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Learning	Theory

2

• We	have	explored	many ways	of	learning	from	data
• But…
– How	good	is	our	classifier,	really?
– How	much	data	do	I	need	to	make	it	“good	enough”?
– Typically	“goodness”	specified	by	“true	risk”
– So	related	to	question	from	previous	class:	can	we	bound	
the	difference	between	true	risk	and	empirical	risk	of	our	
estimator,	without	being	able	to	compute	true	risk?	And	
can	we	get	an	algebraic	expression	for	this	difference,	in	
terms	of	number	of	samples,	model	complexity?



A	simple	setting
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• Classification
– n i.i.d.	data	points	(Xi,Yi),	i =	1,…,n
– finite number	of	possible	hypotheses	
(e.g.,	decision	trees	of	depth	d)

• A	learner	finds	a	hypothesis	h
• We	are	interested	in:

errortrain =
1

n

nX

i=1

I(h(Xi) 6= Yi)

errortrue = P(h(X) 6= Y )



A	simple	setting
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• Classification
– n	i.i.d.	data	points	(Xi,Yi),	i =	1,…,n
– finite number	of	possible	hypotheses	(e.g.,	decision	
trees	of	depth	d)

• A	learner	finds	a	hypothesis	h that	is	consistent
with	training	data
– Gets	zero	error	in	training,	errortrain(h)	=	0

• What	is	the	probability	that	h has	more	than	ε
true	error?
– errortrue(h)	≥	ε

Even	if	hmakes	zero	errors	in	training	data,	may	make	errors	in	test



How	likely	is	a	bad	hypothesis	to	get	
m	data	points	right?
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• Consider	a	bad	hypothesis	h	i.e.	errortrue(h)	≥	ε

• Probability	that	h gets	one	data	point	right	
(i.e.	does	not	make	an	error)

• Probability	that	h gets	m data	points	right

≤	1- ε

≤	(1- ε)m



• Usually	there	are	many	(say	k)	bad	hypotheses	in	the	class
h1,	h2,	…,	hk s.t. error(hi)	≥	ε i =	1,	…,	k

• Probability	that	learner	picks	a	bad	hypothesis	=	Probability	
that	some	bad	hypothesis	is	consistent	with	m	data	points

How	likely	is	a	learner	to	pick	a	bad	
hypothesis?

Prob(h1 consistent	with	m	data	points	OR	
h2 consistent	with	m	data	points	OR	…	OR			
hk consistent	with	m	data	points)

≤	Prob(h1 consistent	with	m	data	points)+	
Prob(h2 consistent	with	m	data	points) + … +        

Prob(hk consistent	with	m	data	points)

≤			k	(1-ε)m
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Union	
bound
Loose	but	
works



How	likely	is	a	learner	to	pick	a	bad	
hypothesis?

• Usually	there	are	many	many	(say	k)	bad	hypotheses	in	the	
class

h1,	h2,	…,	hk s.t. error(hi)	≥	ε i =	1,	…,	k

• Probability	that	learner	picks	a	bad	hypothesis

≤			k	(1-ε)m

7

Size	of	hypothesis	class

m ε |Η|

≤			|H|	(1-ε)m	≤			|H|	e-εm



Probability	of	Error

• Given	ε and	δ,	yields	sample	complexity

#training	data,	
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m �
ln |H|+ ln 1

�

✏

 � ….	Probability	of	error



PAC	(Probably	Approximately	Correct)	
bound

• Theorem	[Haussler’88]:	Hypothesis	space	H finite,	
dataset	Dwith	m i.i.d.	samples,	0	<	ε <	1	:	for	any	
learned	hypothesis	h that	is	consistent	on	the	
training	data,	for	sufficiently	large m:

• Equivalently,	with	probability	
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What	if	our	classifier	does	not	have	
zero	error	on	the	training	data?

• Question:	What	about	a	learner	with	errortrain(h) ≠	0	
in	training	set?	

• The	error	of	a	hypothesis	is	like	estimating	the	
parameter	of	a	coin!

errortrue(h)	:=	P(h(X)	≠	Y)													 P(Z=1)	=:	θ

errortrain(h)	:=
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⌘
1

m

X

i

1h(Xi) 6=Yi
⌘ 1

m

X

i

Zi =: b✓



Hoeffding’s bound	for	a	single	
hypothesis

• Consider	m i.i.d.	flips	x1,…,xm,	where	xi ∈ {0,1}	of	
a	coin	with	parameter	θ.	For	0<ε<1:

• For	a	single	hypothesis	h

11

2e�2m✏2

2e�2m✏2



Hoeffding’s bound	for	|H|	hypotheses

• For	each	hypothesis	hi:

• What	if	we	are	comparing	|H|	hypotheses?	
Union	bound	

• Theorem:	Hypothesis	space	H finite,	dataset	Dwith	
m i.i.d.	samples,	0	<	ε <	1	:	for	any	learned	hypothesis	
h	∈ H,	with	sufficiently	large	number	of	samples	m:
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2e�2m✏2

 �2|H|e�2m✏2



Summary	of	PAC	bounds	for	finite	
hypothesis	spaces

With	probability	≥	1-δ,	

1)		For	all	h	∈ H s.t. errortrain(h)	=	0,	

errortrue(h)	≤	ε =	

2) For	all	h	∈ H
|errortrue(h)	– errortrain(h)|	≤	ε =	
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✏ �
ln |H|+ ln 1
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m

Haussler’s	bound

Hoeffding’s bound



PAC	bound	and	Bias-Variance	tradeoff

• with	probability	

• Fixed	m

hypothesis	space
complex
simple
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What	about	continuous	hypothesis	
spaces?

