Graphical Models: Inference

Pradeep Ravikumar

Co-Instructor: Ziv Bar-Joseph

Machine Learning 10-701
Topics in Graphical Models

• Representation
 • Which joint probability distributions does a graphical model represent?

• Inference
 • How to answer questions about the joint probability distribution?
 • Marginal distribution of a node variable
 • Most likely assignment of node variables

• Learning
 • How to learn the parameters and structure of a graphical model?
Topics in Graphical Models

• **Representation**
 • Which joint probability distributions does a graphical model represent?

• **Inference**
 • How to answer questions about the joint probability distribution?
 • Marginal distribution of a node variable
 • Most likely assignment of node variables

• **Learning**
 • How to learn the parameters and structure of a graphical model?
Inference

• Possible queries:
 1) Marginal distribution e.g. $P(S)$
 Posterior distribution e.g. $P(F|H=1)$

 2) Most likely assignment of nodes
 $$\text{arg max } P(F=f, A=a, S=s, N=n | H=1)$$
 $$f, a, s, n$$
Inference

- **Possible queries:**
 1) Marginal distribution e.g. \(P(S) \)
 2) Posterior distribution e.g. \(P(F|H=1) \)

\[
P(F|H=1) = \frac{P(F, H=1)}{P(H=1)}
\]

\[
= \frac{P(F, H=1)}{\sum_f P(F=f, H=1)}
\]

\(\propto P(F, H=1) \)

will focus on computing this, posterior will follow with only constant times more effort.
Marginalization

Need to marginalize over other vars

\[P(S) = \sum_{f,a,n,h} P(f,a,S,n,h) \]

\[P(F,H=1) = \sum_{a,s,n} P(F,a,s,n,H=1) \]

To marginalize out \(n \) binary variables, need to sum over \(2^n \) terms

Inference seems exponential in number of variables!
Actually, inference in graphical models is NP-hard 😞
Bayesian Networks Example

- 18 binary attributes

- Inference
 - $P(\text{BatteryAge} | \text{Starts} = f)$

- need to sum over 2^{16} terms!
- Not impressed?
 - HailFinder BN – more than $3^{54} = 58149737003040059690$ 390169 terms
Fast Probabilistic Inference

\[
P(F, H=1) = \sum_{a,s,n} P(F,a,s,n,H=1)
\]

\[
= \sum_{a,s,n} P(F)P(a)P(s|F,a)P(n|s)P(H=1|s)
\]

\[
= P(F) \sum_a P(a) \sum_s P(s|F,a)P(H=1|s) \sum_n P(n|s)
\]

Push sums in as far as possible

Distributive property: \(x_1z + x_2z = z(x_1+x_2) \)

2 multiply 1 multiply
Fast Probabilistic Inference

\[P(F, H=1) = \sum_{a,s,n} P(F, a, s, n, H=1) \]

\[= \sum_{a,s,n} P(F)P(a)P(s \mid F, a)P(n \mid s)P(H=1 \mid s) \]

\[= P(F) \sum_a P(a) \sum_s P(s \mid F, a)P(H=1 \mid s) \sum P(n \mid s) \]

\[= P(F) \sum_a P(a) \sum_s P(s \mid F, a)P(H=1 \mid s) \]

\[= P(F) \sum_a P(a) g_1(F, a) \]

\[= P(F) g_2(F) \]

(Potential for) exponential reduction in computation!
Variable Elimination – Order can make a HUGE difference

\[
P(F,H=1) = \sum_{a,s,n} P(F)P(a)P(s|F,a)P(n|s)P(H=1|s)
\]

\[
= P(F) \sum_a P(a) \sum_s P(s|F,a)P(H=1|s) \sum_n P(n|s)
\]

\[
g_1(F,a,s)
\]

\[
g_2(F,a)
\]

\[
g_3(F)
\]

\[
P(F,H=1) = P(F) \sum_a P(a) \sum_n \sum_s P(s|F,a)P(n|s)P(H=1|s)
\]

\[
g(F,s,a,n)
\]

3 – scope of largest factor
Variable Elimination – Order can make a HUGE difference

\[P(X_1) = \sum_{Y, X_2, \ldots, X_n} P(Y) P(X_1|Y) \prod_{i=2}^{n} P(X_i|Y) \]

\[= \sum_{Y, X_3, \ldots, X_n} P(Y) P(X_1|Y) \prod_{i=3}^{n} P(X_i|Y) \sum_{X_2} P(X_2|Y) \]

\[= \sum_{X_2, \ldots, X_n} \sum_{Y} P(Y) P(X_1|Y) \prod_{i=2}^{n} P(X_i|Y) \]

1 – scope of largest factor

\(g(Y) \)

n+1 – scope of largest factor

\(g(Y, X_1, X_2, \ldots, X_n) \)
Variable Elimination Algorithm

- Given BN – set initial factors $p(x_i | pa_i)$ for $i=1,..,n$
- Given Query $P(X|e) \equiv P(X,e)$ X – set of variables
- Instantiate evidence e e.g. set $H=1$ in previous example
- Choose an ordering on the variables e.g., $X_1, ..., X_n$
- For $i = 1$ to n, if $X_i \notin \{X,e\}$
 - Collect factors $g_1,..,g_k$ that include X_i
 - Generate a new factor by eliminating X_i from these factors
 $$g = \sum_{X_i} \prod_{j=1}^{k} g_j$$
 - Variable X_i has been eliminated!
 - Remove $g_1,..,g_k$ from set of factors but add g
- Normalize $P(X,e)$ to obtain $P(X|e)$
Inference

• Possible queries:

2) Most likely assignment of nodes
 \[\text{arg max } P(F=f, A=a, S=s, N=n | H=1) \]
 \[f, a, s, n \]

Use Distributive property:
\[\text{max}(x_1z, x_2z) = z \text{ max}(x_1, x_2) \]

2 multiply \quad 1 \text{ multiply}
Variable Elimination: Directed Graphs

\[p(x_1, x_2, \ldots, x_5) = \sum_{x_6} p(x_1)p(x_2 | x_1)p(x_3 | x_1)p(x_4 | x_2)p(x_5 | x_3)p(x_6 | x_2, x_5) \]
Variable Elimination: Directed Graphs

\[
p(x_1, x_2, \ldots, x_5) = \sum_{x_6} p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_1)p(x_4 \mid x_2)p(x_5 \mid x_3)p(x_6 \mid x_2, x_5)
\]

\[
= p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_1)p(x_4 \mid x_2)p(x_5 \mid x_3) \sum_{x_6} p(x_6 \mid x_2, x_5).
\]
Variable Elimination: Directed Graphs

\[
p(x_1, x_2, \ldots, x_5) = \sum_{x_6} p(x_1)p(x_2 | x_1)p(x_3 | x_1)p(x_4 | x_2)p(x_5 | x_3)p(x_6 | x_2, x_5)
\]

\[
= p(x_1)p(x_2 | x_1)p(x_3 | x_1)p(x_4 | x_2)p(x_5 | x_3) \sum_{x_6} p(x_6 | x_2, x_5).
\]

Reduced the count from \(O(k^6)\) to \(O(k^3)\) (actually we know the sum here is equal to one, but assume we didn’t know that)
Variable Elimination: Directed Graphs

\[p(x_1, \overline{x_6}) = \sum_{x_2} \sum_{x_3} \sum_{x_4} \sum_{x_5} p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_1)p(x_4 \mid x_2)p(x_5 \mid x_3)p(\overline{x_6} \mid x_2, x_5) \]
Variable Elimination: Directed Graphs

\[p(x_1, \bar{x}_6) = \sum_{x_2} \sum_{x_3} \sum_{x_4} \sum_{x_5} p(x_1)p(x_2 | x_1)p(x_3 | x_1)p(x_4 | x_2)p(x_5 | x_3)p(\bar{x}_6 | x_2, x_5) \]

\[= p(x_1) \sum_{x_2} p(x_2 | x_1) \sum_{x_3} p(x_3 | x_1) \sum_{x_4} p(x_4 | x_2) \sum_{x_5} p(x_5 | x_3)p(\bar{x}_6 | x_2, x_5) \]
Variable Elimination: Directed Graphs

\[
p(x_1, \bar{x}_6) = \sum_{x_2} \sum_{x_3} \sum_{x_4} \sum_{x_5} p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_1)p(x_4 \mid x_2)p(x_5 \mid x_3)p(\bar{x}_6 \mid x_2, x_5)
\]

\[
= p(x_1) \sum_{x_2} p(x_2 \mid x_1) \sum_{x_3} p(x_3 \mid x_1) \sum_{x_4} p(x_4 \mid x_2) \sum_{x_5} p(x_5 \mid x_3)p(\bar{x}_6 \mid x_2, x_5)
\]

\[
= p(x_1) \sum_{x_2} p(x_2 \mid x_1) \sum_{x_3} p(x_3 \mid x_1) \sum_{x_4} p(x_4 \mid x_2)m_5(x_2, x_3)
\]

where we define \(m_5(x_2, x_3) \triangleq \sum_{x_5} p(x_5 \mid x_3)p(\bar{x}_6 \mid x_2, x_5)\).
Variable Elimination: Directed Graphs

\[p(x_1, \bar{x}_6) = p(x_1) \sum_{x_2} p(x_2 | x_1) \sum_{x_3} p(x_3 | x_1) m_5(x_2, x_3) \sum_{x_4} p(x_4 | x_2) \]

\[= p(x_1) \sum_{x_2} p(x_2 | x_1) m_4(x_2) \sum_{x_3} p(x_3 | x_1) m_5(x_2, x_3). \]

\[m_4(x_2) \triangleq \sum_{x_4} p(x_4 | x_2) \]
Variable Elimination: Directed Graphs

\[
p(x_1, \bar{x}_6) = p(x_1) \sum_{x_2} p(x_2 | x_1) \sum_{x_3} p(x_3 | x_1) m_5(x_2, x_3) \sum_{x_4} p(x_4 | x_2)
\]

\[
= p(x_1) \sum_{x_2} p(x_2 | x_1) m_4(x_2) \sum_{x_3} p(x_3 | x_1) m_5(x_2, x_3).
\]

\[
m_4(x_2) \triangleq \sum_{x_4} p(x_4 | x_2)
\]

We denote by \(m_i(S_i) \) the expression after computing \(\sum_{x_i} \) with \(S_i \) the index of variables, other than \(i \) that appear in the summand
Variable Elimination: Directed Graphs

\[
p(x_1, \bar{x}_6) = p(x_1) \sum_{x_2} p(x_2 | x_1)m_4(x_2)m_3(x_1, x_2)
= p(x_1)m_2(x_1).
\]
Variable Elimination: Directed Graphs

\[p(x_1, \bar{x}_6) = p(x_1) \sum_{x_2} p(x_2 | x_1) m_4(x_2) m_3(x_1, x_2) \]
\[= p(x_1) m_2(x_1). \]

\[p(\bar{x}_6) = \sum_{x_1} p(x_1) m_2(x_1), \]

\[p(x_1 | \bar{x}_6) = \frac{p(x_1) m_2(x_1)}{\sum_{x_1} p(x_1) m_2(x_1)}. \]
Variable Elimination: undirected graphs

- Potentials $\psi_C(x_C)$ on the cliques $\{X_1, X_2\}$, $\{X_1, X_3\}$, $\{X_2, X_4\}$, $\{X_3, X_5\}$, and $\{X_2, X_5, X_6\}$.
Elimination; undirected graphs

\[
p(x_1, \bar{x}_6) = \frac{1}{Z} \sum_{x_2} \sum_{x_3} \sum_{x_4} \sum_{x_5} \sum_{x_6} \psi(x_1, x_2) \psi(x_1, x_3) \psi(x_2, x_4) \psi(x_3, x_5) \psi(x_2, x_5, x_6) \delta(x_6, \bar{x}_6)
\]

\[
= \frac{1}{Z} \sum_{x_2} \psi(x_1, x_2) \sum_{x_3} \psi(x_1, x_3) \sum_{x_4} \psi(x_2, x_4) \sum_{x_5} \psi(x_3, x_5) \sum_{x_6} \psi(x_2, x_5, x_6) \delta(x_6, \bar{x}_6)
\]
Elimination; undirected graphs

\[
p(x_1, \bar{x}_6) = \frac{1}{\mathcal{Z}} \sum_{x_2} \sum_{x_3} \sum_{x_4} \sum_{x_5} \sum_{x_6} \psi(x_1, x_2) \psi(x_1, x_3) \psi(x_2, x_4) \psi(x_3, x_5) \psi(x_2, x_5, x_6) \delta(x_6, \bar{x}_6)
\]

\[
= \frac{1}{\mathcal{Z}} \sum_{x_2} \psi(x_1, x_2) \sum_{x_3} \psi(x_1, x_3) \sum_{x_4} \psi(x_2, x_4) \sum_{x_5} \psi(x_3, x_5) \sum_{x_6} \psi(x_2, x_5, x_6) \delta(x_6, \bar{x}_6)
\]

\[
= \frac{1}{\mathcal{Z}} \sum_{x_2} \psi(x_1, x_2) \sum_{x_3} \psi(x_1, x_3) \sum_{x_4} \psi(x_2, x_4) \sum_{x_5} \psi(x_3, x_5) m_6(x_2, x_5)
\]
Elimination; undirected graphs

\[p(x_1, \bar{x}_6) = \frac{1}{Z} \sum_{x_2} \sum_{x_3} \sum_{x_4} \sum_{x_5} \sum_{x_6} \psi(x_1, x_2)\psi(x_1, x_3)\psi(x_2, x_4)\psi(x_3, x_5)\psi(x_2, x_5, x_6)\delta(x_6, \bar{x}_6) \]

\[= \frac{1}{Z} \sum_{x_2} \psi(x_1, x_2) \sum_{x_3} \psi(x_1, x_3) \sum_{x_4} \psi(x_2, x_4) \sum_{x_5} \psi(x_3, x_5) \sum_{x_6} \psi(x_2, x_5, x_6)\delta(x_6, \bar{x}_6) \]

\[= \frac{1}{Z} \sum_{x_2} \psi(x_1, x_2) \sum_{x_3} \psi(x_1, x_3) \sum_{x_4} \psi(x_2, x_4) \sum_{x_5} \psi(x_3, x_5) m_6(x_2, x_5) \]

\[= \frac{1}{Z} \sum_{x_2} \psi(x_1, x_2) \sum_{x_3} \psi(x_1, x_3) m_5(x_2, x_3) \sum_{x_4} \psi(x_2, x_4) \]
Elimination; undirected graphs

\[p(x_1, \bar{x}_6) = \frac{1}{Z} \sum_{x_2} \sum_{x_3} \sum_{x_4} \sum_{x_5} \sum_{x_6} \psi(x_1, x_2) \psi(x_1, x_3) \psi(x_2, x_4) \psi(x_3, x_5) \psi(x_2, x_5, x_6) \delta(x_6, \bar{x}_6) \]

\[= \frac{1}{Z} \sum_{x_2} \psi(x_1, x_2) \sum_{x_3} \psi(x_1, x_3) \sum_{x_4} \psi(x_2, x_4) \sum_{x_5} \psi(x_3, x_5) \sum_{x_6} \psi(x_2, x_5, x_6) \delta(x_6, \bar{x}_6) \]

\[= \frac{1}{Z} \sum_{x_2} \psi(x_1, x_2) \sum_{x_3} \psi(x_1, x_3) \sum_{x_4} \psi(x_2, x_4) \sum_{x_5} \psi(x_3, x_5) m_6(x_2, x_5) \]

\[= \frac{1}{Z} \sum_{x_2} \psi(x_1, x_2) \sum_{x_3} \psi(x_1, x_3) m_5(x_2, x_3) \sum_{x_4} \psi(x_2, x_4) \]

\[= \frac{1}{Z} \sum_{x_2} \psi(x_1, x_2) m_4(x_2) \sum_{x_3} \psi(x_1, x_3) m_5(x_2, x_3) \]
Elimination; undirected graphs

\[
p(x_1, \bar{x}_6) = \frac{1}{Z} \sum_{x_2} \sum_{x_3} \sum_{x_4} \sum_{x_5} \sum_{x_6} \psi(x_1, x_2) \psi(x_1, x_3) \psi(x_2, x_4) \psi(x_3, x_5) \psi(x_2, x_5, x_6) \delta(x_6, \bar{x}_6) \\
= \frac{1}{Z} \sum_{x_2} \psi(x_1, x_2) \sum_{x_3} \psi(x_1, x_3) \sum_{x_4} \psi(x_2, x_4) \sum_{x_5} \psi(x_3, x_5) \sum_{x_6} \psi(x_2, x_5, x_6) \delta(x_6, \bar{x}_6) \\
= \frac{1}{Z} \sum_{x_2} \psi(x_1, x_2) \sum_{x_3} \psi(x_1, x_3) \sum_{x_4} \psi(x_2, x_4) \sum_{x_5} \psi(x_3, x_5) m_6(x_2, x_5) \\
= \frac{1}{Z} \sum_{x_2} \psi(x_1, x_2) \sum_{x_3} \psi(x_1, x_3) m_5(x_2, x_3) \sum_{x_4} \psi(x_2, x_4) \\
= \frac{1}{Z} \sum_{x_2} \psi(x_1, x_2) m_4(x_2) \sum_{x_3} \psi(x_1, x_3) m_5(x_2, x_3) \\
= \frac{1}{Z} \sum_{x_2} \psi(x_1, x_2) m_4(x_2) m_3(x_1, x_2)
Elimination; undirected graphs

\[
p(x_1, \bar{x}_6) = \frac{1}{Z} \sum_{x_2} \sum_{x_3} \sum_{x_4} \sum_{x_5} \sum_{x_6} \psi(x_1, x_2) \psi(x_1, x_3) \psi(x_2, x_4) \psi(x_3, x_5) \psi(x_2, x_5, x_6) \delta(x_6, \bar{x}_6)
\]

\[
= \frac{1}{Z} \sum_{x_2} \psi(x_1, x_2) \sum_{x_3} \psi(x_1, x_3) \sum_{x_4} \psi(x_2, x_4) \sum_{x_5} \psi(x_3, x_5) \psi(x_2, x_5, x_6) \delta(x_6, \bar{x}_6)
\]

\[
= \frac{1}{Z} \sum_{x_2} \psi(x_1, x_2) \sum_{x_3} \psi(x_1, x_3) \sum_{x_4} \psi(x_2, x_4) \sum_{x_5} \psi(x_3, x_5) m_6(x_2, x_5)
\]

\[
= \frac{1}{Z} \sum_{x_2} \psi(x_1, x_2) \sum_{x_3} \psi(x_1, x_3) \sum_{x_4} \psi(x_2, x_4) m_5(x_2, x_3) \sum_{x_4} \psi(x_2, x_4)
\]

\[
= \frac{1}{Z} \sum_{x_2} \psi(x_1, x_2) m_4(x_2) \sum_{x_4} \psi(x_1, x_3) m_5(x_2, x_3)
\]

\[
= \frac{1}{Z} \sum_{x_2} \psi(x_1, x_2) m_4(x_2) m_3(x_1, x_2)
\]

\[
= \frac{1}{Z} m_2(x_1).
\]
Elimination; undirected graphs

\[p(x_1, \bar{x}_6) = \frac{1}{Z} \sum_{x_2} \sum_{x_3} \sum_{x_4} \sum_{x_5} \sum_{x_6} \psi(x_1, x_2) \psi(x_1, x_3) \psi(x_2, x_4) \psi(x_3, x_5) \psi(x_2, x_5, x_6) \delta(x_6, \bar{x}_6) \]

\[= \frac{1}{Z} \sum_{x_2} \sum_{x_3} \sum_{x_4} \sum_{x_5} \sum_{x_6} \psi(x_1, x_2) \psi(x_1, x_3) \psi(x_2, x_4) \psi(x_3, x_5) \psi(x_2, x_5, x_6) \delta(x_6, \bar{x}_6) \]

\[= \frac{1}{Z} \sum_{x_2} \sum_{x_3} \sum_{x_4} \sum_{x_5} \sum_{x_6} \psi(x_1, x_2) \psi(x_1, x_3) \psi(x_2, x_4) \psi(x_3, x_5) m_6(x_2, x_5) \]

\[= \frac{1}{Z} \sum_{x_2} \sum_{x_3} \sum_{x_4} \psi(x_1, x_2) \psi(x_1, x_3) m_5(x_2, x_3) \psi(x_2, x_4) \]

\[= \frac{1}{Z} \sum_{x_2} \psi(x_1, x_2) m_4(x_2) \sum_{x_3} \psi(x_1, x_3) m_5(x_2, x_3) \]

\[= \frac{1}{Z} \sum_{x_2} \psi(x_1, x_2) m_4(x_2) m_3(x_1, x_2) \]

\[= \frac{1}{Z} m_2(x_1). \]

\[p(\bar{x}_6) = \frac{1}{Z} \sum_{x_1} m_2(x_1), \]

\[p(x_1 | \bar{x}_6) = \frac{m_2(x_1)}{\sum_{x_1} m_2(x_1)}, \quad \text{<-- No Z!} \]
A graph-theoretic view of elimination

- Till now, we have seen an algebraic view of probabilistic inference, using factorizations to simplify calculations

- How does this play out graph-theoretically?
A graph-theoretic view of elimination

\text{UNDIRECTED\textsc{GraphEliminate}}(G, I)
\begin{align*}
&\text{for each node } X_i \text{ in } I \\
&\quad \text{connect all of the remaining neighbors of } X_i \\
&\quad \text{remove } X_i \text{ from the graph} \\
&\text{end}
\end{align*}
A graph-theoretic view of elimination

\textbf{UNDIRECTEDGRAPHELIMINATE}(G, I)

\textbf{for} each node \(X_i \) in \(I \)
\hspace{1em} connect all of the remaining neighbors of \(X_i \)
\hspace{1em} remove \(X_i \) from the graph
\textbf{end}
A graph-theoretic view of elimination

```
UNDIRECTEDGRAPHELIMINATE(G, I)
  for each node X_i in I
    connect all of the remaining neighbors of X_i
    remove X_i from the graph
  end
```

(a)

(b)
A graph-theoretic view of elimination

\textsc{UndirectedGraphEliminate}(G, I)

\textbf{for} each node X_i in I

\hspace{1em} connect all of the remaining neighbors of X_i

\hspace{1em} remove X_i from the graph

\textbf{end}
A graph-theoretic view of elimination

\textsc{UndirectedGraphEliminate}(G, I)
 \textbf{for} each node X_i in I
 \textbf{connect} all of the remaining neighbors of X_i
 \textbf{remove} X_i from the graph
\textbf{end}

\begin{center}
\includegraphics[width=\textwidth]{graph_elimination.png}
\end{center}
A graph-theoretic view of elimination

\textbf{UNDIRECTEDGRAPHELIMINATE}(G, I)
\begin{itemize}
 \item [\textbf{for}] each node \(X_i \) in \(I \)
 \begin{itemize}
 \item connect all of the remaining neighbors of \(X_i \)
 \item remove \(X_i \) from the graph
 \end{itemize}
\end{itemize}
A graph-theoretic view of elimination

UNDIRECTEDGRAPHELIMINATE(\(G, I\))

for each node \(X_i\) in \(I\)

connect all of the remaining neighbors of \(X_i\)

remove \(X_i\) from the graph

end
A graph-theoretic view of elimination

UNDIRECTEDGRAPHELIMINATE(\(G, I\))

for each node \(X_i\) in \(I\)

connect all of the remaining neighbors of \(X_i\)

remove \(X_i\) from the graph

end
A graph-theoretic view of elimination

Reconstituted Graph

- Elimination Cliques: when you remove a node, the set of nodes neighboring it, including node itself; denote by T_i
- Example: $T_6 = \{2, 5, 6\}$, and $T_5 = \{2, 3, 5\}$
Graph Elimination and Marginalization

Proposition: Elimination Cliques in **UNDIRECTED** **GRAPH** **ELIMINATE** correspond to sets of variables on which summations operate in **ELIMINATE**.
Computational Complexity

• Given previous proposition, computational complexity depends on a purely graph-theoretic quantity: the size of the largest elimination clique created by UNDIRECTEDGRAPHELIMINATE
Computational Complexity

- Given previous proposition, computational complexity depends on a purely graph-theoretic quantity: the size of the largest elimination clique created by `UNDIRECTEDGRAPHELIMINATE`.

- Note that the largest such clique depends on the elimination ordering; we want the minimum over all possible orderings (since the ordering is under our control).

 - A well-studied problem in graph-theory

 - Tree-width: one minus the size of the smallest achievable largest elimination clique (ranging over all elimination orderings)

 - But NP-hard to find this best possible elimination ordering
Treewidth

One!
Treewidth

One!

Two
Graph Elimination; Directed Graphs

DirectedGraphEliminate(G, I)

\[G^m = \text{Moralize}(G) \]

UndirectedGraphEliminate(\(G^m\), I)

Moralize(G)

for each node \(X_i\) in I

- connect all of the parents of \(X_i\)

end

drop the orientation of all edges

return \(G\)
Graph Elimination; Directed Graphs

\textsc{DirectedGraphEliminate}(G, I)
\begin{align*}
G^m &= \textsc{Moralize}(G) \\
\textsc{UndirectedGraphEliminate}(G^m, I)
\end{align*}

\textsc{Moralize}(G)
\begin{algorithm}
\textbf{for} each node X_i in I
\begin{algorithm}
connect all of the parents of X_i
\end{algorithm}
\textbf{end}
\end{algorithm}
drop the orientation of all edges
return G

Graph Elimination; Directed Graphs

\[
\text{DirectedGraphEliminate}(G, I)
\]
\[
G^m = \text{Moralize}(G)
\]
\[
\text{UndirectedGraphEliminate}(G^m, I)
\]

\[
\text{Moralize}(G)
\]

\[
\text{for each node } X_i \text{ in } I
\]
\[
\text{connect all of the parents of } X_i
\]
\[
\text{end}
\]

\[
drop \text{ the orientation of all edges}
\]

\[
\text{return } G
\]

![Directed Graph](image1)

![Moralized Graph](image2)