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Independent Component Analysis

xo(t) = an181(t) + aroso(t) :FW/\FWW/V
Model
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Independent Component Analysys

Model 21 (t)

xo(t)
We observe

z1(1) 931(2)) (131(?5))
(1)) \x2(2) )7 " \zo(t)

s1(1) 81(2)) (81@))
(32(1))’(32(2) T\ so(1)

But we don't know {a;;}, nor {s;(t)}

a1151(t) + a1082(t)
an151(t) + anpso(t)

We want

Goal: Estimate {s;(¢)}, (and also {a;;})



The Cocktail Party Problem
SOLVING WITH PCA

Mixing Observation PCA Estimation
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x(t) = As(t) y(t)=Wx(t)
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The Cocktail Party Problem

SOLVING WITH ICA

Sources Mixing Observation ICA Estimation
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x(t) = As(t) y(t)=Wx(t)
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The Cocktail Party Problem

SOLVING WITH ICA

Sources Mixing Observation ICA Estimation

? & N\ _
% Q: Why do we have any hope of |

recoverlng sources? |

x(t) = As(t) y(t)=Wx(t)
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The Cocktail Party Problem

SOLVING WITH ICA

Sources Mixing Observation ICA Estimation

s> D ~
Q: Why do we have any hope of recovering
sources?

A: Assume that sources are independent; find a
linear transformation of data that is independent

oy M .
WY A c RMxM _
L5 < x(t) = As(t) y(t)=Wx(t)
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e Perform linear transformations
e Matrix factorization

PCA: low rank matrix factorization for compression
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Columns of U = PCA vectors

ICA: full rank matrix factorization to remove dependency among the rows

N

Columns of A = ICA vectors s
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PCA: X=US, UU=I
ICA: X=AS, Ais invertible

PCA does compression
e M<N

ICA does not do compression
e same # of features (M=N)

PCA just removes correlations, not higher order dependence
ICA removes correlations, and higher order dependence

PCA: some components are more important than others
(based on eigenvalues)

ICA: components are equally important



Note
e PCA vectors are orthogonal

e [CA vectors are not orthogonal
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ICA vs PCA

PCA . o ICA

%0
0

11



ICA basis vectors extracted from
natural imaages

edge detectlon

receptive fields of V1 cells..., deep neural networks




PCA basis vectors extracted from
natural images

EEHIH[]!IIHH

| .l”
.:: t. ’

d [
=]
o
|




Some ICA Applications

STATIC

Image denoising
Microarray data processing

Decomposing the spectra of
galaxies

Face recognition

Facial expression recognition
Feature extraction

Clustering

Classification

Deep Neural Networks

TEMPORAL

e Medical signal processing — fMRI,
ECG, EEG

e Brain Computer Interfaces

e Modeling of the hippocampus,
place cells

e Modeling of the visual cortex
e Time series analysis

e Financial applications

e Blind deconvolution
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ICA for Image Denoising

noisy

ICA denoised
(Hoyer, Hyvarinen)

" median filtered



ICA for Motion Style Components

O Method for analysis and synthesis of human motion from
motion captured data

A Provides perceptually meaningful “style” components
109 markers, (327dim data)
O Motion capture - data matrix

Goal: Find motion style components.

ICA - 6 independent components (emotion, content,...)

(Mori & Hoshino 2002, Shapiro et al
2006, Cao et al 2003)
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ICA Theory



Statistical (in)dependence

Definition (Independence)
Y1, Yo are independent < p(y1,y2) = p(y1) p(y2)

Definition (Shannon entropy)

H(Y) = H(Y1,...,Ym) = — [p(y1,-..,ym) 109 p(y1, . - ., ym)dy.

Definition (Mutual Information) between more than 2 variables

0<I(Y1,...,Yy) = [p(y1,.---,ym) O gpzz%’";:(gﬁﬁ)

Definition (KL divergence)

0 < KL(flg) = [ f(x)109% 2

(w)
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Solving the ICA problem with i.i.d.

SOUrces

ICA problem: x = As, s = [s1,...;sy] are jointly independent.

Proof:
o P
o A

arbitrary permutation matrix,
arbitrary diagonal scaling matrix.

= x = [AP~1A~1][APs]
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Solving the ICA problem

Lemma:
We can assume that E[s] = 0.

Proof:
Removing the mean does not change the mixing matrix.
x — F[x] = A(s — E[s]).

