Graphical Models: Learning

Pradeep Ravikumar

Co-Instructor: Ziv Bar-Joseph

Slides Courtesy: Carlos Guestrin

Machine Learning 10-701

Topics in Graphical Models

- Representation
 - Which joint probability distributions does a graphical model represent?
- Inference
 - How to answer questions about the joint probability distribution?
 - Marginal distribution of a node variable
 - Most likely assignment of node variables
- Learning
 - How to learn the parameters and structure of a graphical model?

Topics in Graphical Models

- Representation
 - Which joint probability distributions does a graphical model represent?
- Inference
 - How to answer questions about the joint probability distribution?
 - Marginal distribution of a node variable
 - Most likely assignment of node variables
- Learning
 - How to learn the parameters and structure of a graphical model?

Learning Directed Graphical Models/Bayes Nets

Learning Directed Graphical Models

Given set of m independent samples (assignments of random variables), find the best (most likely?) Bayes Net (graph Structure + CPTs)

Learning the CPTs (given structure)

For each discrete variable X_k

Compute MLE or MAP estimates for

$$p(x_k|pa_k)$$

Recall

MLE:
$$P(X_i = x_i \mid X_j = x_j) = \frac{\text{Count}(X_i = x_i, X_j = x_j)}{\text{Count}(X_i = x_i)}$$

MAP: Add psuedocounts

MLEs decouple for each CPT in Bayes Nets

• Given structure, log likelihood of data $\log P(\mathcal{D} \mid \theta_{\mathcal{G}}, \mathcal{G})$

$$= \log \prod_{j=1}^{m} P(f^{(j)}) P(a^{(j)}) P(s^{(j)}|f^{(j)}, a^{(j)}) P(h^{(j)}|s^{(j)}) P(n^{(j)}|s^{(j)})$$

$$= \sum_{j=1}^{m} [\log P(f) + \log P(a) + \log P(s|f,a) + \log P(h|s) + \log P(h|s)]$$

$$= \sum_{j=1}^{m} \log P(f^{(j)}) + \sum_{j=1}^{m} \log P(a^{(j)}) + \sum_{j=1}^{m} \log P(s^{(j)}) + \sum_{j=1}^{m} \log P(s$$

Depends only on

 θ_{F}

 θ_{A}

$$\theta_{\text{F,A}} \sum_{j=1}^{m} \log P(h|s) + \sum_{j=1}^{m} \log P(n|s)$$

N)

Information theoretic interpretation of MLE

$$\log P(\mathcal{D} \mid \theta_{\mathcal{G}}, \mathcal{G}) = \sum_{j=1}^{m} \sum_{i=1}^{n} \log P\left(X_i = x_i^{(j)} \mid \mathbf{Pa}_{X_i} = \mathbf{x}_{\mathbf{Pa}_{X_i}}^{(j)}\right)$$

$$=\sum_{i=1}^n\sum_{x_i}\sum_{\mathbf{x}_{\mathbf{Pa}_{X_i}}}\operatorname{count}(X_i=x_i,\mathbf{Pa}_{X_i}=\mathbf{x}_{\mathbf{Pa}_{X_i}})\log P\left(X_i=x_i\mid\mathbf{Pa}_{X_i}=\mathbf{x}_{\mathbf{Pa}_{X_i}}\right)$$

Plugging in MLE estimates: ML score

$$\begin{split} \log \hat{P}(\mathcal{D} \mid \hat{\theta}_{\mathcal{G}}, \mathcal{G}) &= \sum_{j=1}^{m} \sum_{i=1}^{n} \log \hat{P}\left(x_{i}^{(j)} \mid \mathbf{x}_{\mathsf{Pa}_{X_{i}}}^{(j)}\right) \\ &= m \sum_{i=1}^{n} \sum_{x_{i}} \sum_{\mathbf{x}_{\mathsf{Pa}_{X_{i}}}} \hat{P}(x_{i}, \mathbf{x}_{\mathsf{Pa}_{X_{i}}}) \log \hat{P}\left(x_{i} \mid \mathbf{x}_{\mathsf{Pa}_{X_{i}}}\right) \\ &\qquad \qquad \mathsf{Reminds of entropy} \end{split}$$

