1 Concentration

Hoeffding’s inequality:

Theorem 1 (Hoeffding) If Z_1, Z_2, \ldots, Z_n are iid with mean μ and $\mathbb{P}(a \leq Z_i \leq b) = 1$, then for any $\epsilon > 0$

$$
\mathbb{P}(|\bar{Z}_n - \mu| > \epsilon) \leq 2e^{-2n\epsilon^2/(b-a)^2}
$$

(1)

where and $\bar{Z}_n = \frac{1}{n} \sum_{i=1}^{n} Z_i$.

VC Dimension. Let \mathcal{A} be a class of sets. If F is a finite set, let $s(\mathcal{A}, F)$ be the number of subset of F ‘picked out’ by \mathcal{A}. Define the growth function

$$
s_n(\mathcal{A}) = \sup_{|F|=n} s(\mathcal{A}, F).
$$

Note that $s_n(\mathcal{A}) \leq 2^n$. The **VC dimension** of a class of set \mathcal{A} is

$$
\text{VC}(\mathcal{A}) = \sup \{ n : s_n(\mathcal{A}) = 2^n \}.
$$

(2)

If the VC dimension is finite, then there is a phase transition in the growth function from exponential to polynomial:

Theorem 2 (Sauer’s Theorem) Suppose that \mathcal{A} has finite VC dimension d. Then, for all $n \geq d$,

$$
s(\mathcal{A}, n) \leq \left(\frac{en}{d} \right)^d.
$$

(3)

Given data $Z_1, \ldots, Z_n \sim P$. The empirical measure P_n is

$$
P_n(A) = \frac{1}{n} \sum_{i} I(Z_i \in A).
$$

Theorem 3 (Vapnik and Chervonenkis) Let \mathcal{A} be a class of sets. For any $t > \sqrt{2/n}$,

$$
\mathbb{P} \left(\sup_{A \in \mathcal{A}} |P_n(A) - P(A)| > t \right) \leq 4 \, s(\mathcal{A}, 2n) e^{-nt^2/8}
$$

(4)
and hence, with probability at least $1 - \delta$,
\[
\sup_{A \in \mathcal{A}} |P_n(A) - P(A)| \leq \sqrt{\frac{8}{n} \log \left(\frac{4 \log(2n)}{\delta} \right)}. \tag{5}
\]

Hence, if \mathcal{A} has finite VC dimension d then
\[
\sup_{A \in \mathcal{A}} |P_n(A) - P(A)| \leq \sqrt{\frac{8}{n} \left(\log \left(\frac{4}{\delta} \right) + d \log \left(\frac{n\epsilon}{d} \right) \right)}. \tag{6}
\]

Bernstein’s inequality is a more refined inequality than Hoeffding’s inequality. It is especially useful when the variance of Y is small. Suppose that Y_1, \ldots, Y_n are iid with mean μ, $\text{Var}(Y_i) \leq \sigma^2$ and $|Y_i| \leq M$. Then
\[
P(|\bar{Y} - \mu| > \epsilon) \leq 2 \exp \left\{ - \frac{n\epsilon^2}{2\sigma^2 + 2M\epsilon/3} \right\}. \tag{7}
\]
It follows that
\[
P\left(|\bar{Y} - \mu| > \frac{t}{\sqrt{n}} + \frac{\epsilon\sigma^2}{2(1-c)} \right) \leq e^{-t}
\]
for small enough ϵ and c.

2 Probability

1. $X_n \xrightarrow{P} 0$ means that means that, for every $\epsilon > 0$ $\mathbb{P}(|X_n| > \epsilon) \to 0$ as $n \to \infty$.
2. $X_n \leadsto Z$ means that $\mathbb{P}(X_n \leq z) \to \mathbb{P}(Z \leq z)$ at all continuity points z.
3. $X_n = O_P(a_n)$ means that, X_n/a_n is bounded in probability: for every $\epsilon > 0$ there is an $M > 0$ such that, for all large n, $\mathbb{P}\left(\left| \frac{X_n}{a_n} \right| > M \right) \leq \epsilon$.
4. $X_n = o_P(a_n)$ means that X_n/a_n goes to 0 in probability: for every $\epsilon > 0$
\[
\mathbb{P}\left(\left| \frac{X_n}{a_n} \right| > \epsilon \right) \to 0 \quad \text{as } n \to \infty.
\]
5. Law of large numbers: $X_1, \ldots, X_n \sim P$ then
\[
\bar{X}_n \xrightarrow{P} \mu
\]
where $\bar{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i$ and $\mu = \mathbb{E}[X_i]$.
6. Central limit theorem: $X_1, \ldots, X_n \sim P$ then
\[
\frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma} \leadsto N(0, 1)
\]
where $\sigma^2 = \text{Var}(X_i)$.