In what follows we assume that E[ss!] =1,,, E[s] = O.
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Whitening

o Let ¥ = cov(x) = E[xx!] = AE[ss!]AT = AAT.
(We assumed centered data)

e DO SVD: X € RVXN  rank(X) = M,
= > = UDU7,
where U € RV*M UTuU =1,,, Signular vectors
D € RM*XM djagonal with rank M. Singular values
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Whitening (continued)

e Let Q =D 1/2UT ¢ RMXN whitening matrix

o X* = (QQx

We have,

Elz*z*!] = BE[Q2z2TQT] = Q=T = (DY 2uTYyupuT(uD~1/?) = 1,
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Whitening (continued)

e Let Q =D 1/2UT ¢ RMXN whitening matrix
o Let A* =QA

e Xx* = Qx = QAs = A*s is our new (whitened) ICA task.

We have,

Elz*z*!] = BE[Q2z2TQT] = Q=T = (DY 2uTYyupuT(uD~1/?) = 1,

= E[X*X*T] — IMr and A*A*T — IM

24



Whitening solves half of the ICA

broblem

N = O = N

original mixed whitened

After whitening it is enough to consider
orthogonal matrices for separation.

Note:
The number of free parameters of an N by N orthonormal

matrix 1s N(N-1)/2.
=» whitening solves half of the ICA problem
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Solving ICA

ICA task: Given X,
d find y (the estimation of s),

Q find W (the estimation of A1)
ICA solution: y=Wx

d Remove mean, E[x]=0

d Whitening, E[xx"]=1I

A Find an orthonormal W optimizing an objective function
e Sequence of 2-d Jacobi (Givens) rotations

‘;t'f.:i? '&%.{,,w S %, :‘ ;.“.
&, ¥ T34 PR3
-1 %g%%“é%%%%* 5
G ke d
4 0 1
original mixed whitened rotated

(demixed)




Optimization Using Jacobi Rotation

Matrices
/1 ... 0 ... 0 .. 0\
0 ... cos(0) ... —sin(0) ... Ol|ep
G(p,qg,0)=1: --. : : : | e RMXxM
O ... sin(0) ... cos(#) ... 0]«(9
o ... o ... o .1
: t
p q

Observation : x = As
Estimation : y = Wx
W = arg min J(Wx),
Wew

where W = {W|W = [[G(p;, q;,9;) }
1
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ICA Cost Functions

using Shannon’s mututal information:

0
U Jioa,(W) = 1(y1, - ua) = [p(ya, -, yar) log Fk=t gy,
Let H(y) = H(y1,---,ym) = — [ p(y1,- -, ym) 109 p(y1, - - -, ym)dy.
Lemma

H(Wx) = H(x) + log | det W| Proof: Recitation

Therefore, ( )

I(y1,...,yp) = /p(yL ..., ypm) log pzzyzl),.‘....z;(yﬁf)

—H(y1, .- ypm) + H(y) + ...+ H(yar)
—H(x1,...,xp) —l0g|det W]+ H(y1) + ...+ H(ynr)-
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ICA Cost Functions

B p(y1,- -, YM)
I(’y]_,...,yM) — /p(yl”yM)logp(yl)P(yM)

—H(y1,...,yp) +H(yr) + ...+ H(yy)

H(xq,...,zp7) is constant

Does not depend on W

log |det W| = 0.
W is a product of Givens rotations

W = HG(p’UQZ?e )

det(W Hdet (pi qi 6:)) =1
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ICA Cost Functions

B p(y1,- -, YM)
I(yl,...,yM) — /p(yl”yM)logp(yl)P(yM)

—H(y1,...,yp) +H(yr) + ...+ H(yy)

H(xq,...,xp)7) is constant, log|det W| = 0.

Therefore, o

U Jrca,(W) = H(y1) + ...+ H(yn)

E[yy"] = WE[zzT]WT=WWT=1
(since W is orthogonal)

The covariance is fixed: Which distribution has the least entropy when
fixing covariance?

Normal distribution has the most entropy: so “least normal” distribution
30



Central Limit Theorem

The sum of independent variables converges to the normal distribution

=>» For separation go far away from the normal distribution
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ICA Algorithms

Minimizing sum of entropy is hard since it requires knowing
density

ICA algorithms use other measures of non-Gaussianity
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ICA algorithm based on Kurtosis

maximization
Kurtosis = 4t order cumulant

‘Measures degree of peakedness ‘

e ks(y) =E{y'} - 3(E{})
=3 if E{y} = 0 and whitened

kaly) = —3¢ kel(y) =0 kg ly) = 12

0 4— ".""-'. 0 4 = 'I'r".'
S0 A |22 4

JN JN

fy(y)
o
o L;‘ —_
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The Fast ICA algorithm (Hyvarinen)

e Given whitened data z Probably the most famous
e Estimate the 15! ICA component: ICA algorithm

* Y = WTZ1 |w| =1, = wl = 15 row of W

x maximize kurtosis f(w) = k4 (y) = E[y*]-3
with constraint h(w) = |[|[w||2—1=0

x At optimum f/(w) + Ah/(w) = 07 (A Lagrange multiplier)
= AE[(wlz)3z] + 22w = 0

Solve this equation by Newton—Raphson’s method.

34



Newton method for finding a root

35



Newton Method for Finding a Root

Goal: gb R—R
p(z*) =0
¢t =7

Linear Approximation (15t order Taylor approx):

(x4 Ax) = $(a) + ¢/ (2) Az + o(| Az])

 §

—_
d(x*) =0
Therefore, O %¢(II;) +¢/(£U)Ax
* — — _ ¢(z)
xt—x = Axr = c/)’(:;)

Th+1 — Tk =™ W(ig) 56



[llustration of Newton’s method

Goal: finding a root f(x) — f($()) + f/(wO)(CE - CEO)

xr = xg + AxNT f

AXMT \ ,//

In the next step we will linearize here in x
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Newton Method for Finding a Root

This can be generalized to multivariate functions

F:R" — R™
Om = F(z*) = F(z+ Az) = F(x) + VF(a:)ég: + o(|Ax|)
“\mxh m\n /)\
Therefore, Vécceer

Om = F(x) + VF(x)Ax

Axr = —[VF(z)] 1F(2)

[Pseudo inverse if there is no inverse]
Axr = Th41 — Tk and thus
Thtl = T — [VF(z)] " F(xy,)

Nnxm m

N7 S 1N 2
Newton method: Start from xg and iterate. 38



Newton method for FastICA
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The Fast ICA algorithm (Hyvarinen)

Solve: F(w) =4E[(wlz)3z] + 22w =0

Note:

Yy = wlz, |w|| =1, z white = IE[(sz)Q] — 1

The derivative
F'(w) = 12E
~ 12IK

= 12E[(w!2z)?]

of F:

(wl'z)2zz1] 4 21

(w'2)?]

Flez)-1 )
‘ET'UUT? ETU(/] mw' T 0(457

e = |

E(zzl] + 21

= 121 4 21

I+ 2M
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The Fast ICA algorithm (Hyvarinen)

The Jacobian matrix becomes diagonal, and can easily be inverted.
w(k+1) = w(k) — [F'(w(k)]~t F(w(k))

A\ TZ 3Z W
w(k+1) = w(k) — 4E[( (k)122_2])\+2>\ (k)

(12 420wk + 1) = (12 4+ 2)w(k) — 4E[(w(k)12)32] — 22w (k)

~ L2322 w(k + 1) = —3w(k) + E[(w(k)12)32]

Therefore,

Let wq be the fix pont of:

w(k+ 1) =E[(w(k)!2)3z] — 3w(k)

_ w(k+1
w(k+ 1) = oy

e Estimate the 2"? ICA component similarly
using the w L wq additional constraint... and so on ... 41



What you should know

ICA: x = As matrix factorization to identify independent components
PCA vs ICA — correlation vs general dependence
ICA:
Given X, remove mean and whiten to get z
Find W (the estimation of A1)
orthogonal matrix — product of 2d Givens rotations
obtained by maximizing non-Gaussianity
Find y = Wz (the estimation of s)
ICA algorithms:
Kurtosis Maximization
FastICA

42



Maximum Likelihood ICA Algorithm

P S|mp|est approach David J.C. MaCKay (97)
rows of W

e requires knowing densities of hidden sources {fi},/A/

X(t) = AS(t), S(t) = Wx(t), where A—l — W = [Wl' . WM] c RMXM

-----

| = E LoG B, (x(¥) = ji LoG P, (A5(+)) = nAX
€-

€= \ \‘:T—\f"-:r, A
o) AP (KW B
As

5(H)

- T
SL= $ 106 AR (50) = TLoclwl+ 5 Locp, (5(4)

€=) €= —

T ™ 9 |
= Troslwl+z 2 Lo6 b Wikt T, G5)

=\ (=)
o (Wax(h)
5 MAY
Uy

43



Maximum Likelihood ICA Algorithm

[=TrLoelwl + 55 Loc f%(wxa,xtf))

€= 2
= max Lo~ oL =)
Y D 3w,
—(, T -\ p o) r
AL T )+ 22 5 Lo6 4w W4
’—...— 1%!@004:'%5\
GW“/) \\_‘)_/v —

Hwy
b L)
£ (W xt9)

A7 T e (waxy
) .. 4 K5 (¢
;-T(UU)N é' £, (gt )

T
=AW o [WT]71 4 7 Zlg(WX(t))XT(t), where g; = f;/ f;
=
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