Information theoretic interpretation of MLE

$$\begin{split} \log \widehat{P}(\mathcal{D} \mid \widehat{\theta}_{\mathcal{G}}, \mathcal{G}) &= m \sum_{i=1}^{n} \sum_{X_{i}} \sum_{\mathbf{X} \in \mathbf{Pa}_{X_{i}}} \widehat{P}(x_{i}, \mathbf{x}_{\mathbf{Pa}_{X_{i}}}) \log \widehat{P}\left(x_{i} \mid \mathbf{x}_{\mathbf{Pa}_{X_{i}}}\right) \\ &= -m \sum_{i=1}^{n} \widehat{H}(X_{i} \mid \mathbf{Pa}_{X_{i}}) \\ &= m \sum_{i=1}^{n} \left[\widehat{I}(X_{i}, \mathbf{Pa}_{X_{i}}) - \widehat{H}(X_{i})\right] \\ &= \text{Doesn't depend on graph structure} \mathcal{G} \end{split}$$

ML score for graph structure ${\cal G}$

$$\arg\max_{\mathcal{G}} \log \widehat{P}(\mathcal{D} \mid \widehat{\theta}_{\mathcal{G}}, \mathcal{G}) = \arg\max_{\mathcal{G}} \sum_{i=1}^{n} \widehat{I}(X_{i}, \mathbf{Pa}_{X_{i}})$$

How many trees are there?

- Trees every node has at most one parent
- nⁿ⁻² possible trees (Cayley's Theorem)

Nonetheless – Efficient optimal algorithm finds best tree!

Scoring a tree

$$\arg\max_{\mathcal{G}}\log\widehat{P}(\mathcal{D}\mid\widehat{\theta}_{\mathcal{G}},\mathcal{G}) = \arg\max_{\mathcal{G}}\sum_{i=1}^{n}\widehat{I}(X_{i},\mathbf{Pa}_{X_{i}})$$

Equivalent Trees (same score): I(A,B) + I(B,C)

Score provides indication of structure:

Chow-Liu algorithm

- For each pair of variables X_i,X_i
 - Compute empirical distribution: $\widehat{P}(x_i, x_j) = \frac{\mathsf{Count}(x_i, x_j)}{m}$
 - Compute mutual information:

$$\widehat{I}(X_i, X_j) = \sum_{x_i, x_j} \widehat{P}(x_i, x_j) \log \frac{\widehat{P}(x_i, x_j)}{\widehat{P}(x_i) \widehat{P}(x_j)}$$

- Define a graph
 - Nodes $X_1,...,X_n$
 - Edge (i,j) gets weight $\widehat{I}(X_i, X_j)$
- Optimal tree BN
 - Compute maximum weight spanning tree (e.g. Prim's, Kruskal's algorithm O(nlog n))
 - Directions in BN: pick any node as root, breadth-first-search defines directions

Chow-Liu algorithm example

Scoring general graphical models

- Graph that maximizes ML score -> complete graph!
- Adding a parent always increases ML score
 I(A,B,C) ≥ I(A,B)
- The more edges, the fewer independence assumptions, the higher the likelihood of the data, but will overfit...
- Why does ML for trees work?
 Restricted model space tree graph

Learning BNs for general graphs

Theorem: The problem of learning a BN structure with at most d parents is NP-hard for any (fixed) d>1 (Note: tree d=1)

- Mostly heuristic (exploit score decomposition)
- Chow-Liu: provides best tree approximation to any distribution.
- Start with Chow-Liu tree. Add, delete, invert edges. Evaluate BIC score

