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Naïve	Bayes	Classifier

Pradeep	Ravikumar

Co-instructor:	Ziv Bar-Joseph

Machine	Learning	10-701
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Goal:

Classification

Sports
Science
News

Features,	X Labels,	Y

Probability	of	Error
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Optimal	Classification
Optimal	predictor:
(Bayes classifier)
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• Even	the	optimal	classifier	makes	mistakes	R(f*)	>	0
• Optimal	classifier	depends	on	unknown distribution

Bayes risk

X



Optimal	Classifier

Bayes Rule:

Optimal	classifier:
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Class	conditional	
density

Class	prior
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We	can	now	consider	appropriate	models	for	the	two	terms

Class	probability	P(Y=y),	Class	conditional	distribution	of	features	P(X=x|Y=y)

Class	conditional	
distribution

Class	probability

Model	based	Approach

= θ = 1 − θ

Modeling	Class	probability	P(Y=y)	=	Bernoulli(θ)

Like	a	coin	flip



Modeling	Class	Conditional	
Distribution	of	Features

• Gaussian	class	conditional	densities		(1-dimension/feature)

6
Decision	Boundary



• Gaussian	class	conditional	densities (2-dimensions/features)
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Modeling	Class	Conditional	
Distribution	of	Features

Decision	Boundary

µ1

µ1

µ2

µ2



Handwritten	digit	recognition
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Note:	8	digits	 shown	out	of	10	(0,	1,	…,	9);	

Axes	are	obtained	by	nonlinear	dimensionality	 reduction	 (later	in	course)

φ2(X)

φ
1(
X)

Multi-class	
classification



Handwritten	digit	recognition
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Training	Data:

Gaussian	Bayes	model:

P(Y	=	y)	=	py for	all	y	in	0,	1,	2,	…,	9 p0,	p1,	…,	p9 (sum	to	1)

P(X=x|Y =	y)	~	N(μy,Σy)	for	each	y			 μy – d-dim	vector
Σy - dxd matrix

1

…	n	greyscale
images

…	n	labels

Input,	X

Label,	Y

Each	image	represented	as	
a	vector	of	intensity	values	
at	the	d	pixels	(features)

=

2

664

X1

X2

. . .
Xd

3

775

2

X



Gaussian	Bayes	classifier
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P(Y	=	y)	=	py for	all	y	in	0,	1,	2,	…,	9 p0,	p1,	…,	p9 (sum	to	1)

P(X=x|Y =	y)	~	N(μy,Σy)	for	each	y			 μy – d-dim	vector
Σy - dxd matrix
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1p
(2⇡)d|⌃y|

• Binary	classification	with	continuous	features
decision	boundary	is	set	of	points	x:	P(Y=1|X=x)	=	P(Y=0|X=x)

If	class	conditional	feature	distribution	P(X=x|Y=y)	is	2-dim	
Gaussian	N(μy,Σy)

Decision	Boundary	of	Gaussian	Bayes

P (Y = 1|X = x)

P (Y = 0|X = x)
=

P (X = x|Y = 1)P (Y = 1)

P (X = x|Y = 0)P (Y = 0)

=

s
|⌃0|
|⌃1|

exp

✓
��(x� µ1)⌃

�1
1 (x� µ1)0

2
+

(x� µ0)⌃
�1
0 (x� µ0)0

2

◆
✓

1� ✓

Note:	In	general,	this	implies	a	quadratic	equation	in	x.	
But	if	Σ1=	Σ0,	then	quadratic	part	cancels	out	and	equation	is	linear.



Gaussian	Bayes	classifier
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P(Y	=	y)	=	py for	all	y	in	0,	1,	2,	…,	9 p0,	p1,	…,	p9 (sum	to	1)

P(X=x|Y =	y)	~	N(μy,Σy)	for	each	y			 μy – d-dim	vector
Σy - dxd matrix

How	to	learn	parameters
py,	μy,	Σy from	data?	



How	many	parameters	do	we	need	to	
learn?

13

Kd +	Kd(d+1)/2	=	O(Kd2) if	d	features

Quadratic	in	dimension	d!		If	d	=	256x256	
pixels,	~	21.5	billion	parameters!

Class	probability:

P(Y	=	y)	=	py for	all	y	in	0,	1,	2,	…,	9 p0,	p1,	…,	p9 (sum	to	1)

Class	conditional	distribution	of	features:

P(X=x|Y =	y)	~	N(μy,Σy)	for	each	y			 μy – d-dim	vector
Σy - dxd matrix

K-1	if	K	labels



What	about	discrete	features?