\[2\]
3 Basic Statistics

1. **Bias and Variance.** Let $\hat{\theta}$ be an estimator of θ. Then
 \[\mathbb{E}(\hat{\theta} - \theta)^2 = \text{bias}^2 + \text{Var} \]
 where bias $= \mathbb{E}[\hat{\theta}] - \theta$ and Var $= \text{Var}(\hat{\theta})$. In many cases there is a bias-variance trade-off. In parametric problems, we typically have that the standard deviation is $O(n^{-1/2})$ but the bias is $O(1/n)$ so the variability dominates. In nonparametric problems this is no longer true. We have to choose tuning parameters in classifiers and estimators to balance the bias and variance.

2. A set of distributions \mathcal{P} is a **statistical model**. They can be small (parametric models) or large (nonparametric models).

3. **Confidence Sets.** Let $X_1, \ldots, X_n \sim P$ where $P \in \mathcal{P}$. Let $\theta = T(P)$ be some quantity of interest, Then $C_n = C(X_1, \ldots, X_n)$ is a $1 - \alpha$ confidence set if
 \[
 \inf_{P \in \mathcal{P}} P(T(P) \in C_n) \geq 1 - \alpha.
 \]

4. **Maximum Likelihood.** Parametric model $\{p_\theta : \theta \in \Theta\}$. We also write $p_\theta(x) = p(x; \theta)$. Let $X_1, \ldots, X_n \sim p_\theta$. MLE $\hat{\theta}_n$ (maximum likelihood estimator) maximizes the likelihood function
 \[
 L(\theta) = \prod_{i=1}^n p(X_i; \theta).
 \]

5. Fisher information $I_n(\theta) = nI(\theta)$ where
 \[
 I(\theta) = -\mathbb{E} \left[\frac{\partial^2 \log p(X; \theta)}{\partial \theta^2} \right].
 \]

6. Then
 \[\frac{\hat{\theta}_n - \theta}{s_n} \xrightarrow{\text{d}} N(0, 1) \]
 where $s_n = \sqrt{\frac{1}{nI(\theta)}}$.

7. Asymptotic $1 - \alpha$ confidence interval $C_n = \hat{\theta}_n \pm z_{\alpha/2} s_n$. Then
 \[\mathbb{P}(\theta \in C_n) \to 1 - \alpha. \]

4 Minimaxity

Let \mathcal{P} be a set of distributions. Let θ be a parameter and let $L(\hat{\theta}, \theta)$ be a loss function. The **minimax risk** is
\[
R_n = \inf_{\hat{\theta}} \sup_{P \in \mathcal{P}} \mathbb{E}_P[L(\hat{\theta}, \theta)].
\]
If \(\sup_{P \in \mathcal{P}} \mathbb{E}_P[L(\hat{\theta}, \theta)] = R_n \) then \(\hat{\theta} \) is a minimax estimator.

For example, if \(X_1, \ldots, X_n \sim N(\theta, 1) \) and \(L(\hat{\theta}, \theta) = (\hat{\theta} - \theta)^2 \) then the minimax risk is \(1/n \) and the minimax estimator is \(\bar{X}_n \).

As another example, if \(X_1, \ldots, X_n \sim p \) where \(X_i \in \mathbb{R}^d \), \(L(\hat{p}, p) = \int (\hat{p} - p)^2 \) and \(p \in \mathcal{P} \), the set of densities with bounded second derivatives, then \(R_n = (C/n)^{4/(4+d)} \). The kernel density estimator is minimax.

5 Regression

1. \(Y \in \mathbb{R}, X \in \mathbb{R}^d \) and prediction risk is
 \[\mathbb{E}(Y - m(X))^2. \]

 We write \(X = (X(1), \ldots, X(d)) \).

2. Minimizer is \(m(x) = \mathbb{E}(Y|X = x) \).

3. Best linear predictor: minimize
 \[\mathbb{E}(Y - \beta^T X)^2 \]
 where \(X(1) = 1 \) so that \(\beta_1 \) is the intercept. Minimizer is
 \[\beta = \Lambda^{-1} \alpha \]
 where \(\Lambda(j, k) = \mathbb{E}[X(j)X(k)] \) and \(\alpha(j) = \mathbb{E}(YX(j)) \).

4. The data are
 \((X_1, Y_1), \ldots, (X_n, Y_n) \).

 Given new \(X \) predict \(Y \).

5. Minimize training error
 \[\hat{R}(\beta) = \frac{1}{n} \sum_i (Y_i - \beta^T X_i)^2. \]

 Solution: least squares:
 \[\hat{\beta} = (X^T X)^{-1} X^T Y \]
 where \(X(i, j) = X_i(j) \).

