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Abstract

An attractive approach to managing electricity demand
in the Smart Grid relies on real-time pricing (RTP) tar-
iffs, where customers are incentivized to quickly adapt
to changes in the cost of supply. However, choosing
amongst competitive RTP tariffs is difficult when tar-
iff prices change rapidly. The problem is further com-
plicated when we assume that the price changes for a
tariff are published in real-time only to those customers
who are currently subscribed to that tariff, thus mak-
ing the prices partially observable. We present mod-
els and learning algorithms for autonomous agents that
can address the tariff selection problem on behalf of
customers. We introduce Negotiated Learning, a gen-
eral algorithm that enables a self-interested sequential
decision-making agent to periodically select amongst a
variable set of entities (e.g., tariffs) by negotiating with
other agents in the environment to gather information
about dynamic partially observable entity features (e.g.,
tariff prices) that affect the entity selection decision. We
also contribute a formulation of the tariff selection prob-
lem as a Negotiable Entity Selection Process, a novel
representation. We support our contributions with intu-
itive justification and simulation experiments based on
real data on an open Smart Grid simulation platform.

Introduction
Integration of distributed sustainable energy resources, e.g.,
wind and solar, into our electricity supply is essential to
reducing the environmental impact of our growing energy
demand (Gomes 2009). However, such resources often in-
troduce significant volatility to the level of supply and thus
make it difficult to match supply with demand. Smart Grid
systems must include the ability to actively manage elec-
tricity demand so that grid operators are better able to bal-
ance supply and demand. An attractive approach to man-
aging demand relies on the use of real-time pricing (RTP)
tariffs, where customers are made aware of the dynamic
cost of electricity supply through rapidly changing prices
and incentivized to adapt their consumption behavior ac-
cordingly (Strbac 2008). However, directly conveying prices
from wholesale electricity markets to retail customers sub-
jects them to excessive risk (Barbose, Goldman, and Neenan
2005). Therefore, alternate tariff structures that mitigate the
price volatility risk, such as fixed-rate, time-of-use (TOU),

and critical peak-pricing (CPP) tariffs, have seen wider field
deployment to date (Hammerstrom 2008).

Further innovation is needed to enable wider adoption of
RTP tariffs (Faruqui and Palmer 2012). The introduction of
supplier competition in liberalized retail electricity markets
is a key enabler because it encourages novel tariff structures
and provides customers with a wider array of tariff choices
so that they can select tariffs best suited for their specific
consumption behavior and risk appetite (Block, Collins, and
Ketter 2010). However, the resulting tariff selection prob-
lem, i.e., periodically selecting amongst the set of compet-
itive tariffs, is difficult when prices are allowed to change
rapidly. The problem is further complicated when we as-
sume that the price changes for a particular tariff are pub-
lished in real-time only to those customers that are currently
subscribed to that tariff, thus making the prices partially ob-
servable when selecting amongst the tariffs.

Introducing autonomous customer agents that can select
tariffs on behalf of a customer and control the customer’s
demand in response to changes in tariff prices can allevi-
ate the decision-making burden on Smart Grid customers
(Reddy and Veloso 2012). We present several models and
learning algorithms for tariff selection by such agents. Most
significantly, we introduce Negotiated Learning, a general
algorithm that allows a self-interested sequential decision-
making agent to periodically select amongst a variable set of
entities (e.g., tariffs) by negotiating with other agents in the
environment to gather information about dynamic partially-
observable entity features (e.g., tariff prices) that affect the
entity selection decision. This algorithm allows an agent to
exploit the multiagent structure of the problem to control the
degree of partial observability in the environment.

In following sections, we describe the tariff selection
problem in more detail and contribute a formulation of the
problem as a Negotiable Entity Selection Process (NESP),
a novel representation for the type of multiagent partial-
observability problem that we address here. We then de-
scribe how a Negotiated Learning agent uses Attractions and
a Negotiation Model to determine when to acquire which in-
formation from which other agents to help make its entity
selection decisions. We include intuitive justification for the
algorithms and support our contributions with experimen-
tal results from simulations based on real data using Power
TAC, a large open Smart Grid simulation platform.



