I. Decision Theory: From Model to Answers

II. Empirical Risk Minimization

Pradeep Ravikumar
Co-instructor: Manuela Veloso

Machine Learning
Jan 29, 2018
Recall: Model-based ML

• Learning: From data to model
 • A model explains how the data was generated
 • E.g. given (symptoms, diseases) data, a model explains how symptoms and diseases are related

• Inference: From model to knowledge
 • Given the model, how can we answer questions relevant to us
 • E.g. given (symptom, disease) model, given some symptoms, what is the disease?
Model to Knowledge

• You know how to learn a model from data, with guarantees
• How do we go from model to knowledge?

• i.e. How do we get the answers we seek from the model?
• E.g. Recall “coin flip” example
 • The model is the Bernoulli distribution
 • The Billionaire might not care about Bernoulli distribution per se, as much as answers to questions such as:
 • Which side is more likely in the next flip?
 • If a bookie gives 3 to 5 odds on tails, should he take the bet?
Model to Knowledge: Plugin Estimates

• In most cases, the knowledge we seek is a fixed function $f(P)$ of the model P of the data
 • is the coin fair: $I(p = \frac{1}{2})$?
 • does the coin have better odds than $3/5$: $I(p \geq 3/5)$
Model to Knowledge: Plugin Estimates

• In most cases, the knowledge we seek is a fixed function $f(P)$ of the distribution P of the data
 • is the coin fair: $I(p = \frac{1}{2})$?
 • does the coin have better odds than $3/5$: $I(p \geq 3/5)$

• Once we learn a model, we have an estimate of the distribution of the data: $P_{\hat{\theta}}$
• So we can simply “plugin” the model for the distribution to get our answers: $f(P_{\hat{\theta}})$
• Is the coin fair: $\mathbb{I}(\theta = 1/2)$
 • Plugin Estimate: $\mathbb{I}(\hat{\theta} = 1/2)$
Specification of Knowledge

• In the previous, the specification of what knowledge we were seeking was through an explicit function of the distribution
 • E.g. is the coin fair? Does the coin have better odds than 3/5, etc.
• But such an explicit specification is not always possible
• Think of the knowledge we seek as some “decision” given the underlying data
• QUESTIONS:
 • How do we characterize such decisions?
 • What is the optimal decision we can make?
 • How do we characterize optimality?
 • Falls under decision theory
Specification of Knowledge

• **Decision theory** can be used to characterize the decision to take

 • Through **performance measures** (also known as **loss/utility functions**)

 • Whenever you encounter a task, you should automatically think about the appropriate **performance measure/loss function**
From model to knowledge: the general case

Given model parameter θ, we then pick our action a from a set A by solving a decision-theoretic optimization problem:

$$\min_{a \in A} \ell(\theta, a).$$

Here $\ell(\theta, a)$ is the loss of taking action a when model parameter is θ.
Example: Finance

• Suppose you have a model that specifies the value of apple stock, or how much the stock price will go up in next 1 hour (instead of bias of Billionaire’s coins)

• Your set of actions are how much apple stock to buy or sell

• Given the model, you have to minimize some loss function that balances risk and reward to decide the action $a \in A$ (how much stock to buy or sell).
Example: Electricity Generation

• Suppose you have a model that predicts consumer demand of electricity

• Your set of actions are based on how to schedule the generators of electrical plant

• Given the model, have to minimize some loss function to decide which and how and when of the generation of electricity
Unsupervised vs Supervised

• Learning a Bernoulli distribution as the model for a sequence of coin flips is an example of an “unsupervised learning” problem

• In a “supervised learning” problem, you have an input and an output, and the goal is to predict an output given an input

• Coin Flips: Predict coin flips given “features” about coin

• Finance: predict how much apple stock will move up given economic indicators

• Electricity Generation: predict consumer demand given past demand, weather
Supervised Learning, and Going from Model to Knowledge

• For supervised learning problems, it is natural to talk about the knowledge first, and model second

• In particular, a decision-theoretic **loss function** is part of the problem specification in supervised learning
Supervised Learning Prediction Task

Task:

Given $X \in \mathcal{X}$, predict $Y \in \mathcal{Y}$.

\equiv Construct prediction rule $f : \mathcal{X} \rightarrow \mathcal{Y}$

“Lupus cell (0)”

“Healthy cell (1)”
Example: Supervised Learning Prediction Task

Task:
Given $X \in \mathcal{X}$, predict $Y \in \mathcal{Y}$.

