for 1% healthy people 

10 

Only 9%!... 

Probability of having AIDS if test is positive: 



Prior distribution 

• From where do we get the prior? 

- Represents expert knowledge (philosophical approach) 

- Simple posterior form (engineer’s approach) 

 

• Uninformative priors: 

- Uniform distribution 

 

• Conjugate priors: 

- Closed-form representation of posterior 

- P(q) and P(q|D) have the same algebraic form as a function of \theta  

 



Conjugate Prior 

• P(q) and P(q|D) have the same form as a function of theta 

 

Eg. 1  Coin flip problem 

Likelihood given Bernoulli model: 

 

If prior is Beta distribution,  

 

 

Then posterior is Beta distribution 

 

 

 

 

 

 

For Binomial, conjugate prior is Beta distribution. 

22 



Beta distribution 

More concentrated as values of bH, bT increase 



Beta conjugate prior 

As n = aH + aT 

increases 

As we get more samples, effect of prior is “washed out” 



Conjugate Prior 

• P() and P(|D) have the same form 

 

Eg. 2  Dice roll problem (6 outcomes instead of 2) 

Likelihood is ~ Multinomial(  {1, 2, … , k}) 

 

If prior is Dirichlet distribution,  

 

 

Then posterior is Dirichlet distribution 

 

 

 

 

 

 

For Multinomial, conjugate prior is Dirichlet distribution. 



Posterior Distribution 

• The approach seen so far is what is known as a Bayesian approach 

• Prior information encoded as a distribution over possible values of parameter 

• Using the Bayes rule, you get an updated posterior distribution over parameters, 

which you provide with flourish to the Billionaire 

• But the billionaire is not impressed 

- Distribution? I just asked for one number: is it 3/5, 1/2, what is it? 

- How do we go from a distribution over parameters, to a single estimate of the 

true parameters? 

 



Maximum A Posteriori Estimation 

Choose  that maximizes a posterior probability 

 

 

 

 

MAP estimate of probability of head: 
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Mode of Beta 

distribution 



Density estimation 



Density Estimation 

• A Density Estimator learns a mapping from a set of attributes to a Probability 

Density 
Estimator 

Probability 

Input data for a 
variable or a set of 

variables 



Density estimation 

• Estimate the distribution (or conditional distribution) of a random variable 

• Types of variables: 

    - Binary 

      coin flip, alarm  

     - Discrete 

       dice, car model year  

      - Continuous  

      height, weight, temp.,   



When do we need to estimate densities?  
• Density estimators are critical ingredients in several of the ML algorithms we will 

discuss 

• In some cases these are combined with other inference types for more involved 

algorithms (i.e. EM) while in others they are part of a more general process 

(learning in BNs and HMMs) 



Density estimation 

• Binary and discrete variables:  

 

 

• Continuous variables: 

 

Easy: Just count! 

Harder (but just a bit): Fit 

a model 



Learning a density estimator for discrete 

variables 

 

ˆ P (x i  u) 
#records in which x i  u 

total number of records

A trivial learning algorithm! 

But why is this true? 



Maximum Likelihood Principle 

M is our model (usually a 

collection of parameters) 

 

ˆ P (dataset | M)  ˆ P (x1  x2  xn | M)  ˆ P (xk | M)
k1

n



We can define the likelihood of the data given the model as 

follows: 

For example M is 

- The probability of ‘head’ for a coin flip 

-  The probabilities of observing 1,2,3,4 and 5 for a dice 

-  etc.  



Maximum Likelihood Principle 

• Our goal is to determine the values for the parameters in M 

• We can do this by maximizing the probability of generating the observed 

samples 

• For example, let  be the probabilities for a coin flip 

• Then  

                 L(x1, … ,xn | ) = p(x1 | ) … p(xn  | ) 

• The observations (different flips) are assumed to be independent 

• For such a coin flip with P(H)=q the best assignment for h is  

        argmaxq = #H/#samples 

• Why? 

 

 

ˆ P (dataset | M)  ˆ P (x1  x2  xn | M)  ˆ P (xk | M)
k1

n





• For a binary random variable A with P(A=1)=q 

        argmaxq = #1/#samples 

 

• Why? 

 

Data likelihood: 

 

We would like to find: 

Maximum Likelihood Principle: Binary 

variables 
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Omitting terms that 

do not depend on q 



Data likelihood: 

 

We would like to find: 

Maximum Likelihood Principle 
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Log Probabilities 

When working with products, probabilities of entire datasets often get 

too small. A possible solution is to use the log of probabilities, often 

termed ‘log likelihood’ 

 

log ˆ P (dataset | M)  log ˆ P (xk | M)
k1

n

  log ˆ P (xk | M)
k1

n



Log values 

between 0 and 1 

Maximizing this likelihood function is the 

same as maximizing P(dataset | M) 

In some cases moving to log space would 

also make computation easier (for 

example, removing the exponents) 



How much do grad students sleep? 
• Lets try to estimate the distribution of the time students spend sleeping (outside 

class). 