1414

Training	Data:

Discrete	Bayes	model:

P(Y	=	y)	=	py for	all	y	in	0,	1,	2,	…,	9 p0,	p1,	…,	p9 (sum	to	1)

P(X=x|Y =	y)	~	For	each	label	y,	maintain	probability	table	with	
2d-1	entries	

1

…	n	black-white			
images

…	n	labels

Input,	X

Label,	Y

Each	image	represented	as	a	
vector	of	d	binary	features	
(black	1	or	white	0)

=

2

664

X1

X2

. . .
Xd

3

775

2

X



How	many	parameters	do	we	need	to	
learn?
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Class	probability:

P(Y	=	y)	=	py for	all	y	in	0,	1,	2,	…,	9 p0,	p1,	…,	p9 (sum	to	1)

Class	conditional	distribution	of	features:

P(X=x|Y =	y)	~	For	each	label	y,	maintain	probability	table	with	
2d-1	entries	

K-1	if	K	labels

K(2d – 1)	if	d	binary	features

Exponential	in	dimension	d!



What’s	wrong	with	too	many	
parameters?

• How	many	training	data	needed	to	learn	one	parameter	(bias	
of	a	coin)?

• Need	lots	of	training	data	to	learn	the	parameters!	
– Training	data	>	number	of	parameters

16



Naïve	Bayes	Classifier
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• Bayes	Classifier	with	additional	“naïve”	assumption:
– Features	are	independent	given	class:

– More	generally:

• If	conditional	independence	assumption	holds,	NB	is	
optimal	classifier!	But	worse	otherwise.

X =


X1

X2

�

=

2

664

X1

X2

. . .
Xd

3

775X =


X1

X2

�



Conditional	Independence
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• X	is	conditionally	independent of	Y	given	Z:
probability	distribution	governing	X	is	independent	of	the	value	
of	Y,	given	the	value	of	Z

• Equivalent	to:

• e.g.,
Note: does	NOT	mean	Thunder	is	independent	of	Rain



Conditional	vs.	Marginal	Independence
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Conditional	vs.	Marginal	Independence
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Wearing	coats	is	independent	of	accidents	conditioned	on	
the	fact	that	it	rained



Naïve	Bayes	Classifier
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• Bayes	Classifier	with	additional	“naïve”	assumption:
– Features	are	independent	given	class:

• How	many	parameters	now?



Handwritten	digit	recognition	
(continuous	features)
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Training	Data:	

How	many	parameters?

Class	probability	P(Y	=	y)	=py for	all	y

Class	conditional	distribution	of	features	(using	Naïve	Bayes	
assumption)	

P(Xi =	xi|Y =	y)	~	N(μ(y)i,	σ2i	(y))	for	each	y	and	each	pixel	i

K-1	if	K	labels

2Kd

1 2

…	n	greyscale
images	with		
d	pixels

…	n	labels

X

Y

=

2

664

X1

X2

. . .
Xd

3

775

May not 
hold

Linear	instead	of	Quadratic	in	d!



Handwritten	digit	recognition	
(discrete	features)
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Training	Data:	

How	many	parameters?

Class	probability	P(Y	=	y)	=py for	all	y

Class	conditional	distribution	of	features	(using	Naïve	Bayes	
assumption)	

P(Xi =	xi|Y =	y)	– one	probability	value	for	each	y,	pixel	i

K-1	if	K	labels

Kd

1 2

…	n	black-white	(1/0)
images	with		
d	pixels

…	n	labels

X

Y

=

2

664

X1

X2

. . .
Xd

3

775

May not 
hold

Linear	instead	of	Exponential	in	d!



Naïve	Bayes	Classifier
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• Bayes	Classifier	with	additional	“naïve”	assumption:
– Features	are	independent	given	class:

• Has	fewer	parameters,	and	hence	requires	fewer	training	
data,	even	though	assumption	may	be	violated	in	practice



Naïve	Bayes Algo – Discrete	features

• Training	Data

• Maximum	Likelihood	Estimates
– For	Class	probability	

– For	class	conditional	distribution

• NB	Prediction	for	test	data

25



Issues	with	Naïve	Bayes
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• Issue	1: Usually,	features	are	not	conditionally	independent:

Nonetheless,	NB	is	the	single	most	used	classifier	particularly				
when	data	is	limited,	works	well

• Issue	2: Typically	use	MAP	estimates	instead	of	MLE	since	
insufficient	data	may	cause	MLE	to	be	zero.



Insufficient	data	for	MLE
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• What	if	you	never	see	a	training	instance	where	X1=a	when	
Y=b?
– e.g.,	b={SpamEmail},	a	={‘Earn’}
– P(X1=	a	|	Y	=	b)	=	0

• Thus,	no	matter	what	the	values	X2,…,Xd take:

• What	now???

=	0



Naïve	Bayes Algo – Discrete	features

• Training	Data

• Maximum	A	Posteriori	(MAP)	Estimates	– add	m	“virtual”	datapts

Assume	given	some	prior	distribution	(typically	uniform):

MAP	Estimate

Now,	even	if	you	never	observe	a	class/feature	posterior	
probability	never	zero.