Variable Rate Tariff Selection
We assume liberalized retail electricity markets where sup-
pliers compete to acquire portfolios of customers. Each sup-
plier offers one or more tariffs, which are published con-
tracts that customers can accept or reject without modifica-
tion. A tariff contract includes various terms and fees includ-
ing one or more rate specifications. A variable rate specifi-
cation says that the dynamic price to be charged for a given
metering time period is conveyed to the customer at the start
of some advance notice window before the metering period
starts. Metering periods and advance notice windows vary
widely amongst real-world tariffs, from months or days for
residential customers to hours or minutes for commercial
customers. Without loss of generality, we assume an hourly
metering period with no advance notice for our experiments
and in the following discussion.

A customer must always be subscribed to one tariff in or-
der to maintain electricity supply. The customer is allowed
to choose an alternate tariff at any time, effective starting
at the next metering period, for a fixed switching cost. The
prices conveyed through a variable rate specification are a
key component of the uncertainty in evaluating which tariff
is best suited for a particular customer. Since prices evolve
over time, the customer benefits from reevaluating the tariffs
continuously and thus tariff selection is better described as a
decision process rather than a singular event.

We define the resulting tariff selection decision process
(TSDP) over the discrete time sequence, T = 1..T . Given a
set of tariffs, X , the policy, ⇡, of the decision process for a
customer, D, is a map of tariff subscriptions over time:

⇡D : T ! X
We assume that the TSDP is given a set of demand fore-

casts, Y , which represent the possible consumption pat-
terns over a tariff evaluation horizon, H . Thus, each forecast
ŷ 2 Y is a map T t+H

t ! R+.
At time t, tariff, x 2 X , specifies a price px(t). Then, let

p⇡D(t) be the price specified by the tariff x⇡
D(t), i.e., the tariff

to which the customer is subscribed at time t. The goal of the
agent is to minimize the lifetime cost of electricity over the
sequence of observed demand levels, y(t), given the demand
forecasts Y:

min
⇡

X

t=1..T

p⇡D(t)y(t)

This simple definition of the problem is similar to the
nonstochastic or adversarial multi-armed bandit problem,
where a gambler must choose one of several slot machines–
bandits–to play at each timeslot under no statistical distribu-
tion assumptions for the rewards from each bandit (Auer et
al. 1995). For this problem, the Exp3 family of algorithms
provides strategies for balancing exploration and exploita-
tion using exponential-weighting to achieve optimal perfor-
mance bounds. However, as we show in experimental re-
sults, our Negotiated Learning algorithm produces signifi-
cantly better results than Exp3/Exp3.P/Exp3.S when applied
to the tariff selection problem because our approach exploits
the specific multiagent structure of the problem.

Negotiable Partial Observability
Fundamentally, the uncertainty in the attractiveness of tariff
choices is due to three reasons:

1. Price Imputation Uncertainty: When prices in variable
rate tariffs are published only to customers that subscribe
to the tariff, it is possible that for some tariffs the only his-
torical price information available to the customer agent is
some initial or reference price. Then, the agent must apply
an imputation model to estimate any missing prices.

2. Price Prediction Uncertainty: Even if perfect informa-
tion about past prices is available, the agent must still
apply a prediction model to estimate how the prices will
evolve in the future, over some tariff evaluation horizon.

3. Demand Prediction Uncertainty: Forecasts of customer
demand typically increase in uncertainty as the time span
of the forecast increases. Moreover, if the demand for a
certain period is very low, switching to a better tariff is
not as compelling during that period.
Since tariff selection is a forward-looking optimization,

only the uncertainty in predicted prices and demand fore-
casts affect the decision. We assume here that the demand
prediction uncertainty is difficult to mitigate as it stems from
factors that the agent cannot observe or control. However,
price predictions are often highly dependent on price histo-
ries, which raises the question of whether the agent can im-
prove its price predictions, and therefore its tariff selection
decisions, by mitigating the price imputation uncertainty.

We observe that since tariffs are published contracts, the
prices for a particular variable rate specification are the same
for all potential customers. So, even though the prices for
tariffs that the customer is not subscribed to are hidden from
the customer agent, the agent has the ability to potentially
acquire current price samples or entire price histories from
other customers who are subscribed to those tariffs. Thus,
it is possible for the population of customers to coopera-
tively pool their information and decrease the amount of hid-
den information for each of them. However, we assume a
more realistic model where each customer is self-interested
and semi-cooperative; i.e., each customer needs to be incen-
tivized to share their information. Incentives can take many
forms such as in-kind exchange of information, credits for
future use, or cash payments. If our decision-making agent
wants to acquire information from another customer, it must
negotiate with that customer for that information. We can in-
tuitively expect, as we also demonstrate in our experiments,
that learning from this negotiated information can signifi-
cantly reduce the price imputation uncertainty.

