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Topics in Graphical Models

* Representation

* Which joint probability distributions does a graphical model
represent?

* Inference

* How to answer questions aboutthe joint probability
distribution?

* Marginal distribution of a node variable
* Most likely assignment of node variables

* Learning
* How to learnthe parametersand structure of a graphical model?



Topics in Graphical Models

* Learning
* How to learnthe parametersand structure of a graphical model?



Learning Directed Graphical
Models/Bayes Nets



Learning Directed Graphical Models
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Given set of m independentsamples (assignments of random variables),

find the best (most likely?) Bayes Net (graph Structure + CPTs)



Learning the CPTs (given structure)
) For each discrete variable X,

Data
N
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MAP: Add psuedocounts




MLEs decouple for each CPT in Bayes Nets
® @

* Given structure, loglikelihood of data
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Can compute MLEs of each parameterindependently!



Information theoretic interpretation of MLE
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Plugging in MLE estimates: ML score
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Reminds of entropy



Information theoretic interpretation of MLE

n
09 P(D | 05,G) =m Y. Y. > P(wi,xpay,) 109 P (w; | xpay,)
1=1 Zj XPaXZ,

=1

A

—mz (X;,Pay,) — H(X;)]
Doesn’t depend on graph structuregG

ML score for graph structure

arg mggxlog P(D | Hg,g) — arg maXZI (X;,Pax,)
1=1



How many trees are there?

* Trees — every node has at most one parent

* n"2 possible trees (Cayley’s Theorem)

— A AN

Nonetheless — Efficient optimal algorithm finds best tree!



Scoring a tree

argmaxlog P(D | 0g,G) = arg maxZIA(XZ-, Pay,)
g g —

Equivalent Trees (same score): 1(A,B) +1(B,C)

CL0, 0N 00, 080,00

Score providesindication of structure: °

00,0 (2) (&

I(A,B) + 1(B,C) I(A,B) + I(A,C)



Chow-Liu algorithm

* For each pair of variables X;,X;

. Count(a;z-,:z;j)
— Compute empirical distribution: P(z;,z;) =

m
— Compute mutual information:
- - P(x;,x;)
I(X;, X)) = P(z;,x;) 109 — '
v x;j v P(x;)P(x;)

* Definea graph
— Nodes X,,..., X,
— Edge (i,j) gets weight I(X;, X;)

* Optimal tree BN

— Compute maximum weight spanningtree (e.g. Prim’s, Kruskal’s
algorithm O(nlogn))

— Directionsin BN: pick any node as root, breadth-first-search defines
directions



Chow-Liu algorithm example




Scoring general graphical models

* Graph that maximizes ML score -> complete graph!

Adding a parent always increases ML score
I(A,B,C) > I(A,B)

* The more edges, the fewer independence assumptions, the higher the likelihood
of the data, but will overfit...

* Why does ML for trees work?

Restricted model space — tree graph



Learning BNs for general graphs

Theorem: The problem of learning a BN structure with at most d parents is NP-hard
for any (fixed) d>1 (Note: tree d=1)

» Mostly heuristic (exploit score decomposition)
 Chow-Liu: provides best tree approximation to any distribution.

e Start with Chow-Liu tree. Add, delete, invert edges. Evaluate BIC score



Learning Undirected Graphical
Models



Graphical models as exponential families

>Graphical Model: p(z) = % | REES

>As an exponential family:

p(z;60) = exp > b pe(xe) — A(6)

. ceC

>Ingredients:

¢(CB) — {gbC(azc)}cGC
9::'{HckcEC

A(B) = log {3 exp(6, 6(x)

/
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" product as exponential of sum

Sufficient statistics

Parameters

L og-parttion function



We will focus on pairwise graphical models

1
p(X7 97 G) — Z(Q) CXP ( Z 9875 ¢St(XS7 Xt))
(s,t)eE(G)

¢st(xs,x4) : arbitrary potential functions

Ising Ts Ty
Potts I(xs = x4)
Indicator I(xs, 2 = 3, k)



Graphical Model Selection

GIVEN: n samples of X = (X7,...,X,) with distribution p(X;6*; G), where

p(X;07) = exp { Z OstPst (s, Tt) — A(H*)}

(s,t)eE(G)

PROBLEM: Estimate graph GG given just the n samples.
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Learning Graphical Models



Learning Graphical Models

- Two Step Procedures:
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» 1. Model Selection; estimate graph structure
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- Two Step Procedures:
» 1. Model Selection; estimate graph structure
» 2. Parameter Inference given graph structure