Possible statistics 

• X  

  Sleep time  

•Mean of X:  

  E{X} 

  7.03 

• Variance of X:  

  Var{X} = E{(X-E{X})^2}  

  3.05 
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Covariance: Sleep vs. GPA 

Sleep / GPA

2

2.5

3

3.5

4

4.5

5

0 2 4 6 8 10 12

Sleep hours

G
P

A

Sleep / GPA

•Co-Variance of X1, 

X2:  

  Covariance{X1,X2} = 

E{(X1-E{X1})(X2-E{X2})}  

  = 0.88 



Statistical Models 

• Statistical models attempt to characterize properties of the 

population of interest 

 

• For example, we might believe that repeated measurements 

follow a normal (Gaussian) distribution with some mean µ and 

variance 2 , x ~ N(µ,2) 

 

where 

 

 

 

and =(µ,2) defines the parameters (mean and variance) of the 

model.  
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• A statistical model is a 

collection of distributions; the 

parameters specify individual 

distributions x ~ N(µ,2) 

• We need to adjust the 

parameters so that the resulting  

distribution fits the data well 

The Parameters of Our Model 



• A statistical model is a 

collection of distributions; the 

parameters specify individual 

distributions x ~ N(µ,2) 

• We need to adjust the 

parameters so that the resulting  

distribution fits the data well 

The Parameters of Our Model 



Computing the parameters of our model 
• Lets assume a Guassian distribution 

for our sleep data 

• How do we compute the parameters 

of the model? 
Sleep
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Maximum Likelihood Principle 
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• We can fit statistical models by maximizing the probability of 

generating the observed samples: 

L(x1, … ,xn | ) = p(x1 | ) … p(xn  | ) 

(the samples are assumed to be independent) 

 

• In the Gaussian case we simply set the mean and the variance 

to the sample mean and the sample variance: 
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Why? 



Density estimation 

• Binary and discrete variables:  

 

 

• Continuous variables: 

 

Easy: Just count! 

Harder (but just a bit): Fit 

a model 

But what if we 

only have very 

few samples? 



MLE vs. MAP 

 Maximum Likelihood estimation (MLE) 

 Choose value that maximizes the probability of 

observed data 

 

 

 Maximum a posteriori (MAP) estimation 

 Choose value that is most probable given 

observed data and prior belief 

 

 

 



Important points 

• Random variables 

• Chain rule 

• Bayes rule 

• Joint distribution, independence, conditional independence 

• MLE 



Assume we performed n coin flips and used the outcome to learn the probability of 

heads, defined as q. In the questions below assume that 0 < q < 1 unless stated 

otherwise. 

 

1. We have performed an additional coin flip and learned a new probability for 

heads, q1, based on the n+1 observations.  The following holds: 

a. q1 = q 

b. q1 ≠ q 

c. it depends on q and the value of the new observation  

  

2. We have performed two additional coin flips and learned a new probability for 

heads, q1, based on the n+2 observations.  The following holds: 

a. q1 = q 

b. q1 ≠ q 

c. it depends on q and the values of the new observations 

  

3. Now assume that 0 .6 < q < 1. Similar to (2) we have performed two additional 

coin flips and learned a new probability for heads, q1, based on the n+2 

observations.  The following holds: 

1. q1 = q 

2. q1 ≠ q 

3. it depends on q and the values of the new observations 



Probability Density Function 

• Discrete distributions 

 

 

 

 

 

• Continuous: Cumulative Density Function (CDF): F(a) 

1 2 3 4 5 6 

f(x) 

x 
a 



Cumulative Density Functions 

• Total probability 

 

• Probability Density Function (PDF) 

 

• Properties: 

F(x) 



Expectations 

• Mean/Expected Value: 

 

• Variance: 

 

• In general: 



Multivariate 

• Joint for (x,y) 

 

 

• Marginal: 

 

 

• Conditionals: 

 

 

• Chain rule:  



Bayes Rule 

• Standard form: 

 

 

 

• Replacing the bottom: 

 

 



Binomial 

• Distribution: 

 

 

 

 

 

• Mean/Var: 



Uniform 

• Anything is equally likely in the region [a,b] 

 

• Distribution: 

 

 

• Mean/Var 

a b 



Gaussian (Normal) 

• If I look at the height of women in country xx, it will look approximately Gaussian 

• Small random noise errors, look Gaussian/Normal 

 

• Distribution: 

 

 

• Mean/var 



Why Do People Use Gaussians 

• Central Limit Theorem: (loosely) 

- Sum of a large number of IID random variables is approximately Gaussian 



Multivariate Gaussians 

• Distribution for vector x 

 

 

• PDF: 



Multivariate Gaussians 
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Covariance examples 

Anti-correlated 

Covariance: -9.2 

Correlated 

Covariance: 18.33 

Independent (almost) 

Covariance: 0.6 



Sum of Gaussians 

• The sum of two Gaussians is a Gaussian: 