We can draw a parallel between this insight and oracles
in POMDPs (Armstrong-Crews and Veloso 2007). The cus-
tomer agent can view the population of other customers as
a multiagent oracle, albeit an incomplete one since some
information is hidden from all customers. We refer to this
semi-cooperative multiagent structure as negotiable partial-
observability. In following sections, we will enrich the for-
mal definition of the tariff selection problem to explicitly
represent this structure and also describe in detail how our
Negotiated Learning algorithm addresses the price imputa-
tion, price prediction and demand prediction uncertainties.



Negotiable Entity Selection Process
Let D be a sequential decision-making agent that chooses
one entity from a variable set of entity choices, X (t), at
each time step t. The optimal choice at each t depends on
the values of dynamic partially observable features, F , that
characterize each entity. The environment includes a set of
neighboring agents, I, a set of agent classes, K, and an agent
classification model, K = I ! K.

Let S be D’s state model which includes an occluded view
of the dynamic features of each entity. Given a state s 2 S,
let '(s,F) be the set of state transforms that can be reached
by obtaining more information about any of the occluded
features in F ; i.e., each state in '(s,F) mitigates the uncer-
tainty in one or more occluded features in s.

We can then define a negotiation as a pair (s0, k), s0 2
'(s,F), and k 2 K, which describes the action of gather-
ing information from any agent in k about the features that
transform s to s0. Thus, A1(t) = '(s(t))⇥K defines the set
of negotiation actions available at t.

We then define a negotiation model, N, which maps each
possible negotiation to a triple of negotiation parameters,
(c, t, p), c 2 R, t 2 I+, and p 2 R[0, 1]:

'(S,F)⇥K! {(c, t, p)i}mi=1

where c is the cost of information, t is interval to informa-
tion, and p is the probability of information, with the in-
tuitive understanding that if information is made available
quickly (low t) with high reliability (high p), then the cost,
c, of the negotiation is likely to be higher.

Note that defining negotiations on agent classes instead
of individual agents offers better scalability of the model for
large |I|. As illustrated in Figure 1, the negotiation model
can also be viewed as a bipartite graph from the state trans-
forms, '(S,F), to the agent classes, K, with each of the m
edges of the graph carrying a (c, t, p) instance.

Let A2(t) be the size |X (t)| set of entity selection actions
available at t and A = A1 [ A2. The agent’s policy, ⇡,
chooses one action from A2(t) along with any combination
from A1(s(t)) at each t. Finally, let T be a transition model
and R a reward model as they are usually defined in Markov
decision processes. A negotiable entity selection process, Z,
for agent D is then defined as:

ZD = hK,X ,'(S,F),N,A,T,Ri

State 

φ (s, f1) 

s 

φ (s, f2) 

k1 (c1, t1, p1) 

(c3, t3, p3) 

(c4, t4, p4) 

i1 

k2 

k3 

i|I | 

. . 

. 

Agent Classes Agents State Transforms 

Figure 1: An example negotiation model with |F|=2 and
|K|=3 as a bigraph from state transforms to agent classes
with each negotiation edge carrying a triple of parameters.

We can then formulate the variable rate tariff selection
problem as an NESP by translating ‘entities’ as ‘tariffs’ and
casting the dynamic prices as entity features. Concretely, we
define two features: (i) price sample, and (ii) price history.
A request for a price sample, px(t), on a tariff, x, can be
fulfilled by a neighbor only if that neighbor is currently sub-
scribed to x, whereas a request for price history yields all
the price samples known to the neighbor for x.

We also formulate a simple set of agent classes, K =
{Desirable, Undesirable}, which represent the relative bias
for obtaining information from agents in those classes based
on a weighted combination of (c, t, p) values.

Negotiated Learning
We can now describe the Negotiated Learning algorithm.
While the algorithm is generally applicable for any problem
that can be defined as a Negotiable Entity Selection Process,
we will continue to use the terminology of tariffs/prices in-
stead of entities/features for clarity.