• Continuous	hypothesis	space:	
– |H|	=	∞
– Infinite	error	???

• Since	any	classifier	partitions	the	input	space,	
complexity	of	hypothesis	space	only	depends	on	
complexity	of	these	partitions	i.e.	maximum	
number	of	points	that	can	be	classified	exactly	
(and	not	necessarily	the	size	of	the	classifiers)! 15
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How	many	points	can	a	linear	
boundary	classify	exactly?	(1-D)
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How	many	points	can	a	linear	
boundary	classify	exactly?	(2-D)
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How	many	points	can	a	linear	
boundary	classify	exactly?	(d-Dim.)
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d+1	pts

How	many	parameters	in	linear
Classifier	in	d-Dimensions?

d+1

w0 +
dX

i=1

wixi

+
+
-

-



PAC	bound	using	VC	dimension

• Number	of	training	points	that	can	be	classified	
exactly	is	VC	dimension!!!
– Measures	relevant	size	of	hypothesis	space,	as	with	
decision	trees	with	k	leaves

Instead	of	ln|H|
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• You	pick	set	of	points
• Adversary	assigns	labels
• You	find	a	hypothesis	in	H	consistent	with	the	labels

If	VC(H)	=	k,	then	for	all	configurations	of k+1	points,	there	exists	a	
labeling	such	that	can’t	find	a	hypothesis	in	H	consistent	with	it

VC	dimension

- +
-+
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Definition:	VC	dimension	of	a	hypothesis	space	H	is	the	
maximum	number	of	points	such	that	there	exists	a	
hypothesis	in	H	that	is	consistent	with	(can	correctly	classify)	
any	labeling	of	the	points.



Examples	of	VC	dimension
• Linear	classifiers:	
– VC(H)	=	d+1,	for	d features	plus	constant	term
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Another	VC	dim.	example	- What	can	
we	shatter?

• What’s	the	VC	dim.	of	decision	stumps	(axis	
parallel	lines)	in	2d?
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VC(H)	≥	3	
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Another	VC	dim.	example	- What	
can’t	we	shatter?

• What’s	the	VC	dim.	of	decision	stumps	in	2d?
If	VC(H)	=	3,	then	for	all	placements	of	4	pts,	there	exists	a	
labeling	that	can’t	be	shattered
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3	collinear
1	in	convex	hull	
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Examples	of	VC	dimension
• Linear	classifiers:	
– VC(H)	=	d+1,	for	d features	plus	constant	term

• Decision	stumps:		VC(H)	=	d+1 (3	if	d=2)
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Another	VC	dim.	example	- What	can	
we	shatter?

• What’s	the	VC	dim.	of	axis	parallel	rectangles	
in	2d?	
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VC(H)	≥	3	
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• What’s	the	VC	dim.	of	axis	parallel	rectangles	
in	2d?

• Some	placement	of	4	pts can’t	be	shattered

Another	VC	dim.	example	- What	
can’t	we	shatter?
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VC(H)	≥	4	



Another	VC	dim.	example	- What	
can’t	we	shatter?

• What’s	the	VC	dim.	of	axis	parallel	rectangles	
in	2d?
If	VC(H)	=	4,	then	for	all	placements	of	5	pts,	there	exists	a	
labeling	that	can’t	be	shattered

4	collinear 2	in	convex	hull						1	in	convex	hull	 pentagon
of	other	3 of	other	4
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Examples	of	VC	dimension
• Linear	classifiers:	
– VC(H)	=	d+1,	for	d features	plus	constant	term

• Decision	stumps:		VC(H)	=	d+1

• Axis	parallel	rectangles:			VC(H)	=	2d			(4	if	d=2)

• 1	Nearest	Neighbor:
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VC(H)	=	∞



VC	dimension	and	size	of	hypothesis	
space

• To	be	able	to	shatter	m	points,	how	many	
hypothesis	do	we	need?

2m labelings |H|≥	2m

Given	|H|	hypothesis,	number	of	points	we	can	
shatter	m	<=	log2|H|

VC(H)	≤	log2|H|

So	VC	bound	is	tighter.
29

ñ



Summary	of	PAC	bounds
With	probability	≥	1-δ,		
1) for	all	h	∈ H	s.t. errortrain(h)	=	0,	

errortrue(h)	≤	ε =	

2) for	all	h	∈ H,	
|errortrue(h)	– errortrain(h)|	≤	ε =	

3)			for	all	h	∈ H,	
|errortrue(h)	– errortrain(h)|	≤	ε =	
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Limitation	of	VC	dimension
• Hard	to	compute	for	many	hypothesis	spaces

VC(H)	≥	lower	bound	(easy)
VC(H)	=	…			(HARD!)

For	all	placements	of	VC(H)+1	points,	there	exists	a	
labeling	that	can’t	be	shattered

• Too	loose	for	many	hypothesis	spaces
linear	SVMs,	VC	dim	=	d+1		(d	features)
kernel	SVMs,	VC	dim	=	??

=	∞	(Gaussian	kernels)	
Suggests	Gaussian	kernels	are	really	BAD!!
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PAC	Bounds
With	probability	≥	1-δ,	 for	all	h		∈ H,	

|errortrue(h)	– errortrain(h)|	≤	ε(H)
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True	error

Training	error

High	probability
Upper	bound
on	true	risk

ε(H)	- large	for	complex	models


