Graphical Models: Inference

Pradeep Ravikumar

Co-Instructor: Ziv Bar-Joseph

Machine Learning 10-701

Topics in Graphical Models

- Representation
- Which joint probability distributions does a graphical model represent?
- Inference
- How to answer questions about the joint probability distribution?
- Marginal distribution of a node variable
- Most likely assignment of node variables
- Learning
- How to learn the parameters and structure of a graphical model?

Topics in Graphical Models

- Representation
- Which joint probability distributions does a graphical model represent?
- Inference
- How to answer questions about the joint probability distribution?
- Marginal distribution of a node variable
- Most likely assignment of node variables
- Learning
- How to learn the parameters and structure of a graphical model?

Inference

- Possible queries:

1) Marginal distribution e.g. $P(S)$

Posterior distribution e.g. $\mathrm{P}(\mathrm{F} \mid \mathrm{H}=1)$
2) Most likely assignment of nodes
$\arg \max P(F=f, A=a, S=s, N=n \mid H=1)$
f,a,s,n

Inference

- Possible queries:

1) Marginal distribution e.g. $P(S)$

Posterior distribution e.g. $\mathrm{P}(\mathrm{F} \mid \mathrm{H}=1)$

$$
\begin{aligned}
& P(F \mid H=1) ? \\
& P(F \mid H=1)=\frac{P(F, H=1)}{P(H=1)} \\
&=\frac{P(F, H=1)}{\sum_{f}^{P(F=f, H=1)}}
\end{aligned}
$$

$$
\propto P(F, H=1) \quad \text { will focus on computing this, posterior will }
$$

follow with only constant times more effort

Marginalization

Need to marginalize over other vars

$$
\begin{aligned}
& P(S)=\sum_{f, a, n, h}^{\sum P(f, a, S, n, h)} \\
& P(F, H=1) \\
& =\underbrace{\sum_{i, s, n}^{a} P(F, a, s, n, H=1)}_{2^{3} \text { terms }}
\end{aligned}
$$

To marginalize out n binary variables, need to sum over 2^{n} terms

Inference seems exponential in number of variables!
Actually, inference in graphical models is NP-hard $:$

Bayesian Networks Example

- 18 binary attributes
- Inference
- P(BatteryAge|Starts=f)
- need to sum over 2^{16} terms!
- Not impressed?
- HailFinder BN - more than $3^{54}=$ 58149737003040059690 390169 terms

Fast Probabilistic Inference

$$
\begin{aligned}
P(F, H=1) & =\sum_{a, s, n} P(F, a, s, n, H=1) \\
& =\sum_{a, s, n} P(F) P(a) P(s \mid F, a) P(n \mid s) P(H=1 \mid s) \\
& =P(F) \sum_{a} P(a) \sum_{s} P(s \mid F, a) P(H=1 \mid s) \sum_{n} P(n \mid s)
\end{aligned}
$$

Push sums in as far as possible

Distributive property: $\quad x_{1} z+x_{2} z=z\left(x_{1}+x_{2}\right)$

$$
2 \text { multiply } \quad 1 \text { mulitply }
$$

Fast Probabilistic Inference

$$
\begin{aligned}
& P(F, H=1)=\sum_{a, s, n} P(F, a, s, n, H=1) \\
& a, s, n \\
& =\sum_{a, s, n} P(F) P(a) P(s \mid F, a) P(n \mid s) P(H=1 \mid s) \\
& =P(F) \sum_{a} P(a) \sum_{s} P(s \mid F, a) P(H=1 \mid s) \sum_{D} P(h \mid s) \\
& =P(F) \sum_{a} P(a) \sum_{s} P(s \mid F, a) P(H=1 \mid s) \\
& =P(F) \sum_{a} P(a) g_{1}(F, a) \\
& 2 \text { values x } 1 \text { multiply } \\
& =P(F) g_{2}(F) \\
& 1 \text { multiply }
\end{aligned}
$$

(Potential for) exponential reduction in computation!

