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Topics in Graphical Models

* Representation

* Which joint probability distributions does a graphical model
represent?

* Inference

* How to answer questions aboutthe joint probability
distribution?

* Marginal distribution of a node variable
* Most likely assignment of node variables

* Learning
* How to learnthe parametersand structure of a graphical model?



Topics in Graphical Models

* Inference

* How to answer questions aboutthe joint probability
distribution?
* Marginal distribution of a node variable
* Most likely assignment of node variables



Inference

* Possible queries:
. o Allergy
1) Marginal distribution e.g. P(S)

Posterior distribution e.g. P(F|H=1) \ /

2) Most likely assignment of nodes @

arg max P(F=f,A=a,5=s,N=n|H=1)

fa,s,n



Inference

* Possible queries:
1) Marginal distribution e.g. P(S) @
Posterior distributione.g. P(F|H=1)

P(F|H=1) ? @
P(F, H=1

P(F, H=1)
> P(F=f, H=1)
f

« P(F, H=1) will focus on computingthis, posterior will
follow with only constant times more effort



Marginalization

Need to marginalize over other vars @
/\

P(S) = > P(f,a,5,n,h)

fa,n,h @

P(F,H=1) = P(F,a,s,n,H=1)

a,s,n
|_'_,
23 terms HE ne

To marginalize out n binary variables,
need to sum over 2" terms

Inference seems exponentialin number of variables!
Actually, inference in graphical modelsis NP-hard ®



Bayesian Networks Example
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Inference
* P(BatteryAge |Starts=f)

need to sum over 2% terms!

Not impressed?

* HailFinder BN — more
than 3°% =
58149737003040059690
390169 terms



Fast Probabilistic Inference

P(F,H=1) =5 P(F,a,s,n,H=1) @
=5 P(F)P(a)P(s|F,a)P(n|s)P(H=1]s) /J
= P(F) % P(a) g P(s|F,a)P(H=1]s) % P(n|s)

Push sums in as far as possible He

Distributive property: x;z + X,z = z(x;+x,)
2 multiply 1 mulitply



Fast Probabilistic Inference

P(F,H=1) =3 P(F,a,s,n,H=1)
a,5,n 8 values x 4 multiplies @
= > P(F)P(a)P(s|F,a)P(n|s)P(H=1]s)
,S,Nn .
= P(F) 3 P(a) 3 P(sIFa)P(H=1]s) E/Pkn/l' 5)
= P(F) 2 P(a) 2 P(s|Fa)P(H=1]s)
S 4 values x 1 multiply He

= P(F) Z P(a) g,(Fa)
2 values x 1 multiply 32 multiplies vs. 7 multiplies
- P(F) g,(F) 2vs.p 2

1 multiply k —scope of largest factor

(Potential for) exponential reductionin computation!



Variable Elimination — Order can make a
HUGE difference

P(F,H=1) = Z P(F)P(a)P(s|F,a)P(n|s)P(H=1]s) @
_ P(A 5 Pla) 3 P(sIFalP(H=1ls) g(m/fs) /4 I

‘ gl(Fa s) @
: gz(Fa)

N

P(F,H=1) = P(F) Z P(a) Z Z P(s|F,a)P(n|s)P(H= 1|s)

|

g(F,s,a,n)

3 —scope of largest factor



Variable Elimination — Order can make a
HUGE difference

n

Z P(Y)P(X1|Y)HP(Xi|Y)

)
In
||

Y. POMPXY) ][ P(XY) ) P(Xa|Y)

Y, X3,..., Xn i=3 Ko - 1 —scope of
g(Y) largest factor
= > ) PWMPXY) [ PXilY)
Xo,oo Xpn Y| i=2 J n+1 —scope of

8('Y, X1,X5,..,X.) largest factor



Variable Elimination Algorithm

* Given BN — set initial factors p(x; | pa;) for i=1,..,n)
e Given Query P(X|e) = P(X,e) X — set of variables
Instantiate evidence e e.g. set H=1 in previous example

* Choose an ordering on the variables e.g., Xy, ..., X,
Fori=1ton, If X; &{X,e}

* Collectfactors g,...,g, that include X.

e Generate a new factor by eIiminating X; from these factors

Q_ZHQJ

X; =1
* Variable X; has been eliminated!