\equiv Construct prediction rule $f : \mathcal{X} \rightarrow \mathcal{Y}$

But I can always come up with a prediction rule: always say it’s not LUPUS!

“Lupus cell (0)”

“Healthy cell (1)”
Example: Supervised Learning Prediction Task

Task:

Given $X \in \mathcal{X}$, predict $Y \in \mathcal{Y}$.

\equiv Construct **prediction rule** $f : \mathcal{X} \rightarrow \mathcal{Y}$

To complete the specification of the task, we need something more!!!

“Lupus (0)" \hspace{2in} “Healthy (1)”
Characterize Task using Performance Measures

Performance Measure:

\[\text{loss}(Y, f(X)) \] - Measure of closeness between true label \(Y\) and prediction \(f(X)\)

What is the “loss” I suffer when I take decision \(f\)?

<table>
<thead>
<tr>
<th>(X)</th>
<th>(Y)</th>
<th>(f(X))</th>
<th>(\text{loss}(Y, f(X)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Lupus”</td>
<td>“Lupus”</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>“Healthy”</td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

\[\text{loss}(Y, f(X)) = 1_{\{f(X) \neq Y\}} \] 0/1 loss
Characterize Task using Performance Measures

Performance Measure:

\[\text{loss}(Y, f(X)) \] - Measure of closeness between true label \(Y \) and prediction \(f(X) \)

What is the “loss” I suffer when I take decision \(f \)?

<table>
<thead>
<tr>
<th>(X)</th>
<th>Share price, (Y)</th>
<th>(f(X))</th>
<th>loss((Y, f(X)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Past performance, trade volume etc. as of Sept 8, 2010</td>
<td>“$24.50”</td>
<td>“$24.50”</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>“$26.00”</td>
<td>1?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>“$26.10”</td>
<td>2?</td>
</tr>
</tbody>
</table>

\[\text{loss}(Y, f(X)) = (f(X) - Y)^2 \quad \text{square loss} \]
Performance Measures

Performance:

Measure:

\[\text{loss}(Y, f(X)) \] - Measure of closeness between true label \(Y \) and prediction \(f(X) \)

We don’t just want to correctly label one test sample (in this case, cell image), but most cell images \(X \in \mathcal{X} \)

Given a cell image drawn randomly from the collection of all cell images, how well does the predictor perform on average?

Risk \(R(f) \equiv \mathbb{E}_{XY} [\text{loss}(Y, f(X))] \)
Performance Measures

Performance:

Measure:

\[\text{loss}(Y, f(X)) \] - Measure of closeness between true label \(Y \) and prediction \(f(X) \)

We don’t just want to correctly label one test sample (in this case, cell image), but most cell images \(X \in \mathcal{X} \)

Given a cell image drawn randomly from the collection of all cell images, how well does the predictor perform on average?

What is the “risk” of taking decision \(f \)?

\[
\text{Risk } R(f) \equiv \mathbb{E}_{X,Y} [\text{loss}(Y, f(X))]
\]
Performance Measures

Performance Measure: Risk \(R(f) \equiv \mathbb{E}_{XY} [\text{loss}(Y, f(X))] \)

<table>
<thead>
<tr>
<th>loss (Y, f(X))</th>
<th>Risk (R(f))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1_{{f(X) \neq Y}})</td>
<td>(P(f(X) \neq Y))</td>
</tr>
<tr>
<td>0/1 loss</td>
<td>Probability of Error</td>
</tr>
<tr>
<td>((f(X) - Y)^2)</td>
<td>(\mathbb{E}[(f(X) - Y)^2])</td>
</tr>
<tr>
<td>square loss</td>
<td>Mean Square Error</td>
</tr>
</tbody>
</table>

“Anemic cell”

Share Price “$ 24.50”
Bayes Optimal Rule

Knowledge That we seek:

Construct **prediction rule** $f^*: \mathcal{X} \rightarrow \mathcal{Y}$

$$f^*(P) = \arg \min_f \mathbb{E}_{(X,Y) \sim P}[\text{loss}(Y, f(X))]$$

Bayes optimal rule

Best possible performance:

Bayes Risk $R(f^*) \leq R(f)$ for all f
Bayes Optimal Rule

Knowledge That we seek:

$$f^*(P) = \arg \min_f \mathbb{E}_{(X,Y) \sim P} [\text{loss}(Y, f(X))]$$

Bayes optimal rule

<table>
<thead>
<tr>
<th>loss(Y, f(X))</th>
<th>Risk R(f)</th>
<th>Bayes Optimal Rule f*(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1{f(X) \neq Y}</td>
<td>P(f(X) \neq Y)</td>
<td>f*(P) = \mathbb{I}(P(Y = 1</td>
</tr>
<tr>
<td>0/1 loss</td>
<td>Probability of Error</td>
<td></td>
</tr>
<tr>
<td>(f(X) - Y)^2</td>
<td>\mathbb{E}[(f(X) - Y)^2]</td>
<td>f*(P) = \mathbb{E}(Y</td>
</tr>
<tr>
<td>square loss</td>
<td>Mean Square Error</td>
<td></td>
</tr>
</tbody>
</table>
Bayes Optimal Rule

Knowledge That we seek:
Construct **prediction rule** \(f^* : \mathcal{X} \to \mathcal{Y} \)

\[
f^*(P) = \arg \min_f \mathbb{E}_{(X,Y) \sim P}[\text{loss}(Y, f(X))]
\]

Bayes optimal rule

Best possible performance:

Bayes Risk \(R(f^*) \leq R(f) \) for all \(f \)
Model-free Methods

Knowledge That we seek:

Construct prediction rule $f^*: \mathcal{X} \to \mathcal{Y}$

$$f^*(P) = \arg\min_f \mathbb{E}_{(X,Y) \sim P}[\text{loss}(Y, f(X))]$$

Bayes optimal rule

Optimal rule is not computable
- depends on unknown distribution P over (X,Y)!

MODEL BASED METHODS: Use a model for P_{XY}!

MODEL-FREE METHODS: Estimate the knowledge through some learning algorithm that does not go through a model for P_{XY}
Model-free Methods

\[
\{(X_i, Y_i)\}_{i=1}^{n}
\]

\(\hat{f}_n \) is a mapping from \(\mathcal{X} \rightarrow \mathcal{Y} \)

\(\hat{f}_n \left(\text{"Anemic cell"} \right) = \text{"Anemic cell"} \)

Test data \(X \)
Popular Approach for model-free ML: Empirical Risk Minimization

Knowledge That we seek:
Construct prediction rule \(f^* : \mathcal{X} \rightarrow \mathcal{Y} \)

\[
f^*(P) = \arg \min_f \mathbb{E}_{(X,Y) \sim P} [\text{loss}(Y, f(X))]
\]

Bayes optimal rule

Given \(\{X_i, Y_i\}_{i=1}^n \), learn prediction rule \(\hat{f}_n : \mathcal{X} \rightarrow \mathcal{Y} \)

Empirical Risk Minimizer:

\[
\hat{f}_n = \arg \min_f \frac{1}{n} \sum_{i=1}^n [\text{loss}(Y_i, f(X_i))]
\]

\[
\frac{1}{n} \sum_{i=1}^n [\text{loss}(Y_i, f(X_i))] \xrightarrow{\text{Law of Large Numbers}} \mathbb{E}_{XY} [\text{loss}(Y, f(X))]
\]
Empirical Risk Minimization

- Very Popular Approach in ML
- Given a loss function, and data, estimate decision function by minimizing “empirical risk”
- Typically restrict decision to lie within some restricted set
 - Could capture our prior information
 - Or just be for computational convenience

\[
\hat{f} = \arg \inf_{f \in \mathcal{F}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \text{loss}(Y_i, f(X_i)) \right\}
\]
Empirical Risk Minimization: Considerations

\[\hat{f} = \arg \inf_{f \in \mathcal{F}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \text{loss}(Y_i, f(X_i)) \right\} \]

• **Computational Considerations**: How do we solve the above optimization problem in a computationally tractable manner?

• **Statistical Considerations**: What guarantees do I have for the empirical risk minimizer (ERM) estimator?
Statistical Considerations: Consistency and Rate of Convergence

• How does the performance of the algorithm compare with ideal performance?

\[
\text{Excess Risk} = \mathbb{E}_{D_n} [R(\hat{f}_n)] - R(f^*)
\]

• Consistent algorithm if Excess Risk \(\rightarrow 0\) as \(n \rightarrow \infty\)

• Rate of Convergence

More later ...
Computational Considerations

\[\hat{f} = \arg \inf_{f \in \mathcal{F}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \text{loss}(Y_i, f(X_i)) \right\} \]

- Even when class of functions is simple (e.g. class of linear functions), the above optimization need not be **convex**
- This non-convexity, and consequently, computational intractability holds for 0-1 loss classification