Learning Undirected Graphical Models

Graphical models as exponential families

>Graphical Model:
$$p(x) = \frac{1}{Z} \prod_{c \in C} \Psi_c(x_c)$$

>As an exponential family:

$$p(x;\theta) = \exp\left\{\sum_{c \in \mathcal{C}} \theta_c \, \phi_c(x_c) - A(\theta)\right\} \quad \text{if product as exponential of sum}$$

>Ingredients:

$$\phi(x) = \{\phi_c(x_c)\}_{c \in \mathcal{C}}$$
 Sufficient statistics
$$\theta = \{\theta_c\}_{c \in \mathcal{C}}$$
 Parameters
$$A(\theta) = \log \left\{ \sum_x \exp\langle \theta, \phi(x) \rangle \right\}$$
 Log-partition function

Sufficient statistics

We will focus on pairwise graphical models

$$p(X; \theta, G) = \frac{1}{Z(\theta)} \exp\left(\sum_{(s,t)\in E(G)} \theta_{st} \phi_{st}(X_s, X_t)\right)$$

 $\phi_{st}(x_s, x_t)$: arbitrary potential functions

Ising
$$x_s x_t$$
Potts $I(x_s = x_t)$
Indicator $I(x_s, x_t = j, k)$

Graphical Model Selection

GIVEN: n samples of $X = (X_1, \ldots, X_p)$ with distribution $p(X; \theta^*; G)$, where

$$p(X; \theta^*) = \exp \left\{ \sum_{(s,t) \in E(G)} \theta_{st} \phi_{st}(x_s, x_t) - A(\theta^*) \right\}$$

Problem: Estimate graph G given just the n samples.

Two Step Procedures:

Two Step Procedures:

▶ 1. Model Selection; estimate graph structure

- Two Step Procedures:
 - ▶ 1. Model Selection; estimate graph structure
 - ▶ 2. Parameter Inference given graph structure

- Two Step Procedures:
 - ▶ 1. Model Selection; estimate graph structure
 - ▶ 2. Parameter Inference given graph structure
- Score Based Approaches: search over space of graphs, with a score for graph based on parameter inference

- Two Step Procedures:
 - ▶ 1. Model Selection; estimate graph structure
 - ▶ 2. Parameter Inference given graph structure
- Score Based Approaches: search over space of graphs, with a score for graph based on parameter inference
- Constraint-based Approaches: estimate individual edges by hypothesis tests for conditional independences

- Two Step Procedures:
 - ▶ 1. Model Selection; estimate graph structure
 - ▶ 2. Parameter Inference given graph structure
- Score Based Approaches: search over space of graphs, with a score for graph based on parameter inference
- Constraint-based Approaches: estimate individual edges by hypothesis tests for conditional independences
- Caveats: (a) difficult to provide guarantees for estimators; (b) estimators are NP-Hard

Sparse Graphical Model Inference

$$p(X; \theta, G) = \frac{1}{Z(\theta)} \exp\left(\sum_{(s,t)\in E(G)} \theta_{st} \phi_{st}(X_s, X_t)\right)$$

- Consider the zero-padded parameter vector $\theta \in \mathbb{R}^{\binom{p}{2}}$ (with a parameter for each node-pair)
- Graph being sparse equiv. to parameter vector \theta being sparse
- Can be expressed as the constraint that $\|\theta\|_0 \leq k$
- **One step inference**: Parameter Inference subject to sparsity constraint (in contrast to model selection first, with parameter inference in an inner loop)

Sparsity Constrained MLE

$$\widehat{\theta} \in \arg\min_{\theta: \|\theta\|_0 \leq k} \left\{ -\frac{1}{n} \sum_{i=1}^n \log p(x^{(i)}; \theta) \right\}$$
 sparsity neg. log-likelihood constraint

- Optimization problem intractable because of
 - ▶ Sparsity Constraint :: Non-convex
 - Log-partition function $A(\theta)$:: NP-Hard to **compute**