* Remove g,,...,8, from set of factors but add g
* Normalize P(X, e) to obtain P(X]e)



Inference

* Possible queries:
2) Most likely assignment of nodes
arg max P(F=f,A=a,5=s,N=n|H=1)

fa,s,n

Use Distributive property:

max(X,z, X,z) =z max(xy,X,)
2 multiply 1 mulitply



Variable

p(xlax%

=limination:

Directed Graphs



Variable Elimination: Directed Graphs

plar,wa,...,w5) = Y pla)p(za|w1)p(es | w1)p(es | 22)p(s | 23)p(z6 | 22, 5)

Ie

= plx)p(ez | z1)p(s | 21)p(zs | 22)p(ws | 23) Y plws | w2, x5).

Ie



Variable Elimination: Directed Graphs

plar,wa,...,w5) = Y pla)p(za|w1)p(es | w1)p(es | 22)p(s | 23)p(z6 | 22, 5)

Ie

= plx)p(ez | z1)p(s | 21)p(zs | 22)p(ws | 23) Y plws | w2, x5).

Ie

Reduced the count from O(k°) to O(k?) (actually we know the sum here is equal
to one, but assume we didn’t know that)



Variable Elimination: Directed Graphs

p(z1,%6) = > > > > pla1)p(ez|z1)p(as|z1)p(zs | 32)p(ws | 23)p(Zs | 22, 25)

Tro X3 T4 Tp




Variable

—limination: Directed Graphs

p(:E1, fG)

= > D DD p(w1)plaa | 21)p(xs | 21)p(4 | 32)p(25 | 23)p(T6 | T2, T5)

r2 X3 T4 I5

= ple1) Y p(xa|z1) Y plas|ar) Yy plwa|we) Y plas|x3)p(Zs | x2,75)



Variable Elimination: Directed Graphs

p(z1,Ts) = Y Y Y Yp (z1)p(z2 | 1)p(23 | 21)p(24 | 22)P(T5 | T3)p(T6 | T2, T5)

o X3 T4 XI5

= p(a1) ) _plaz|a1) Y ples|z) Y plea|we) Y plas|ws)p(@s | 22, 25)
= p(z1) ZP(SUQ | 71) ZP(% | z1) ZP(M | T2)ms (T2, 73)

where we define ms(z2, 73) = > zs P(T5 | T3)p(T6 | T2, T5).



Variable Elimination: Directed Graphs

pl1, ) = plx1) Y plra|w1) Y plas|z)ms(ez, w3) Y ples|zs)

= plz1) ZP($2 | z1)ma(z2) Zp(ivs | z1)ms (22, 23).

L2 L3

my(z2) = D, D@4 | 22)



Variable Elimination: Directed Graphs

pl1, ) = plx1) Y plra|w1) Y plas|z)ms(ez, w3) Y ples|zs)

= plz1) ZP($2 | z1)ma(z2) Zp(ivs | z1)ms (22, 23).

L2 L3

ma(@2) = 3, p(za | 22)

We denote by m;(S;) the expression after computing ), with S; the index of
variables, other than ¢ that appear in the summand



Variable Elimination: Directed Graphs

p(a1,Z6) = pla1) Y p(ra|z1)ma(ze)ms (e, x2)

T2

= p(x1)ma(z1).



Variable Elimination: Directed Graphs

C<%CXS/‘

X3

p(a1,Z6) = pla1) Y p(ra|z1)ma(ze)ms (e, x2)

T2

= p(x1)ma(z1).
p(Z6) = > plx1)ma(z1),

o = Pla)ma(z1)
p(z1|z6) S pa)maen)




Variable Elimination: undirected graphs

X4
X>
X
X3 Xs

e Potentials {¢)c(xc)} on the cliques { X1, X2}, { X1, X3}, { X2, X4}, { X3, X5},
and {XQ, X5, XG}



—limination; undirected graphs

P ) = 5 S5 SSTS ln w)rn,sb, wa) s, 5o, 763, o)

r2 X3 T4 X5 Te

= %wal,xz)Zw(xl,w?,)wazau)ZWs,%)Z¢(w2»x5v$6>5<x6@6>
T2 T3 T4 Is5 Ie X4
X

o




—limination; undirected graphs

P ) = 5 S5 SSTS ln w)rn,sb, wa) s, 5o, 763, o)

r2 X3 T4 X5 Te

= %wal,xz)Zw(xl,w?,)wazau)ZWs,%)Z¢(w2»x5v$6>5<x6@6>
T2 T3 T4 Is5 Ie X4

= %Zw(m,l’z)Z¢($17$3)Z¢($2aﬂ74)Z¢($37$5)m6(5€27$5) X,

-




—limination; undirected graphs

P ) = 5 S5 SSTS ln w)rn,sb, wa) s, 5o, 763, o)

