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Topics	in	Graphical	Models
• Representation

• Which	joint	probability	distributions	does	a	graphical	model	
represent?

• Inference
• How	to	answer	questions	about	the	joint	probability	
distribution?

• Marginal	distribution	of	a	node	variable

• Most	likely	assignment	of	node	variables

• Learning
• How	to	learn	the	parameters	and	structure	of	a	graphical	model?



Topics	in	Graphical	Models
• Representation

• Which	joint	probability	distributions	does	a	graphical	model	
represent?

• Inference
• How	to	answer	questions	about	the	joint	probability	
distribution?

• Marginal	distribution	of	a	node	variable

• Most	likely	assignment	of	node	variables

• Learning
• How	to	learn	the	parameters	and	structure	of	a	graphical	model?



Learning	Directed	Graphical	
Models/Bayes	Nets



Learning	Directed	Graphical	Models

Given	set	of	m	independent	samples	(assignments	of	random	variables),	

find	the	best	(most	likely?)	Bayes Net	(graph	Structure	+	CPTs)

x(1)
…

x(m)

Data

structure parameters

CPTs	–

P(Xi|	PaXi)



Learning	the	CPTs	(given	structure)
For	each	discrete	variable	Xk

Compute	MLE	or	MAP	estimates	forx(1)
…

x(m)

Data



MLEs	decouple	for	each	CPT	in	Bayes Nets

• Given	structure,	log	likelihood	of	data
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Can	compute	MLEs	of	each	parameter	independently!



Information	theoretic	interpretation	of	MLE

Plugging	in	MLE	estimates:	ML	score

Reminds	of	entropy



Information	theoretic	interpretation	of	MLE

ML	score	for	graph	structure

Doesn’t	depend	on	graph	structure	



How	many	trees	are	there?

• Trees	– every	node	has	at	most	one	parent

• nn-2 possible	trees	(Cayley’s Theorem)

Nonetheless	– Efficient	optimal	algorithm	finds	best	tree!



Scoring	a	tree

A B C

Equivalent	Trees	(same	score):			I(A,B)	+	I(B,C)

A B C A B C

Score	provides	indication	of	structure:

A B C

A

B C

I(A,B)	+	I(B,C) I(A,B)	+	I(A,C)



Chow-Liu	algorithm
• For	each	pair	of	variables	Xi,Xj

– Compute	empirical	distribution:

– Compute	mutual	information:

• Define	a	graph

– Nodes	X1,…,Xn

– Edge	(i,j)	gets	weight

• Optimal	tree	BN

– Compute	maximum	weight	spanning	tree	(e.g.	Prim’s,	Kruskal’s

algorithm	O(nlogn))

– Directions	in	BN:	pick	any	node	as	root,	breadth-first-search	defines	

directions



Chow-Liu	algorithm	example
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Scoring	general	graphical	models

• Graph	that	maximizes	ML	score	->	complete	graph!

•
Adding	a	parent	always	increases	ML	score

I(A,B,C)	≥	I(A,B)

• The	more	edges,	the	fewer	independence	assumptions,	the	higher	the	likelihood	

of	the	data,	but	will	overfit…

• Why	does	ML	for	trees	work?	

Restricted	model	space	– tree	graph



Learning	BNs	for	general	graphs

Theorem:	The	problem	of	learning	a	BN	structure	with	at	most	d parents	is	NP-hard	
for	any	(fixed)	d>1	 (Note:	tree	d=1)

• Mostly	heuristic	(exploit	score	decomposition)

• Chow-Liu:	provides	best	tree	approximation	to	any	distribution.	

• Start	with	Chow-Liu	tree.	Add,	delete,	invert	edges.	Evaluate	BIC	score



Learning	Undirected	Graphical	
Models



Graphical models as exponential families

>Graphical Model:

>As an exponential family:

p(x) =
1

Z

Y

c2C
 c(xc)

:: product as exponential of sump(x; ✓) = exp

(
X

c2C
✓c �c(xc)�A(✓)

)

>Ingredients:

A(✓) = log

(
X

x

exph✓,�(x)i
)

�(x) = {�c(xc)}c2C Sufficient statistics

Log-partition function

� = {�c}c�C Parameters



We will focus on pairwise graphical models

p(X; �, G) =
1

Z(�)
exp

� ⇤

(s,t)�E(G)

�st ⇥st(Xs, Xt)
⇥

�st(xs, xt) : arbitrary potential functions

Ising xs xt

Potts I(xs = xt)
Indicator I(xs, xt = j, k)



Graphical Model Selection

Graphical model selection

let G = (V,E) be an undirected graph on p = |V | vertices

pairwise Markov random field: family of prob. distributions

P(x1, . . . , xp; θ) =
1

Z(θ)
exp

{ ∑

(s,t)∈E

θstxsxt

}

Problem of graph selection: given n independent and identically
distributed (i.i.d.) samples of X = (X1, . . . , Xp), identify the underlying
graph structure
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Given: n samples of X = (X1, . . . , Xp) with distribution p(X; ✓⇤;G), where

p(X; ✓⇤) = exp

8
<

:
X

(s,t)2E(G)

✓st�st(xs, xt)�A(✓⇤)

9
=

;

Problem: Estimate graph G given just the n samples.