The algorithm forms a three-layered learning process:
1. Learning from negotiated information: Price samples and

histories obtained through negotiation are used in the
agent’s price imputation models. The resulting imputed
price series are combined with price prediction models
and demand prediction models to compute Attractions for
each tariff, which determine the tariff chosen at time t. An
Attraction is defined by the triple (µ,�+,��), which can
be interpreted as the mean, upper and lower confidence
bounds on some measure of attractiveness.

2. Learning the negotiation model: If N is hidden, the
agent’s history of negotiations is used to estimate the ne-
gotiation parameters, (c, t, p), for the edges in the bipartite
graph representing the negotiation model.

3. Learning the agent classification model: If K is hidden,
the neighboring agents in I are dynamically mapped into
the K classes based on past negotiations.
The first layer is summarized in Algorithms 1-3. The sec-

ond and third layers are included in Algorithm 3. Algo-
rithm 1 is activated at each t with the negotiable entity se-
lection process Z, the currently selected tariff x⇡

t , a deferred
tariff selection x⇡

⌧ , the current Attractions for each tariff Vt,
the map of ongoing negotiations N keyed by tariff, learning-
rate parameters ⌦ = {!e,!b,!↵} all in R[0, 1], a confi-
dence bounds growth parameter � 2 R+, and a negotiation
budget parameter � 2 R[0, 1].

We first initialize the tariff selection decision x⇡
t+1 to the

current tariff, and then obtain a set of current demand fore-
casts from the environment. We then update the Attraction
for the current tariff according to Algorithm 2, which we
will describe shortly. Then for all other tariffs x in the cur-
rent tariff choices X , we first check to see if x is included
in the ongoing negotiations N . If it is and the corresponding
negotiation completed successfully, then the price samples
or histories obtained through negotiation are incorporated
into the state model S. That negotiated information is also
used to recompute the Attraction of x using the experience
update weight, !e, instead of the belief update weight, !b.



Algorithm 1 NLActivate(t, Z, x⇡
t , x

⇡
⌧ ,Vt,N ,⌦, �,�)

x⇡
t+1  x⇡

t
⌘  0
Y  Env.GetDemandForecasts(t, Z)
v⇡  NLUpdateAttraction(x⇡,V[x⇡

t ],Y,⌦.!e,�)
Vt+1  ; [ v
for x in Z.X \ x⇡

t do
!  ⌦.!b

if x in keys(N )) then
n N [x]
if n.success = TRUE then

NLUpdateTariffPrices(Z.S, x, n)
!  ⌦.!e

v  NLUpdateAttraction(x,V[x],Y,!,�)
Vt+1  Vt+1 [ v
if v.�+ > v⇡.�+ k v.�� > v⇡.�� then
U  U [ x
if (v.�+ � v⇡.�+) > (⌘/�) then
⌘  � ⇤ (v.�+ � v⇡.�+)

if v.µ > v⇡.µ then
if x = x⇡

⌧ then
x⇡
t+1  x

else
x⇡
⌧  x

N  N [ NLInvokeNegotiations(N ,U , ⌘,⌦.!↵)

If the upper or lower confidence bound, �+ and ��, for x’s
Attraction is higher than that of the current tariff, it is added
to the set of uncertain tariffs, U , to be considered for negoti-
ation. If the mean of x’s Attraction is greater than that of the
current tariff, then it is saved as the deferred tariff x⇡

⌧ , unless
it is already the deferred tariff in which case x is chosen to
replace the current tariff for time t + 1. Finally, the uncer-
tain tariffs are evaluated for possible negotiation by invoking
Algorithm 3. The negotiations are constrained by a budget,
⌘, that is a �-fraction of the best bounded benefit over all
x 2 X \ x⇡

t according to the computed Attraction values.
Attractions are a key component of our approach because

they effectively capture the uncertainties in price imputation,
price prediction, and demand prediction. Algorithm 2 de-
scribes their computation. We assume that we have a library
of domain-dependent price imputation models, �i, that fill in
missing historical prices. We also assume a similar library of
price prediction models, �p. We generate one imputation per
imputation model, and then generate a set of price predic-
tions for each imputation using each price prediction model.
We recognize that demand forecasts have higher uncertainty
farther into the future, so we give more importance to fore-
cast values for the near future. We do this by choosing a set
of lookahead thresholds, L, all less than the tariff evaluation
horizon. For each lookahead threshold we compute the av-
erage charge over the set of demand forecasts for each price
prediction. We thus collect |�i|⇥|�p|⇥|Y|⇥|L| real-valued
charges, the mean of which is used to update the Attraction’s
mean. The standard deviation is used for the upper and lower
confidence bounds along with �, a parameter which allows
the bounds to diverge over time to trigger exploration.