2 X3 T4 Iy Ig

= %Zw(m,mZw(xl,w?,)wazau)Zws,%)Z¢(w2»x5v$6>5<x6@6>

X4

= %Zw(m,ﬂ?z)Z¢(3317$3)Z¢($27$4)Z¢(5B37$5)m6(5€27$5) X,

= Y blan, ) Y blan, wsms (s, 7) D (w2, 1) X©<

X3 X




—limination; undirected graphs

P ) = 5 S5 SSTS ln w)rn,sb, wa) s, 5o, 763, o)

2 X3 T4 Iy Ig

= %Zw(m,mZw(xl,w?,)wazau)Zws,%)Z¢(w2»x5v$6>5<x6@6>
T2 T3 T4 Is5 Ie X4

= %Zw(m,ﬂ?z)Z¢(3317$3)Z¢($27$4)Z¢(5B37$5)m6(5€27$5) X,

= %Z?ﬁ(%,wz)Z¢($175’73)m5($27x3)Zw(@’“) X,
= %Ziﬂ(m,xz)md@)Z¢($1,$3)m5($2,$3) ©<




—limination; undirected graphs

P ) = 5 S5 SSTS ln w)rn,sb, wa) s, 5o, 763, o)

2 X3 T4 Iy Ig

= %Zw(m,mZw(xl,w?,)wazau)Zws,%)Z¢(w2»x5v$6>5<x6@6>
T2 T3 T4 Is5 Ie X4

= %Zw(m,ﬂ?z)Z¢(3317$3)Z¢($27$4)Z¢(5B37$5)m6(5€27$5) X

— %Zw(xl,azz)Z¢($1,ﬂ73)m5($27$3)Z¢($27$4) X,
= %Ziﬂ(m,xz)md@)Z¢($1,$3)m5(5’727$3) ©<
— %;2¢(x1,x2)m4(x2)m3($1,$2) X3 Xs




—limination; undirected graphs

P ) = 5 S5 SSTS ln w)rn,sb, wa) s, 5o, 763, o)

2 X3 T4 Iy Ig

= %Zw(m,mZw(xl,w?,)wazau)Zws,%)Z¢(w2»x5v$6>5<x6@6>

X4

= %Zw(m,ﬂ?z)Z¢(3317$3)Z¢($27$4)Z¢(5B37$5)m6(5€27$5) X

— %Zw(xl,azz)Z¢($1,ﬂ73)m5($27$3)Z¢($27$4) X,
= %Ziﬂ(m,xz)md@)Z¢($1,$3)m5(5’727$3) ©<
— %;2¢(x1,x2)m4(x2)m3($1,$2) X3 Xs

1

— EmQ(xl)'




—limination; undirected graphs

% S: S: S: S: S: ’lﬁ(CE‘l, $2)¢(£U1, $3)¢(£U2, $4)¢($37 $5)¢($27 L5, 566)5(5867 556)

o X3 T4 Xy Ig

p(ZUl? 576)

% > (i, m2) Y (w1, a) Y (w2, 24) Y (w3, w5) Y (w2, 35, 26)6 (26, Z)

X4

= %Z¢($17$2)Z¢('xlax3)Z¢($27x4)Z¢($37$5)m6('x27$5) X2

— %Zw(azl,xg) Z¢($1,$3)m5($27$3) Zf(ﬁ(i’?%“) X
= %Zlﬁ(m,xz)mz;(ﬁcz) Z¢($17$3)m5($27$3) ©<
%§;¢(x1,x2)m4($2)m3(x17x2) X3 X

1

— Emg(ﬂ?l).

p(s) = 7 3 ma(m).

p(z1|Zs) = zmﬁl&l) <--- No Z!




A graph-theoretic view of elimination

» Till now, we have seen an algebraic view of probabilistic inference, using
factorizations to simplify calculations

- How does this play out graph-theoretically?