?
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Learning Graphical Models

• Two Step Procedures:

‣ 1. Model Selection; estimate graph structure

‣ 2. Parameter Inference given graph structure

• Score Based Approaches: search over space of graphs, with a score for graph 
based on parameter inference

• Constraint-based Approaches: estimate individual edges by hypothesis tests 
for conditional independences

• Caveats: (a) difficult to provide guarantees for estimators; (b) estimators are NP-
Hard



Sparse Graphical Model Inference

• Consider the zero-padded parameter vector                      (with a parameter 
for each node-pair)


• Graph being sparse equiv. to parameter vector \theta being sparse


• Can be expressed as the constraint that 


• One step inference: Parameter Inference subject to sparsity constraint (in 
contrast to model selection first, with parameter inference in an inner loop)

p(X; �, G) =
1

Z(�)
exp

� ⇤

(s,t)�E(G)

�st ⇥st(Xs, Xt)
⇥

✓ 2 R(
p
2)

k✓k0  k



Sparsity Constrained MLE

• Optimization problem intractable because of 


‣Sparsity Constraint    :: Non-convex


‣Log-partition function          :: NP-Hard to computeA(�)

neg. log-likelihoodsparsity 
constraint

⌅� ⇥ arg min
�:⇥�⇥0�k

�
� 1

n

n⇤

i=1

log p(x(i); �)

⇥



Intractable Components

• Sparsity Constraint is non-convex


• Log-partition function requires exponential time to compute

A(✓) = log
nX

x

exp(✓T�(x))
o

p(x; ✓) / exp(✓T�(x))Unnormalized Probability:

Log-normalization Const:

Exponentially many vectors



Pairwise Binary Graphical Models

> Sparsity:

> Likelihood:

ell_1
pseudolikelihood

R., Wainwright, Lafferty 06,08

P�(X) = exp

�
⇧

⇤
⌥

(s,t)�E

�stXsXt �A(�)

⇥
⌃

⌅Pairwise:

Tractable Estimator:

Xs ⇥ {�1,+1}; s ⇥ VBinary:



Sparsity
Why an �1 penalty?

❦

�0 quasi-norm �1 norm �2 norm

Just Relax 6

[From Tropp, J. 2004]

Sparsity: ell_0(params) is small 
Convex relaxation: ell_1(params) is small

k✓k1 =
pX

j=1

|✓j |

Example: Sparse regression

= +n
S

wy X θ∗

Sc

n× p

Set-up: noisy observations y = Xθ∗ + w with sparse θ∗

Estimator: Lasso program

θ̂ ∈ argmin
θ

1

n

n∑

i=1

(yi − xT
i θ)

2 + λn

p∑

j=1

|θj |

Some past work: Tibshirani, 1996; Chen et al., 1998; Donoho/Xuo, 2001; Tropp, 2004;

Fuchs, 2004; Meinshausen/Buhlmann, 2005; Candes/Tao, 2005; Donoho, 2005; Haupt &

Nowak, 2006; Zhao/Yu, 2006; Wainwright, 2006; Zou, 2006; Koltchinskii, 2007;

Meinshausen/Yu, 2007; Tsybakov et al., 2008



Pseudo-likelihood

> Approximate likelihood via product of node-conditional distributions

> Sparsity constrained pseudolik. MLE equivalent to neighborhood estimation*   : 

. Estimate neighborhood of each node; via sparsity constrained node                      
  conditional MLE 

. Combine neighborhoods to form graph estimate 

Ppl
� (X) =

p�

i=1

P�(Xi|XV \i)



Neighborhood Estimation in Ising Models

• Sparsity pattern of conditional distribution parameters: neighborhood 
structure in original graph.


• Estimate sparsity constrained node conditional distribution 
(ell_1 regularized logistic regression)

p(Xr|XV \r; �, G) =
exp(

�
t�N(r) 2 �rtXrXt)

exp(
�

t�N(r) 2 �rtXrXt) + 1

For Ising models, node conditional dist. is logistic:



Graph selection via neighborhood regression

Observation: Recovering graph G equivalent to recovering neighborhood set N(s)
for all s ∈ V .

Method: Given n i.i.d. samples {X(1), . . . , X(n)}, perform logistic regression of

each node Xs on X\s := {Xs, t ≠ s} to estimate neighborhood structure bN(s).

1 For each node s ∈ V , perform ℓ1 regularized logistic regression of Xs on the
remaining variables X\s:

bθ[s] := arg min
θ∈Rp−1

(
1
n

nX

i=1

f(θ; X(i)
\s )

| {z }
+ ρn ∥θ∥1|{z}

)

logistic likelihood regularization

2 Estimate the local neighborhood bN(s) as the support (non-negative entries) of

the regression vector bθ[s].

3 Combine the neighborhood estimates in a consistent manner (AND, or OR
rule).

Martin Wainwright (UC Berkeley) High-dimensional graph selection September 2009 21 / 36



Empirical behavior: Unrescaled plots
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Plots of success probability versus raw sample size .
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Results for 8-grid graphs

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Control parameter

P
ro

b
. 

s
u

c
c
e

s
s

8−nearest neighbor grid (attractive)

 

 

p =  64

p = 100

p = 225

Prob. of success P[Ĝ = G] versus rescaled sample size θLR(n, p, d3) = n
d3 log p
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