- Score Based Approaches: search over space of graphs, with a score for graph
based on parameter inference



Learning Graphical Models

- Two Step Procedures:

» 1. Model Selection; estimate graph structure
» 2. Parameter Inference given graph structure

- Score Based Approaches: search over space of graphs, with a score for graph
based on parameter inference

* Constraint-based Approaches: estimate individual edges by hypothesis tests
for conditional independences



Learning Graphical Models

- Two Step Procedures:
» 1. Model Selection; estimate graph structure
» 2. Parameter Inference given graph structure

- Score Based Approaches: search over space of graphs, with a score for graph
based on parameter inference

* Constraint-based Approaches: estimate individual edges by hypothesis tests
for conditional independences

- Caveats: (a) difficult to provide guarantees for estimators; (b) estimators are NP-
Hard



Sparse Graphical Model Inference

1

p(X;0,G) = 7 exp( Z 93t¢st(XsaXt))

((9) (s,t)eE(G)

p
- Consider the zero-padded parameter vector @ & ]R(Q) (with a parameter
for each node-pair)

- Graph being sparse equiv. to parameter vector \theta being sparse
- Can be expressed as the constraint that H@HO <k

- One step inference: Parameter Inference subject to sparsity constraint (in
contrast to model selection first, with parameter inference in an inner loop)



Sparsity Constrained ML

(9€a,r min —— lo (9. (9
¢, in {33 tosnta0) |

sparsity neg. Iog -likelihood
constraint

« Optimization problem intractable because of
» Sparsity Constraint :: Non-convex

» Log-partition function A(#) :: NP-Hard to compute



Intractable Components

- Sparsity Constraint is non-convex

- Log-partition function requires exponential time to compute

Unnormalized Probability: p(a:; (9) X eXp(9T¢($))

Log-normalization Const: A(@) = log { Z eXp(HTQb(JJ))}

X

—

Exponentially many vectors



Pairwise Binary Graphical Models

Pairwise: [Pg(X eXp{ Z 0. X X: — 6’)}

(s,t)eE

Tractable Estimator:
> Spa

>

Sity: ell 1
Ikell

ihood: pseudolikelihood

=, VWanwrgnt, Lafterty 06,06



Sparsity

[From Tropp, J. 2004]

¢o quasi-norm /1 norm f5 norm

Sparsity: ell_O(params) is small
Convex relaxation: ell_1(params) is small

p Some past work: Tibshirani, 1996; Chen et al., 1998; Donoho/Xuo, 2001; Tropp, 2004;
||9 H _ |9 . ‘ Fuchs, 2004; Meinshausen/Buhlmann, 2005; Candes/Tao, 2005; Donoho, 2005; Haupt &
L = J
g=1

Nowak, 2006; Zhao/Yu, 2006; Wainwright, 2006; Zou, 2006; Koltchinskii, 2007;
Meinshausen/Yu, 2007; Tsybakov et al., 2008



Pseudo-likelinood

p

Pyt (X) = | [ Po(Xi|Xvrs)
1=1

> Approximate likelihood via product of node-conditional distributions

> Sparsity constrained pseudolik. MLE equivalent to neighborhood estimation* :

. Estimate neighborhood of each node; via sparsity constrained node
conditional MLE

. Combine neighborhoods to form graph estimate



Neighborhood Estimation in Ising Models

For Ising models, node conditional dist. is logistic:

e

\i \ 't p(X ’X .0 G) _ eXp(ZtEN(T) ZHTtXTXt)
Xu— K\ VA eXP(ZtE N(r) 20, X, X)) +1
Xy

« Sparsity pattern of conditional distribution parameters: neighborhood
structure in original graph.

 Estimate sparsity constrained node conditional distribution
(ell_1 regularized logistic regression)



Graph selection via neighborhood regression

Observation: Recovering graph G equivalent to recovering neighborhood set N(s)
for all s € V.

Method: Given n i.i.d. samples {X) ... X™1} perform logistic regression of
each node X on X\, := {Xs, t # s} to estimate neighborhood structure N(s).

& For each node s € V, perform ¢; regularized logistic regression of X on the
remaining variables X\ q:

é\[s] ;= arg min { Zf@X() + pnﬁh}

gcRpP—1 ——

loglstlc hkehhood regularization

© Estimate the local neighborhood N (s) as the support (non-negative entries) of
the regression vector 6|s].

© Combine the neighborhood estimates in a consistent manner (AND, or OR
rule).



Empirical behavior: Unrescaled plots
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Results for 8-grid graphs

8—nearest neighbor grid (attractive)
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