Variable Elimination - Order can make a HUGE difference

Variable Elimination - Order can make a HUGE difference

$$
\left.\begin{array}{rl}
P\left(X_{1}\right) & =\sum_{Y, X_{2}, \ldots, X_{n}} P(Y) P\left(X_{1} \mid Y\right) \prod_{i=2}^{n} P\left(X_{i} \mid Y\right) \\
& =\sum_{Y, X_{3}, \ldots, X_{n}} P(Y) P\left(X_{1} \mid Y\right) \prod_{i=3}^{n} P\left(X_{i} \mid Y\right) \underbrace{}_{\mathrm{X}} \sum_{\mathrm{X}(\mathrm{Y})} P\left(X_{2} \mid Y\right)
\end{array} \quad \begin{array}{l}
\text { 1-scope of } \\
\text { largest factor }
\end{array}\right] \begin{aligned}
& \mathrm{g}\left(\mathrm{Y}, \mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}\right)
\end{aligned} \quad \begin{aligned}
& \text { n+1 - scope of } \\
& \text { largest factor }
\end{aligned}
$$

Variable Elimination Algorithm

- Given $B N$ - set initial factors $p\left(x_{i} \mid p a_{i}\right)$ for $\left.i=1, . ., n\right)$
- Given Query $P(X \mid e) \equiv P(X, e) \quad X$ - set of variables
- Instantiate evidence e e.g. set $\mathrm{H}=1$ in previous example
- Choose an ordering on the variables e.g., $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$
- For $i=1$ to n, If $X_{i} \notin\{X, e\}$
- Collect factors $\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{k}}$ that include X_{i}
- Generate a new factor by eliminating X_{i} from these factors

$$
g=\sum_{X_{i}} \prod_{j=1}^{n} g_{j}
$$

- Variable X_{i} has been eliminated!
- Remove g_{1}, \ldots, g_{k} from set of factors but add g
- Normalize $P(X, e)$ to obtain $P(X \mid e)$

Inference

- Possible queries:

2) Most likely assignment of nodes $\arg \max P(F=f, A=a, S=s, N=n \mid H=1)$ $\mathrm{f}, \mathrm{a}, \mathrm{s}, \mathrm{n}$

Use Distributive property:
 $\max \left(x_{1} z, x_{2} z\right)=z \max \left(x_{1}, x_{2}\right)$

2 multiply 1 mulitply

Variable Elimination: Directed Graphs

Variable Elimination: Directed Graphs

$$
\begin{aligned}
p\left(x_{1}, x_{2}, \ldots, x_{5}\right) & =\sum_{x_{6}} p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}\right) p\left(x_{4} \mid x_{2}\right) p\left(x_{5} \mid x_{3}\right) p\left(x_{6} \mid x_{2}, x_{5}\right) \\
& =p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}\right) p\left(x_{4} \mid x_{2}\right) p\left(x_{5} \mid x_{3}\right) \sum_{x_{6}} p\left(x_{6} \mid x_{2}, x_{5}\right)
\end{aligned}
$$

Variable Elimination: Directed Graphs

$$
\begin{aligned}
p\left(x_{1}, x_{2}, \ldots, x_{5}\right) & =\sum_{x_{6}} p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}\right) p\left(x_{4} \mid x_{2}\right) p\left(x_{5} \mid x_{3}\right) p\left(x_{6} \mid x_{2}, x_{5}\right) \\
& =p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}\right) p\left(x_{4} \mid x_{2}\right) p\left(x_{5} \mid x_{3}\right) \sum_{x_{6}} p\left(x_{6} \mid x_{2}, x_{5}\right)
\end{aligned}
$$

Reduced the count from $O\left(k^{6}\right)$ to $O\left(k^{3}\right)$ (actually we know the sum here is equal to one, but assume we didn't know that)

Variable Elimination: Directed Graphs

Variable Elimination: Directed Graphs

$$
\begin{aligned}
p\left(x_{1}, \bar{x}_{6}\right) & =\sum_{x_{2}} \sum_{x_{3}} \sum_{x_{4}} \sum_{x_{5}} p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}\right) p\left(x_{4} \mid x_{2}\right) p\left(x_{5} \mid x_{3}\right) p\left(\bar{x}_{6} \mid x_{2}, x_{5}\right) \\
& =p\left(x_{1}\right) \sum_{x_{2}} p\left(x_{2} \mid x_{1}\right) \sum_{x_{3}} p\left(x_{3} \mid x_{1}\right) \sum_{x_{4}} p\left(x_{4} \mid x_{2}\right) \sum_{x_{5}} p\left(x_{5} \mid x_{3}\right) p\left(\bar{x}_{6} \mid x_{2}, x_{5}\right)
\end{aligned}
$$

Variable Elimination: Directed Graphs

$$
\begin{aligned}
p\left(x_{1}, \bar{x}_{6}\right) & =\sum_{x_{2}} \sum_{x_{3}} \sum_{x_{4}} \sum_{x_{5}} p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}\right) p\left(x_{4} \mid x_{2}\right) p\left(x_{5} \mid x_{3}\right) p\left(\bar{x}_{6} \mid x_{2}, x_{5}\right) \\
& =p\left(x_{1}\right) \sum_{x_{2}} p\left(x_{2} \mid x_{1}\right) \sum_{x_{3}} p\left(x_{3} \mid x_{1}\right) \sum_{x_{4}} p\left(x_{4} \mid x_{2}\right) \sum_{x_{5}} p\left(x_{5} \mid x_{3}\right) p\left(\bar{x}_{6} \mid x_{2}, x_{5}\right) \\
& =p\left(x_{1}\right) \sum_{x_{2}} p\left(x_{2} \mid x_{1}\right) \sum_{x_{3}} p\left(x_{3} \mid x_{1}\right) \sum_{x_{4}} p\left(x_{4} \mid x_{2}\right) m_{5}\left(x_{2}, x_{3}\right)
\end{aligned}
$$

where we define $m_{5}\left(x_{2}, x_{3}\right) \triangleq \sum_{x_{5}} p\left(x_{5} \mid x_{3}\right) p\left(\bar{x}_{6} \mid x_{2}, x_{5}\right)$.

Variable Elimination: Directed Graphs

Variable Elimination: Directed Graphs

We denote by $m_{i}\left(S_{i}\right)$ the expression after computing $\sum_{x_{i}}$ with S_{i} the index of variables, other than i that appear in the summand

Variable Elimination: Directed Graphs

Variable Elimination: Directed Graphs

$$
\begin{aligned}
p\left(x_{1}, \bar{x}_{6}\right) & =p\left(x_{1}\right) \sum_{x_{2}} p\left(x_{2} \mid x_{1}\right) m_{4}\left(x_{2}\right) m_{3}\left(x_{1}, x_{2}\right) \\
& =p\left(x_{1}\right) m_{2}\left(x_{1}\right)
\end{aligned}
$$

$$
p\left(\bar{x}_{6}\right)=\sum_{x_{1}} p\left(x_{1}\right) m_{2}\left(x_{1}\right)
$$

$$
p\left(x_{1} \mid \bar{x}_{6}\right)=\frac{p\left(x_{1}\right) m_{2}\left(x_{1}\right)}{\sum_{x_{1}} p\left(x_{1}\right) m_{2}\left(x_{1}\right)} .
$$

Variable Elimination: undirected graphs

- Potentials $\left\{\psi_{C}\left(x_{C}\right)\right\}$ on the cliques $\left\{X_{1}, X_{2}\right\},\left\{X_{1}, X_{3}\right\},\left\{X_{2}, X_{4}\right\},\left\{X_{3}, X_{5}\right\}$, and $\left\{X_{2}, X_{5}, X_{6}\right\}$.

Elimination; undirected graphs

$$
\begin{aligned}
p\left(x_{1}, \bar{x}_{6}\right) & =\frac{1}{Z} \sum_{x_{2}} \sum_{x_{3}} \sum_{x_{4}} \sum_{x_{5}} \sum_{x_{6}} \psi\left(x_{1}, x_{2}\right) \psi\left(x_{1}, x_{3}\right) \psi\left(x_{2}, x_{4}\right) \psi\left(x_{3}, x_{5}\right) \psi\left(x_{2}, x_{5}, x_{6}\right) \delta\left(x_{6}, \bar{x}_{6}\right) \\
& =\frac{1}{Z} \sum_{x_{2}} \psi\left(x_{1}, x_{2}\right) \sum_{x_{3}} \psi\left(x_{1}, x_{3}\right) \sum_{x_{4}} \psi\left(x_{2}, x_{4}\right) \sum_{x_{5}} \psi\left(x_{3}, x_{5}\right) \sum_{x_{6}} \psi\left(x_{2}, x_{5}, x_{6}\right) \delta\left(x_{6}, \bar{x}_{6}\right)
\end{aligned}
$$

Elimination; undirected graphs

$$
\begin{aligned}
p\left(x_{1}, \bar{x}_{6}\right) & =\frac{1}{Z} \sum_{x_{2}} \sum_{x_{3}} \sum_{x_{4}} \sum_{x_{5}} \sum_{x_{6}} \psi\left(x_{1}, x_{2}\right) \psi\left(x_{1}, x_{3}\right) \psi\left(x_{2}, x_{4}\right) \psi\left(x_{3}, x_{5}\right) \psi\left(x_{2}, x_{5}, x_{6}\right) \delta\left(x_{6}, \bar{x}_{6}\right) \\
& =\frac{1}{Z} \sum_{x_{2}} \psi\left(x_{1}, x_{2}\right) \sum_{x_{3}} \psi\left(x_{1}, x_{3}\right) \sum_{x_{4}} \psi\left(x_{2}, x_{4}\right) \sum_{x_{5}} \psi\left(x_{3}, x_{5}\right) \sum_{x_{6}} \psi\left(x_{2}, x_{5}, x_{6}\right) \delta\left(x_{6}, \bar{x}_{6}\right) \\
& =\frac{1}{Z} \sum_{x_{2}} \psi\left(x_{1}, x_{2}\right) \sum_{x_{3}} \psi\left(x_{1}, x_{3}\right) \sum_{x_{4}} \psi\left(x_{2}, x_{4}\right) \sum_{x_{5}} \psi\left(x_{3}, x_{5}\right) m_{6}\left(x_{2}, x_{5}\right)
\end{aligned}
$$

Elimination; undirected graphs

$$
\begin{aligned}
p\left(x_{1}, \bar{x}_{6}\right) & =\frac{1}{Z} \sum_{x_{2}} \sum_{x_{3}} \sum_{x_{4}} \sum_{x_{5}} \sum_{x_{6}} \psi\left(x_{1}, x_{2}\right) \psi\left(x_{1}, x_{3}\right) \psi\left(x_{2}, x_{4}\right) \psi\left(x_{3}, x_{5}\right) \psi\left(x_{2}, x_{5}, x_{6}\right) \delta\left(x_{6}, \bar{x}_{6}\right) \\
& =\frac{1}{Z} \sum_{x_{2}} \psi\left(x_{1}, x_{2}\right) \sum_{x_{3}} \psi\left(x_{1}, x_{3}\right) \sum_{x_{4}} \psi\left(x_{2}, x_{4}\right) \sum_{x_{5}} \psi\left(x_{3}, x_{5}\right) \sum_{x_{6}} \psi\left(x_{2}, x_{5}, x_{6}\right) \delta\left(x_{6}, \bar{x}_{6}\right) \\
& =\frac{1}{Z} \sum_{x_{2}} \psi\left(x_{1}, x_{2}\right) \sum_{x_{3}} \psi\left(x_{1}, x_{3}\right) \sum_{x_{4}} \psi\left(x_{2}, x_{4}\right) \sum_{x_{5}} \psi\left(x_{3}, x_{5}\right) m_{6}\left(x_{2}, x_{5}\right) \\
& =\frac{1}{Z} \sum_{x_{2}} \psi\left(x_{1}, x_{2}\right) \sum_{x_{3}} \psi\left(x_{1}, x_{3}\right) m_{5}\left(x_{2}, x_{3}\right) \sum_{x_{4}} \psi\left(x_{2}, x_{4}\right)
\end{aligned}
$$

Elimination; undirected graphs

$$
\begin{aligned}
p\left(x_{1}, \bar{x}_{6}\right) & =\frac{1}{Z} \sum_{x_{2}} \sum_{x_{3}} \sum_{x_{4}} \sum_{x_{5}} \sum_{x_{6}} \psi\left(x_{1}, x_{2}\right) \psi\left(x_{1}, x_{3}\right) \psi\left(x_{2}, x_{4}\right) \psi\left(x_{3}, x_{5}\right) \psi\left(x_{2}, x_{5}, x_{6}\right) \delta\left(x_{6}, \bar{x}_{6}\right) \\
& =\frac{1}{Z} \sum_{x_{2}} \psi\left(x_{1}, x_{2}\right) \sum_{x_{3}} \psi\left(x_{1}, x_{3}\right) \sum_{x_{4}} \psi\left(x_{2}, x_{4}\right) \sum_{x_{5}} \psi\left(x_{3}, x_{5}\right) \sum_{x_{6}} \psi\left(x_{2}, x_{5}, x_{6}\right) \delta\left(x_{6}, \bar{x}_{6}\right) \\
& =\frac{1}{Z} \sum_{x_{2}} \psi\left(x_{1}, x_{2}\right) \sum_{x_{3}} \psi\left(x_{1}, x_{3}\right) \sum_{x_{4}} \psi\left(x_{2}, x_{4}\right) \sum_{x_{5}} \psi\left(x_{3}, x_{5}\right) m_{6}\left(x_{2}, x_{5}\right) \\
& =\frac{1}{Z} \sum_{x_{2}} \psi\left(x_{1}, x_{2}\right) \sum_{x_{3}} \psi\left(x_{1}, x_{3}\right) m_{5}\left(x_{2}, x_{3}\right) \sum_{x_{4}} \psi\left(x_{2}, x_{4}\right) \\
& =\frac{1}{Z} \sum_{x_{2}} \psi\left(x_{1}, x_{2}\right) m_{4}\left(x_{2}\right) \sum_{x_{3}} \psi\left(x_{1}, x_{3}\right) m_{5}\left(x_{2}, x_{3}\right)
\end{aligned}
$$

Elimination; undirected graphs

$$
\begin{aligned}
p\left(x_{1}, \bar{x}_{6}\right) & =\frac{1}{Z} \sum_{x_{2}} \sum_{x_{3}} \sum_{x_{4}} \sum_{x_{5}} \sum_{x_{6}} \psi\left(x_{1}, x_{2}\right) \psi\left(x_{1}, x_{3}\right) \psi\left(x_{2}, x_{4}\right) \psi\left(x_{3}, x_{5}\right) \psi\left(x_{2}, x_{5}, x_{6}\right) \delta\left(x_{6}, \bar{x}_{6}\right) \\
& =\frac{1}{Z} \sum_{x_{2}} \psi\left(x_{1}, x_{2}\right) \sum_{x_{3}} \psi\left(x_{1}, x_{3}\right) \sum_{x_{4}} \psi\left(x_{2}, x_{4}\right) \sum_{x_{5}} \psi\left(x_{3}, x_{5}\right) \sum_{x_{6}} \psi\left(x_{2}, x_{5}, x_{6}\right) \delta\left(x_{6}, \bar{x}_{6}\right) \\
& =\frac{1}{Z} \sum_{x_{2}} \psi\left(x_{1}, x_{2}\right) \sum_{x_{3}} \psi\left(x_{1}, x_{3}\right) \sum_{x_{4}} \psi\left(x_{2}, x_{4}\right) \sum_{x_{5}} \psi\left(x_{3}, x_{5}\right) m_{6}\left(x_{2}, x_{5}\right) \\
& =\frac{1}{Z} \sum_{x_{2}} \psi\left(x_{1}, x_{2}\right) \sum_{x_{3}} \psi\left(x_{1}, x_{3}\right) m_{5}\left(x_{2}, x_{3}\right) \sum_{x_{4}} \psi\left(x_{2}, x_{4}\right) \\
& =\frac{1}{Z} \sum_{x_{2}} \psi\left(x_{1}, x_{2}\right) m_{4}\left(x_{2}\right) \sum_{x_{3}} \psi\left(x_{1}, x_{3}\right) m_{5}\left(x_{2}, x_{3}\right) \\
& =\frac{1}{Z} \sum_{x_{2}} \psi\left(x_{1}, x_{2}\right) m_{4}\left(x_{2}\right) m_{3}\left(x_{1}, x_{2}\right)
\end{aligned}
$$