6. Fitted values \(\hat{Y} = X \hat{\beta} = HY \) where \(H = X(X^T X)^{-1} X^T \) is the hat matrix: the projector onto the column space of \(X \).

7. Bias-Variance tradeoff: Write \(Y = m(X) + \epsilon \) and let \(\hat{Y} = \hat{m}(X) \) where \(\hat{m}(x) = x^T \hat{\beta} \).

 Then
 \[R = \mathbb{E}(\hat{Y} - Y)^2 = \sigma^2 + \int b^2(x)p(x)dx + \int v(x)p(x)dx \]
 where \(b(x) = \mathbb{E}[\hat{m}(x)] - m(x), v(x) = \text{Var}(\hat{m}(x)) \) and \(\sigma^2 = \text{Var}(\epsilon) \).
6 Classification

1. \(X \in \mathbb{R}^d \) and \(Y \in \{0, 1\} \).
2. Classifier \(h : \mathbb{R}^d \to \{0, 1\} \).
3. Prediction risk:
 \[
 R(h) = \mathbb{P}(Y \neq h(X)).
 \]
 The Bayes rule minimizes \(R(h) \):
 \[
 h(x) = I(m(x) > 1/2) = I(\pi_1 p_1(x) > \pi_0 p_0(x))
 \]
 where \(m(x) = \mathbb{P}(Y = 1|X = x) \), \(\pi_1 = \mathbb{P}(Y = 1) \), \(\pi_0 = \mathbb{P}(Y = 0) \), \(p_1(x) = p(x|Y = 1) \) and \(p_0(x) = p(x|Y = 0) \).
4. Re-coded loss. If we code \(Y \) as \(Y \in \{-1, +1\} \), then many classifiers can be written as
 \[
 h(x) = \text{sign}(\psi(x))
 \]
 for some \(\psi \). For linear classifiers, \(\psi(x) = \beta^T x \). Then the loss can be written as
 \[
 I(Y \neq h(X)) = I(Y \psi(X) < 0)
 \]
 and risk is
 \[
 R = \mathbb{P}(Y \neq h(X)) = \mathbb{P}(Y \psi(X) < 0)
 \]
5. Linear Classifiers. A linear classifier has the form \(h_\beta(x) = I(\beta^T x > 0) \). (I am including a intercept in \(x \). In other words \(x = (1, x(2), \ldots, x(d)) \).) Given data \((X_1, Y_1), \ldots, (X_n, Y_n)\) there are several ways to estimate a linear classifier:
 (a) Empirical risk minimization (ERM): Choose \(\widehat{\beta} \) to minimize
 \[
 R_n(\beta) = \frac{1}{n} \sum_{i=1}^{n} I(Y_i \neq h_\beta(X_i)).
 \]
 (b) Logistic regression: use the model
 \[
 P(Y = 1|X = x) = \frac{e^{\beta^T x}}{1 + e^{\beta^T x}} \equiv p(x, \beta).
 \]
 So \(Y_i \sim \text{Benoulli}(p(X_i, \beta)) \). The likelihood function is
 \[
 L(\beta) = \prod_i p(X_i, \beta)^{Y_i}(1 - p(X_i, \beta))^{1-Y_i}.
 \]
 The log-likelihood is strictly concave. So we have find the maximizer \(\widehat{\beta} \) easily. It is easy to check that the classifier \(I(p_{x,\beta} > 1/2) \) is linear.
 (c) SVM (support vector machine). Code \(Y \) as +1 or -1. We can write the classifier as \(h_\beta(x) = \text{sign}(\psi_\beta(x)) \) where \(\psi_\beta(x) = x^T \beta \). As we said above, the loss can be written
as $I(Y \neq h(X)) = I(Y\psi(X) < 0)$. Now replace the nonconvex loss $I(Y\psi(X) < 0)$ with the hinge-loss $[1 - Y\psi\beta(X_i)]_+$. We minimize the regularized loss

$$\sum_{i=1}^{n}[1 - Y_i\psi\beta(X_i)]_+ + \lambda||\beta||^2.$$

6. The SVM is an example of the general idea of replacing the true loss with a surrogate loss that is easier to minimize. Replacing $I(Y\psi(X) < 0)$ with

$$L(Y, \psi(X)) = \log(1 + \exp(-Y\psi(X)))$$

gives back logistic regression. The adaboost algorithm uses

$$L(Y, \psi(X)) = \exp(-Y\psi(X)).$$

And, as we said above, the SVM uses the hinge loss

$$L(Y, \psi(X)) = [1 - Y\psi(X)]_+.$$