Algorithm 2 NLUpdateAttraction(x, v,Y,!,�)

Charges ;
for i in �i do�!

h  GeneratePriceImputation(x, i)
for j in �p do
�!p  GeneratePricePrediction(j,

�!
h )

for �!y in Y do
for l in L do

Charges Charges [ (�!p [1..l] ·�!y [1..l])/l
v.µ (1� !) ⇤ v.µ+ ! ⇤Mean(Charges)
�  (1 + �) ⇤ 2 ⇤ StdDev(Charges)
v.�+  (1� !) ⇤ v.�+ + ! ⇤ (v.µ+ �)
v.��  (1� !) ⇤ v.�� + ! ⇤ (v.µ� �)

In addition to the negotiation model, N, which includes
negotiation parameters for each possible negotiation, the
agent maintains a neighbor model, B, which includes its be-
liefs about which tariffs its neighbors are subscribed to and
about the agent classification model, K; i.e., (i) B.X = I !
X , and (ii) B.K = I ! K. Algorithm 3 first uses informa-
tion from each completed negotiation in N to update the tar-
iff mapping for the neighbor involved in the negotiation. It
then applies a weighted update to the negotiation parameters
for the neighbor’s agent class. The cost c of the negotiation
is determined by the neighbor and p is 0 or 1 to indicate ne-
gotiation failure or success. If the agent classification model
is unknown, then we reclassify the neighbor based on the
negotiation’s (c, t, p) and domain-specific heuristics. Then,
let O be the set of negotiation options derived as the cross
product of the possible state transforms on the uncertain tar-
iffs, '(U ,F), with the agent classes, K. We then obtain a set
of desired negotiations by solving a zero-one program over
O with the goal of maximizing the expected information and
the constraints that (i) the total cost of the negotiations is un-
der the budget ⌘, and (ii) no more than one option is chosen
for a particular state transform. For each desired negotiation,
with probability 1�✏ we find the neighboring agent that was
most recently mapped to that tariff in B.X , and randomly
otherwise, and initiate negotiation with that neighbor.

Algorithm 3 NLInvokeNegotiations(N ,U , ⌘,↵)
for n in N do

if n.status = Completed then
B.X [n.i] n.x
old.(c,t,p) (1� ↵) ⇤N[K(n.i)].(c, t, p)
N[K(n.i)].(c, t, p) old.(c, t, p) + ↵ ⇤ n.(c, t, p)

B.K[n.i] NLReclassifyNeighbor(n.i)
N  N \ n

O  '(U ,F)⇥K
N ⇤  ZeroOneProgram(O, ⌘)
N  N [N⇤

for n in N ⇤ do
i NLSelectNeighbor(n.k)
Env.InitiateNegotiation(i, n)



Experimental Results
We present results from simulation experiments to demon-
strate how our variable rate tariff selection approach exploits
favorable tariff price movements to generate cost savings
for customers. We simulate 60 agents of various capabili-
ties in 10-day episodes, using the Power TAC simulation en-
vironment (Ketter, Collins, and Reddy 2012). We generate
demand forecasts using noise-added subsets of real hourly
consumption data for homes in California (San Diego Gas
& Electric 2012).

We use a combination of heuristic and reference simula-
tion data to generate tariff prices. Figure 2a shows hourly
prices over 10 days for 3 tariffs: (i) the dotted black line rep-
resents a fixed default utility tariff, (ii) the dashed blue line
represents a stable dynamic TOU tariff where each cycle of
the pattern represents a day and prices are generally higher
8am-8pm, and (iii) the solid red line represents another sim-
ilarly structured but non-stationary tariff whose prices are
more volatile and less attractive initially but then stabilize
over time into a more attractive option. Figure 2b is an il-
lustration of two additional tariffs that are drawn for each
simulation episode from a reference set of simulated tariff
prices offered by competitive electricity suppliers who em-
ploy various pricing strategies that include variable rates that
are indexed to a wholesale electricity market (IESO of On-
tario 2011), and related adaptive and learning-based pricing
strategies that optimize for the supplier’s profit maximizing
goals (Reddy and Veloso 2011).
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(a) Generated prices for fixed and dynamic TOU tariffs.
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(b) Sample variable rate prices from reference data set.