Elimination; undirected graphs

$$
\begin{aligned}
p\left(x_{1}, \bar{x}_{6}\right) & =\frac{1}{Z} \sum_{x_{2}} \sum_{x_{3}} \sum_{x_{4}} \sum_{x_{5}} \sum_{x_{6}} \psi\left(x_{1}, x_{2}\right) \psi\left(x_{1}, x_{3}\right) \psi\left(x_{2}, x_{4}\right) \psi\left(x_{3}, x_{5}\right) \psi\left(x_{2}, x_{5}, x_{6}\right) \delta\left(x_{6}, \bar{x}_{6}\right) \\
& =\frac{1}{Z} \sum_{x_{2}} \psi\left(x_{1}, x_{2}\right) \sum_{x_{3}} \psi\left(x_{1}, x_{3}\right) \sum_{x_{4}} \psi\left(x_{2}, x_{4}\right) \sum_{x_{5}} \psi\left(x_{3}, x_{5}\right) \sum_{x_{6}} \psi\left(x_{2}, x_{5}, x_{6}\right) \delta\left(x_{6}, \bar{x}_{6}\right) \\
& =\frac{1}{Z} \sum_{x_{2}} \psi\left(x_{1}, x_{2}\right) \sum_{x_{3}} \psi\left(x_{1}, x_{3}\right) \sum_{x_{4}} \psi\left(x_{2}, x_{4}\right) \sum_{x_{5}} \psi\left(x_{3}, x_{5}\right) m_{6}\left(x_{2}, x_{5}\right) \\
& =\frac{1}{Z} \sum_{x_{2}} \psi\left(x_{1}, x_{2}\right) \sum_{x_{3}} \psi\left(x_{1}, x_{3}\right) m_{5}\left(x_{2}, x_{3}\right) \sum_{x_{4}} \psi\left(x_{2}, x_{4}\right) \\
& =\frac{1}{Z} \sum_{x_{2}} \psi\left(x_{1}, x_{2}\right) m_{4}\left(x_{2}\right) \sum_{x_{3}} \psi\left(x_{1}, x_{3}\right) m_{5}\left(x_{2}, x_{3}\right) \\
& =\frac{1}{Z} \sum_{x_{2}} \psi\left(x_{1}, x_{2}\right) m_{4}\left(x_{2}\right) m_{3}\left(x_{1}, x_{2}\right) \\
& =\frac{1}{Z} m_{2}\left(x_{1}\right) .
\end{aligned}
$$

Elimination; undirected graphs

$$
\begin{aligned}
& p\left(x_{1}, \bar{x}_{6}\right)= \frac{1}{Z} \sum_{x_{2}} \sum_{x_{3}} \sum_{x_{4}} \sum_{x_{5}} \sum_{x_{6}} \psi\left(x_{1}, x_{2}\right) \psi\left(x_{1}, x_{3}\right) \psi\left(x_{2}, x_{4}\right) \psi\left(x_{3}, x_{5}\right) \psi\left(x_{2}, x_{5}, x_{6}\right) \delta\left(x_{6}, \bar{x}_{6}\right) \\
&= \frac{1}{Z} \sum_{x_{2}} \psi\left(x_{1}, x_{2}\right) \sum_{x_{3}} \psi\left(x_{1}, x_{3}\right) \sum_{x_{4}} \psi\left(x_{2}, x_{4}\right) \sum_{x_{5}} \psi\left(x_{3}, x_{5}\right) \sum_{x_{6}} \psi\left(x_{2}, x_{5}, x_{6}\right) \delta\left(x_{6}, \bar{x}_{6}\right) \\
&= \frac{1}{Z} \sum_{x_{2}} \psi\left(x_{1}, x_{2}\right) \sum_{x_{3}} \psi\left(x_{1}, x_{3}\right) \sum_{x_{4}} \psi\left(x_{2}, x_{4}\right) \sum_{x_{5}} \psi\left(x_{3}, x_{5}\right) m_{6}\left(x_{2}, x_{5}\right) \\
&= \frac{1}{Z} \sum_{x_{2}} \psi\left(x_{1}, x_{2}\right) \sum_{x_{3}} \psi\left(x_{1}, x_{3}\right) m_{5}\left(x_{2}, x_{3}\right) \sum_{x_{4}} \psi\left(x_{2}, x_{4}\right) \\
&= \frac{1}{Z} \sum_{x_{2}} \psi\left(x_{1}, x_{2}\right) m_{4}\left(x_{2}\right) \sum_{x_{3}} \psi\left(x_{1}, x_{3}\right) m_{5}\left(x_{2}, x_{3}\right) \\
&= \frac{1}{Z} \sum_{x_{2}} \psi\left(x_{1}, x_{2}\right) m_{4}\left(x_{2}\right) m_{3}\left(x_{1}, x_{2}\right) \\
&= \frac{1}{Z} m_{2}\left(x_{1}\right) . \\
& \quad p\left(\bar{x}_{6}\right)=\frac{1}{Z} \sum_{x_{1}} m_{2}\left(x_{1}\right), \\
& p\left(x_{1} \mid \bar{x}_{6}\right)=\frac{m_{2}\left(x_{1}\right)}{\sum_{x_{1}} m_{2}\left(x_{1}\right)},
\end{aligned}
$$

A graph-theoretic view of elimination

- Till now, we have seen an algebraic view of probabilistic inference, using factorizations to simplify calculations
- How does this play out graph-theoretically?

