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Observations (Mixtures)

original signals
Model

ICA estimated signals

Independent Component Analysis 
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We observe

Model

We want

Goal:

Independent Component Analysys 
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PCA EstimationSources Observation

x(t) = As(t)s(t)

Mixing

y(t)=Wx(t)

The Cocktail Party Problem
SOLVING WITH PCA
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ICA EstimationSources Observation

x(t) = As(t)s(t)

Mixing

y(t)=Wx(t)

The Cocktail Party Problem
SOLVING WITH ICA

Q: Why do we have any hope of 
recovering sources?
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ICA EstimationSources Observation

x(t) = As(t)s(t)

Mixing

y(t)=Wx(t)

The Cocktail Party Problem
SOLVING WITH ICA

Q: Why do we have any hope of recovering 
sources?

A: Assume that sources are independent; find a 
linear transformation of data that is independent
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• Perform linear transformations
• Matrix factorization

X U S

X A S

PCA: low rank matrix factorization for compression

ICA: full rank matrix factorization to remove dependency among the rows

=

=

N

N

N

T

M<N

ICA vs PCA

Columns of U = PCA vectors

Columns of A = ICA vectors

M

T
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q PCA: X=US, UTU=I
q ICA: X=AS, A is invertible

q PCA does compression 
• M<N

q ICA does not do compression 
• same # of features (M=N)

q PCA just removes correlations, not higher order dependence
q ICA removes correlations, and higher order dependence

q PCA: some components are more important than others 
(based on eigenvalues)

q ICA: components are equally important

ICA vs PCA
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Note
• PCA vectors are orthogonal 
• ICA vectors are not orthogonal

ICA vs PCA
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ICA vs PCA
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Gabor wavelets, 
edge detection, 
receptive fields of V1 cells..., deep neural networks 

ICA basis vectors extracted from 
natural images
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PCA basis vectors extracted from 
natural images
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STATIC
• Image denoising
• Microarray data processing
• Decomposing the spectra of 

galaxies
• Face recognition
• Facial expression recognition
• Feature extraction
• Clustering
• Classification
• Deep Neural Networks

TEMPORAL
• Medical signal processing – fMRI, 
ECG, EEG 
• Brain Computer Interfaces
• Modeling of the hippocampus, 
place cells 
• Modeling of the visual cortex
• Time series analysis 
• Financial applications
• Blind deconvolution

Some ICA Applications
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original noisy Wiener filtered

median filtered

ICA denoised

ICA for Image Denoising

(Hoyer, Hyvarinen)
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q Method for analysis and synthesis of human motion from 
motion captured data

q Provides perceptually meaningful “style” components
q 109 markers, (327dim data)
q Motion capture - data matrix 

Goal: Find motion style components.

ICA - 6 independent components (emotion, content,…)

ICA for Motion Style Components

(Mori & Hoshino 2002, Shapiro et al 
2006, Cao et al 2003)
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walk sneaky

walk with sneaky sneaky with walk
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ICA Theory
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Definition (Independence)
Statistical (in)dependence

Definition (Mutual Information) between more than 2 variables

Definition (Shannon entropy)

Definition (KL divergence)
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Solving the ICA problem with i.i.d. 
sources
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Solving the ICA problem
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Whitening 

(We assumed centered data)
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Whitening (continued)

We have,
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Whitening (continued)

We have,
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whitenedoriginal mixed

Whitening solves half of the ICA 
problem

Note: 
The number of free parameters of an N by N orthonormal 
matrix is N(N-1)/2. 

è whitening solves half of the ICA problem
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q Remove mean, E[x]=0
q Whitening, E[xxT]=I
q Find an orthonormal W optimizing an objective function

• Sequence of 2-d Jacobi (Givens) rotations

q find y (the estimation of s), 
q find W (the estimation of A-1)

ICA solution: y=Wx

ICA task: Given x, 

original mixed whitened rotated
(demixed)

Solving ICA
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p q

p

q

Optimization Using Jacobi Rotation 
Matrices
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ICA Cost Functions

Proof: Recitation
Lemma

Therefore,
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ICA Cost Functions

Does not depend on W

W is a product of Givens rotations

det(W) =
Y

i

det(G(pi, qi, ✓i)) = 1
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Normal distribution has the most entropy: so “least normal” distribution 

ICA Cost Functions

Therefore,

The covariance is fixed: Which distribution has the least entropy when
fixing covariance? 

E[yyT] = WE[zzT]WT = WWT = I 
(since W is orthogonal)
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The sum of independent variables converges to the normal distribution

è For separation go far away from the normal distribution

Figs from Ata Kaban

Central Limit Theorem
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ICA Algorithms

Minimizing sum of entropy is hard since it requires knowing 
density
ICA algorithms use other measures of non-Gaussianity
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Kurtosis = 4th order cumulant
Measures degree of peakedness

ICA algorithm based on Kurtosis 
maximization
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Probably the most famous 
ICA algorithm

The Fast ICA algorithm (Hyvarinen)

(λ Lagrange multiplier)

Solve this equation by Newton–Raphson’s method.
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Newton method for finding a root
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Newton Method for Finding a Root

Linear Approximation (1st order Taylor approx):

Goal:

Therefore,



37

Illustration of Newton’s method
Goal: finding a root

In the next step we will linearize here in x



38

Newton Method for Finding a Root
This can be generalized to multivariate functions

Therefore,

[Pseudo inverse if there is no inverse]
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Newton method for FastICA
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The Fast ICA algorithm (Hyvarinen)
Solve:

The derivative of F :

Note:
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The Fast ICA algorithm (Hyvarinen)

Therefore,

The Jacobian matrix becomes diagonal, and can easily be inverted.
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What you should know
ICA: x = As matrix factorization to identify independent components
PCA vs ICA – correlation vs general dependence

ICA: 

Given x, remove mean and whiten to get z
Find W (the estimation of A-1)

orthogonal matrix – product of 2d Givens rotations
obtained by maximizing non-Gaussianity

Find y = Wz (the estimation of s)

ICA algorithms: 
Kurtosis Maximization

FastICA
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rows of W

Maximum Likelihood ICA Algorithm
David J.C. MacKay (97)
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Maximum Likelihood ICA Algorithm