28

#	virtual	examples	
with	Y	=	b



Case	Study:	Text	Classification
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• Classify	e-mails
– Y	=	{Spam,NotSpam}

• Classify	news	articles
– Y	=	{what	is	the	topic	of	the	article?}

• Classify	webpages
– Y	=	{Student,	professor,	project,	…}

• What	about	the	features	X?
– The	text!



Bag	of	words	approach
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aardvark 0

about 2

all 2

Africa 1

apple 0

anxious 0

...

gas 1

...

oil 1

…

Zaire 0



NB	for	Text	Classification
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• Features	X are	the	count	of	how	many	times	each	word	in	the	
vocabulary	appears	in	document

• Probability	table	for	P(X|Y)	is	huge!!!

• NB	assumption	helps	a	lot!!!

• Bag	of	words	+	Naïve	Bayes	assumption	imply	P(X|Y=y)	is	just	
the	product of	probability	of	each	word,	raised	to	its	count, in	a	
document	on	topic	y



Bag	of	words	model

32

• Typical	additional	assumption	– Position	in	document	doesn’t	
matter
– “Bag	of	words”	model	– order	of	words	on	the	page	ignored
– Sounds	really	silly,	but	often	works	very	well!

in	is	lecture	lecture next	over	person	remember	room	
sitting	the	the the to	to up	wake	when	you



Bag	of	words	model
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• Typical	additional	assumption	– Position	in	document	doesn’t	
matter
– “Bag	of	words”	model	– order	of	words	on	the	page	ignored
– Sounds	really	silly,	but	often	works	very	well!

When	the	lecture	is	over,	remember	to	wake	up	the	
person	sitting	next	to	you	in	the	lecture	room.



NB	with	Bag	of	Words	for	text	
classification
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• Learning	phase:
– Class	Prior	P(Y):	fraction of	times	topic	Y	appears	in	the	
collection	of	documents

– P(w|Y):	fraction	of	times	word w	appears	in	documents	
with	topic	Y	

• Test	phase:
– For	each	document

• Use	Bag	of	words	+	naïve	Bayes	decision	rule



Twenty	news	groups	results
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What	if	features	are	continuous?
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Eg.,	character	recognition:	Xi is	intensity	at	ith pixel

Gaussian	Naïve	Bayes (GNB):

Different	mean	and	variance	for	each	class	k	and	each	pixel	i.

Sometimes	assume	variance
• is	independent	of	Y	(i.e.,	σi),	
• or	independent	of	Xi (i.e.,	σk)
• or	both	(i.e.,	σ)



Estimating	parameters:	
Y	discrete,	Xi continuous
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Maximum	likelihood	estimates:

jth training	image
ith pixel	in	

jth training	image

kth class



Example:	GNB	for	classifying	mental	
states
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~1	mm	resolution

~2	images	per	sec.

15,000	voxels/image

non-invasive,	safe

measures	Blood	Oxygen	
Level	Dependent	(BOLD)	
response

[Mitchell	et	al.]



Gaussian	Naïve	Bayes:	Learned	µvoxel,word
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[Mitchell	et	al.]

15,000	voxels
or	features

10	training	
examples	or
subjects	per
class	(12	word	
categories)



Learned	Naïve	Bayes Models	–
Means	for	P(BrainActivity |	WordCategory)
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Animal	wordsPeople	words
Pairwise classification	accuracy:	85% [Mitchell	et	al.]



What	you	should	know…
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• Optimal	decision	using	Bayes Classifier
• Naïve	Bayes classifier

– What’s	the	assumption
– Why	we	use	it
– How	do	we	learn	it
– Why	is	MAP	estimation	important

• Text	classification
– Bag	of	words	model

• Gaussian	NB
– Features	are	still	conditionally	independent
– Each	feature	has	a	Gaussian	distribution	given	class



Gaussian	Naïve	Bayes vs.	Logistic	
Regression
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• Representation	equivalence	(both	yield	linear	decision
boundaries)
– But	only	in	a	special	case!!!	(GNB	with	class-independent	
variances)

– LR	makes	no	assumptions	about P(X|Y)	in	learning!!!
– Optimize	different	functions	(MLE/MCLE)	or	
(MAP/MCAP)! Obtain	different	solutions

Set	of	Gaussian	
Naïve	Bayes parameters

(feature	variance	
independent	of	class	label)

Set	of	Logistic	
Regression	parameters



Discriminative	vs Generative	Classifiers
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Generative	(Model	based)	approach:	e.g.	Naïve	Bayes
• Assume	some	probability	model	for	P(Y)	and	P(X|Y)
• Estimate	parameters	of	probability	models	from	training	data

Discriminative	(Model	free)	approach:	e.g.	Logistic	regression
Why	not	learn	P(Y|X)	directly?	Or	better	yet,	why	not	learn	the	decision	
boundary	directly?
• Assume	some	functional	form	for	P(Y|X)	or	for	the	decision	boundary	
• Estimate	parameters	of	functional	form	directly	from	training	data

Optimal	Classifier:


