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Topics	in	Graphical	Models
• Representation

• Which	joint	probability	distributions	does	a	graphical	model	
represent?

• Inference
• How	to	answer	questions	about	the	joint	probability	
distribution?
• Marginal	distribution	of	a	node	variable
• Most	likely	assignment	of	node	variables

• Learning
• How	to	learn	the	parameters	and	structure	of	a	graphical	model?
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Inference

• Possible	queries:
1)	 Marginal	distribution	e.g.	P(S)
Posterior	distribution	e.g.	P(F|H=1)

2) Most	likely	assignment	of	nodes
arg max	P(F=f,A=a,S=s,N=n|H=1)
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f,a,s,n



Inference

• Possible	queries:
1) Marginal	distribution	e.g.	P(S)
Posterior	distribution	e.g.	P(F|H=1)

Flu Allergy

Sinus

Headache Nose

P(F|H=1)	?

P(F|H=1)	=

=	

∝ P(F,	H=1) will	focus	on	computing	this,	posterior	will	
follow	with	only	constant	times	more	effort

P(F,	H=1)
P(H=1)

P(F,	H=1)
∑	P(F=f,	H=1)
f



Marginalization

Need	to	marginalize	over	other	vars

P(S)	=	∑ P(f,a,S,n,h)

P(F,H=1)	=	∑	P(F,a,s,n,H=1)

To	marginalize	out	n	binary	variables,
need	to	sum	over	2n terms

Flu Allergy

Sinus

Headache Nose
a,s,n

f,a,n,h

23 terms

Inference	seems	exponential	in	number	of	variables!
Actually,	inference	in	graphical	models	is	NP-hard	L



Bayesian	Networks	Example
• 18	binary	attributes

• Inference	
• P(BatteryAge|Starts=f)

• need	to	sum	over	216 terms!
• Not	impressed?
• HailFinder BN	– more	
than	354 =	
58149737003040059690
390169	terms



Fast	Probabilistic	Inference

Flu Allergy

Sinus

Headache Nose

P(F,H=1)	=	∑	P(F,a,s,n,H=1)

=	∑	P(F)P(a)P(s|F,a)P(n|s)P(H=1|s)

=	P(F)	∑	P(a)	∑	P(s|F,a)P(H=1|s)	∑	P(n|s)

Push	sums	in	as	far	as	possible	

Distributive	property:				x1z	+	x2z	=	z(x1+x2)	

a,s,n

na s

a,s,n

2	multiply										1	mulitply



Fast	Probabilistic	Inference

Flu Allergy

Sinus

Headache Nose

(Potential	for)	exponential	reduction	in	computation!

P(F,H=1)	=	∑	P(F,a,s,n,H=1)

=	∑	P(F)P(a)P(s|F,a)P(n|s)P(H=1|s)

=	P(F)	∑	P(a)	∑	P(s|F,a)P(H=1|s)	∑	P(n|s)

=	P(F)	∑	P(a)	∑	P(s|F,a)P(H=1|s)

=	P(F)	∑	P(a)	g1(F,a)

=	P(F)	g2(F)

a,s,n

na s

a,s,n

8	values	x	4	multiplies

4	values	x	1	multiply

1

2	values	x	1	multiply

a s

a

1	multiply

32	multiplies	vs. 7	multiplies
2p vs. p	2k

k	– scope	of	largest	factor



Variable	Elimination	– Order	can	make	a	
HUGE	difference

Flu Allergy

Sinus

Headache Nose

P(F,H=1)	=	∑	P(F)P(a)P(s|F,a)P(n|s)P(H=1|s)

=	P(F)	∑	P(a)	∑	P(s|F,a)P(H=1|s)	∑	P(n|s)

P(F,H=1)	=	P(F)	∑	P(a)	∑	∑	P(s|F,a)P(n|s)P(H=1|s)

g(F,s,a,n)

a,s,n

na s

1

sa n

3	– scope	of	largest	factor

g1(F,a,s)

g2(F,a)

g3(F)



Variable	Elimination	– Order	can	make	a	
HUGE	difference

X1 X2 X3 X4

Y

g(Y)
1	– scope	of	
largest	factor

g(Y,	X1,X2,..,Xn)
n+1 – scope	of	
largest	factor



Variable	Elimination	Algorithm
• Given	BN	– set	initial	factors	p(xi|pai)	for	i=1,..,n)
• Given	Query	P(X|e)	≡	P(X,e)	 X	– set	of	variables
• Instantiate	evidence	e			e.g.	set	H=1	in	previous	example

• Choose	an	ordering	on	the	variables	e.g.,	X1,	…,	Xn
• For	i =	1	to	n,	If	Xi ∉{X,e}
• Collect	factors	g1,…,gk that	include	Xi
• Generate	a	new	factor	by	eliminating	Xi from	these	factors

• Variable	Xi has	been	eliminated!
• Remove	g1,…,gk from	set	of	factors	but	add	g

• Normalize	P(X,	e)	to	obtain	P(X|e)



Inference

• Possible	queries:
2) Most	likely	assignment	of	nodes
arg max	P(F=f,A=a,S=s,N=n|H=1)

Use	Distributive	property:				
max(x1z,	x2z)	=	z	max(x1,x2)	

Flu Allergy

Sinus

Headache Nose

f,a,s,n

2	multiply						1	mulitply



Variable Elimination: Directed Graphs
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Variable Elimination: Directed Graphs

1X
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3X

X 4

X 5

X6

X

Y

X

Y

X

Y

(a) (b) (c)

Reduced the count from O(k6) to O(k3) (actually we know the sum here is equal
to one, but assume we didn’t know that)
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Variable Elimination: Directed Graphs
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We denote by mi(Si) the expression after computing
P

xi
with Si the index of

variables, other than i that appear in the summand
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Variable Elimination: undirected graphs

1X
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X 4
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• Potentials { C(xC)} on the cliques {X1, X2}, {X1, X3}, {X2, X4}, {X3, X5},
and {X2, X5, X6}.
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Elimination; undirected graphs

1X

2X

3X

X 4

X 5

X6

<--- No Z!



A graph-theoretic view of elimination

• Till now, we have seen an algebraic view of probabilistic inference, using 
factorizations to simplify calculations


• How does this play out graph-theoretically?



A graph-theoretic view of elimination
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Reconstituted Graph 

• Elimination Cliques: when you remove a node, the set of nodes neighbor-
ing it, including node itself; denote by Ti

• Example: T6 = {2, 5, 6}, and T5 = {2, 3, 5}



Graph Elimination and Marginalization

Proposition: Elimination Cliques in UndirectedGraphEliminate corre-
spond to sets of variables on which summations operate in Eliminate.

• Consider Ti and the function �i(xTi) in Eliminate, which is the summand
to

P
xi

• Consider any variable xj referenced by �i(xTi). We are done if we show
that Xi and Xj are neighbors in graph by UndirectedGraphElimi-
nate. Consider the two cases of the potential linking Xi and Xj :

I If original clique potential, then Xj is necessarily linked to Xi

II If Xi, Xj co-appear because of intermediate factor mk(XSk), then this
factor was created by eliminating Xk. At that moment, Undirected-
GraphEliminate must have linked Xi and Xj



Computational Complexity

• Given previous proposition, computational complexity depends on a purely 
graph-theoretic quantity: the size of the largest elimination clique created by 
UNDIRECTEDGRAPHELIMINATE



Computational Complexity

• Given previous proposition, computational complexity depends on a purely 
graph-theoretic quantity: the size of the largest elimination clique created by 
UNDIRECTEDGRAPHELIMINATE

• Note that the largest such clique depends on the elimination ordering;  
we want the minimum over all possible orderings (since the ordering is under 
our control)


‣ A well-studied problem in graph-theory


‣ Tree-width: one minus the size of the smallest achievable largest 
elimination clique (ranging over all elimination orderings)


‣ But NP-hard to find this best possible elimination ordering



Treewidth

(a) (b)

One!



Treewidth
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One! Two
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