A graph-theoretic view of elimination

UndirectedGraphEliminate (\mathcal{G}, I)
for each node X_{i} in I
connect all of the remaining neighbors of X_{i} remove X_{i} from the graph
end

A graph-theoretic view of elimination

UndirectedGraphEliminate (\mathcal{G}, I)
for each node X_{i} in I
connect all of the remaining neighbors of X_{i} remove X_{i} from the graph
end

(a)

A graph-theoretic view of elimination

UndirectedGraphEliminate (\mathcal{G}, I)
for each node X_{i} in I
connect all of the remaining neighbors of X_{i} remove X_{i} from the graph
end

(a)

(b)

A graph-theoretic view of elimination

UndirectedGraphEliminate (\mathcal{G}, I)
for each node X_{i} in I
connect all of the remaining neighbors of X_{i} remove X_{i} from the graph end

(a)

(b)

(c)

A graph-theoretic view of elimination

UndirectedGraphEliminate (\mathcal{G}, I)
for each node X_{i} in I
connect all of the remaining neighbors of X_{i} remove X_{i} from the graph
end

(a)

(b)

(c)

(d)

A graph-theoretic view of elimination

UndirectedGraphEliminate (\mathcal{G}, I)
for each node X_{i} in I
connect all of the remaining neighbors of X_{i} remove X_{i} from the graph
end

(a)

(b)

(c)

(d)

(e)

A graph-theoretic view of elimination

UndirectedGraphEliminate (\mathcal{G}, I)
for each node X_{i} in I
connect all of the remaining neighbors of X_{i} remove X_{i} from the graph
end

(a)

(b)

(c)

(d)

(e)

A graph-theoretic view of elimination

UndirectedGraphEliminate (\mathcal{G}, I)
for each node X_{i} in I
connect all of the remaining neighbors of X_{i} remove X_{i} from the graph
end

(a)

(b)

(c)

(d)

(e)

A graph-theoretic view of elimination

(a)

(b)

Reconstituted Graph

(c)

(d)

- Elimination Cliques: when you remove a node, the set of nodes neighboring it, including node itself; denote by T_{i}
- Example: $T_{6}=\{2,5,6\}$, and $T_{5}=\{2,3,5\}$

Graph Elimination and Marginalization

Proposition: Elimination Cliques in UndirectedGraphEliminate correspond to sets of variables on which summations operate in Eliminate.

Computational Complexity

- Given previous proposition, computational complexity depends on a purely graph-theoretic quantity: the size of the largest elimination clique created by UndirectedGraphEliminate

Computational Complexity

- Given previous proposition, computational complexity depends on a purely graph-theoretic quantity: the size of the largest elimination clique created by UndirectedGraphEliminate
- Note that the largest such clique depends on the elimination ordering; we want the minimum over all possible orderings (since the ordering is under our control)
- A well-studied problem in graph-theory
- Tree-width: one minus the size of the smallest achievable largest elimination clique (ranging over all elimination orderings)
- But NP-hard to find this best possible elimination ordering

Treewidth

One!

Treewidth

Two

Graph Elimination; Directed Graphs

DirectedGraphEliminate (G, I)
$G^{m}=\operatorname{Moralize}(G)$
UndirectedGraphEliminate $\left(G^{m}, I\right)$
Moralize (G)
for each node X_{i} in I connect all of the parents of X_{i}
end
drop the orientation of all edges
return G

Graph Elimination; Directed Graphs

DirectedGraphEliminate (G, I)
$G^{m}=\operatorname{Moralize}(G)$
UndirectedGraphEliminate $\left(G^{m}, I\right)$
Moralize (G)
for each node X_{i} in I
connect all of the parents of X_{i}
end
drop the orientation of all edges
return G

Graph Elimination; Directed Graphs

DirectedGraphEliminate (G, I)
$G^{m}=\operatorname{Moralize}(G)$
UndirectedGraphEliminate $\left(G^{m}, I\right)$
Moralize (G)
for each node X_{i} in I
connect all of the parents of X_{i}
end
drop the orientation of all edges
return G

Moralized Graph