Intractable Components

Sparsity Constraint is non-convex

Log-partition function requires exponential time to compute

Unnormalized Probability:
$$p(x;\theta) \propto \exp(\theta^T \phi(x))$$

$$\text{Log-normalization Const:} \quad A(\theta) = \log \Big\{ \sum_{\mathbf{x}} \exp(\theta^T \phi(x)) \Big\}$$

Exponentially many vectors

Pairwise Binary Graphical Models

Pairwise:
$$\mathbb{P}_{\theta}(X) = \exp\left\{\sum_{(s,t)\in E} \theta_{st} X_s X_t - A(\theta)\right\}$$

Binary:
$$X_s \in \{-1, +1\}; s \in V$$

Tractable Estimator:

- > Sparsity: **ell_1**
- > Likelihood: pseudolikelihood

R., Wainwright, Lafferty 06,08

Sparsity

[From **Tropp**, **J.** 2004]

Sparsity: ell_0(params) is small Convex relaxation: ell_1(params) is small

$$\|\theta\|_1 = \sum_{j=1}^p |\theta_j|$$

Some past work: Tibshirani, 1996; Chen et al., 1998; Donoho/Xuo, 2001; Tropp, 2004; Fuchs, 2004; Meinshausen/Buhlmann, 2005; Candes/Tao, 2005; Donoho, 2005; Haupt & Nowak, 2006; Zhao/Yu, 2006; Wainwright, 2006; Zou, 2006; Koltchinskii, 2007; Meinshausen/Yu, 2007; Tsybakov et al., 2008

Pseudo-likelihood

$$\mathbb{P}_{\theta}^{\text{PL}}(X) = \prod_{i=1}^{p} \mathbb{P}_{\theta}(X_i | X_{V \setminus i})$$

- > Approximate likelihood via product of node-conditional distributions
- > Sparsity constrained pseudolik. MLE equivalent to neighborhood estimation*:
 - . Estimate neighborhood of each node; via sparsity constrained node conditional MLE
 - . Combine neighborhoods to form graph estimate

Neighborhood Estimation in Ising Models

For Ising models, node conditional dist. is logistic:

$$p(X_r|X_{V\setminus r};\theta,G) = \frac{\exp(\sum_{t\in N(r)} 2\theta_{rt}X_rX_t)}{\exp(\sum_{t\in N(r)} 2\theta_{rt}X_rX_t) + 1}$$

- Sparsity pattern of conditional distribution parameters: neighborhood structure in original graph.
- Estimate sparsity constrained node conditional distribution (ell_1 regularized logistic regression)

Graph selection via neighborhood regression

Observation: Recovering graph G equivalent to recovering neighborhood set N(s) for all $s \in V$.

Method: Given n i.i.d. samples $\{X^{(1)}, \ldots, X^{(n)}\}$, perform logistic regression of each node X_s on $X_{\setminus s} := \{X_s, t \neq s\}$ to estimate neighborhood structure $\widehat{N}(s)$.

① For each node $s \in V$, perform ℓ_1 regularized logistic regression of X_s on the remaining variables $X_{\backslash s}$:

$$\widehat{\theta}[s] := \arg\min_{\theta \in \mathbb{R}^{p-1}} \left\{ \begin{array}{c} \frac{1}{n} \sum_{i=1}^{n} \underline{f(\theta; X_{\backslash s}^{(i)})} \\ \text{logistic likelihood} \end{array} \right. + \rho_{n} \underline{\|\theta\|_{1}} \right\}$$

- 2 Estimate the local neighborhood $\widehat{N}(s)$ as the support (non-negative entries) of the regression vector $\widehat{\theta}[s]$.
- 3 Combine the neighborhood estimates in a consistent manner (AND, or OR rule).

Empirical behavior: Unrescaled plots

Results for 8-grid graphs

Prob. of success $\mathbb{P}[\widehat{G} = G]$ versus rescaled sample size $\theta_{LR}(n, p, d^3) = \frac{n}{d^3 \log p}$