A graph-theoretic view of elimination

UNDIRECTEDGRAPHELIMINATE(G, I)
for each node X, in I
connect all of the remaining neighbors of X;
remove X; from the graph
end



A graph-theoretic view of elimination

X4
X>
UNDIRECTEDGRAPHELIMINATE(G, I) X; X;
for each node X; in I (@)

connect all of the remaining neighbors of Xj;
remove X, from the graph
end



A graph-theoretic view of elimination

X, X,
X2 X2
UNDIRECTEDGRAPHELIMINATE(G, I) X; X X, X
for each node X; in I (@) (b)

connect all of the remaining neighbors of Xj;
remove X, from the graph
end



A graph-theoretic view of elimination

X, X,
X2 X2
UNDIRECTEDGRAPHELIMINATE(G, I) X; X X, X
for each node X; in [ (@) b)
connect all of the remaining neighbors of Xj;
remove X; from the graph X,
end X,

X,

X3 X5



A graph-theoretic view of elimination

X4
X2 X2
UNDIRECTEDGRAPHELIMINATE(G, I) X; X5 X;
for each node X; in I (@)
connect all of the remaining neighbors of Xj;
remove X; from the graph X, X,
end Xz XZ
X; X5 X,

() (d)

X4



A graph-theoretic view of elimination

X4 X4
X2 X2
X X
X3 XS X3 X5

UNDIRECTEDGRAPHELIMINATE(G, I)

for each node X; in I (@) (b)
connect all of the remaining neighbors of Xj;
remove X; from the graph X, X,
end Xz XZ X2
X3 XS X3 X3

() (d)



A graph-theoretic view of elimination

UNDIRECTEDGRAPHELIMINATE(G, I)
for each node X; in [
connect all of the remaining neighbors of Xj;
remove X, from the graph
end

X4 X4
X2 X2
X
X3 XS X3 X5
(a) (b)
X4 X4
Xz X2 XZ
X3 XS X3 X3
(c) (d) (e)



A graph-theoretic view of elimination

X4
X>
X
o
UNDIRECTEDGRAPHELIMINATE(G, I) X; X,
for each node X; in [ (@)
connect all of the remaining neighbors of Xj;
remove X; from the graph X,

X4
X>
X
X3 Xs
(b)
X4

end X2 XZ X2

X3 X5



A graph-theoretic view of elimination

X4 X4
X X,
X3 Xs X3 X5
(@) (b)
X4 X4
Reconstituted Graph X X: X,
X3 XS X3 X3
(c) (d)

e Elimination Cliques: when you remove a node, the set of nodes neighbor-
ing it, including node itself; denote by 7;

e Example: T = {2,5,6}, and T5 = {2,3,5}



Graph Elimination and Marginalization

Proposition: Elimination Cliques in UNDIRECTEDGRAPHELIMINATE corre-
spond to sets of variables on which summations operate in ELIMINATE.



Computational Complexity

- Given previous proposition, computational complexity depends on a purely
graph-theoretic quantity: the size of the largest elimination clique created by
UNDIRECTEDGRAPHELIMINATE



Computational Complexity

- Given previous proposition, computational complexity depends on a purely
graph-theoretic quantity: the size of the largest elimination clique created by
UNDIRECTEDGRAPHELIMINATE

* Note that the largest such cligue depends on the elimination ordering;
we want the minimum over all possible orderings (since the ordering is under
our control)

» A well-studied problem in graph-theory

» Tree-width: one minus the size of the smallest achievable largest
elimination clique (ranging over all elimination orderings)

» But NP-hard to find this best possible elimination ordering



Treewidth

AVA
e




Treewidth

AVA
e

Two



Graph

—[imination:

Directed Graphs

DIRECTEDGRAPHELIMINATE(G, 1)

Gm =

MORALIZE(G)

UNDIRECTEDGRAPHELIMINATE(G™, I)

MORALIZE(G)
for each node X; in [

end

connect all of the parents of X

drop the orientation of all edges
return G



Graph

—[imination:

DIRECTEDGRAPHELIMINATE(G, I)
G" = MORALIZE(G)
UNDIRECTEDGRAPHELIMINATE(G™, I)

MORALIZE(G)

for each node X; in 1
connect all of the parents of X

end

drop the orientation of all edges

return G

Xi

Directed Graphs




Graph

—[imination:

DIRECTEDGRAPHELIMINATE(G, I)
G" = MORALIZE(G)
UNDIRECTEDGRAPHELIMINATE(G™, I)

MORALIZE(G)

for each node X; in 1
connect all of the parents of X

end

drop the orientation of all edges

return G

Xi

Directed Graphs

X>

X

X3 X5

Moralized Graph