Figure 2: We use heuristically generated prices along with
reference prices offered by simulated competitive suppliers.

We use four price imputation models to estimate hidden
values in the price history of each tariff using known prices,
which may have been observed directly as a subscriber to

the tariff or obtained through negotiation:
1. GlobalMean: Set equal to the mean of the known values.
2. CarryForward: Set equal to the prior known value.
3. BackPropagation: Set equal to the next known value, or

to the prior known value if all later prices are hidden.
4. Interpolation: Each contiguous sequence of hidden val-

ues is assigned using interpolation from the prior known
value to the next known value.
We also use four price prediction models, based on do-

main knowledge that wholesale market prices for a given
hour are well correlated with prices at the previous hour and
at the same hour the previous day:

1. Lag24: pt = pt�24 + ", where " ⇠ N(0,�2)

2. AR(1): pt = µ+ � pt�1 + "

3. ARMA(1,1): pt = µ+ � pt�1 + "+ ✓ "t�1

4. Seasonal ARMA(1,1)⇥(1,1)24: pt =
µ+� pt�1+� pt�24+ "+ ✓ "t�1+⇥ "t�24+⇥ ✓ "t�25

Figure 3a demonstrates the value of exploiting the mul-
tiagent structure of the problem. The y-axis shows the cost
savings for a given algorithm relative to a baseline algorithm
(dotted black line) that explores the available tariffs using
the imputation models and prediction models but does not
negotiate for information, thus missing opportunities to se-
lect better tariffs. The dashed brown line below the baseline,
which holds with insignificant variations for Exp3, Exp3.P,
and Exp3.S, shows negative savings, i.e., higher cost than
the baseline. The solid purple line demonstrates the signif-
icant opportunity for cost savings if the algorithm had full
information about the dynamic prices for all tariffs. Each
line represents averaged results for 10 agents of that type.

A fully-informed algorithm sets the upper bound on cost
savings, but it is unrealistic in our setting. Figure 3b shows
approximate bounds for algorithms that acquire informa-
tion through negotiation. The flat line represents the same
baseline as before. The solid green line establishes an upper
bound on cost savings for a negotiating agent, given accurate
negotiation and agent classification models. Conversely, the
dashed blue line shows the negative savings if a negotiation
model is not used, i.e., the agent chooses a neighbor to ne-
gotiate with randomly. The gap between the two new lines
illustrates the value of the negotiation model.

We set up the experiments such that agents in the dif-
ferent classes, {Desirable, Undesirable}, exhibit different
(c, t, p) attributes, i.e., charge different prices, require vary-
ing amounts of time to respond, and vary in reliability, de-
pending on the agent class they belong to. The dashed ma-
genta line in Figure 3c illustrates performance slightly bet-
ter than random negotiation when the agent classification
model and the negotiation model are initially unknown to
the agent. The agent then learns the models over multiple
episodes, with each episode using a possibly different set of
tariff prices from the reference set and different real data
subsets for the demand forecasts. As learning progresses,
the agent’s performance approaches the benchmark perfor-
mance obtained with known negotiation and agent classifi-
cation models, as illustrated by the solid red line.
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(a) Fully informed agents outperform
agents based on exploration-exploitation.
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(b) Agents with a negotiation model out-
perform agents who negotiate randomly.
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(c) Agents can approach known-model
performance through model learning.

Figure 3: Our experiments demonstrate the efficacy of Negotiated Learning in (a) extracting the value of negotiated information,
(b) extracting the value of an informed negotiation model, and (c) incorporating the learning of the negotiation model.

Related Work
Research on Smart Grid agents explores the reliability
of grid infrastructure, e.g., (Gellings, Samotyj, and Howe
2004), integration of distributed generation sources, e.g.,
(Kok 2010), electric vehicles as micro storage (Vytelingum
et al. 2010), and adaptive policies for distributed control of
demand based on dynamic prices (Ramchurn et al. 2011).
Our current research builds upon our previous work (Reddy
and Veloso 2012), which introduces autonomous decision-
making agents for Smart Grid customers in liberalized mar-
kets; we complement the focus on algorithms for demand
management in that work with our current focus on the cus-
tomer’s tariff selection decision process.

Exploiting structure in multiagent problems is studied ex-
tensively in machine learning, planning, and game theory.
(Busoniu, Babuska, and De Schutter 2008) review several
multiagent reinforcement learning algorithms. Other related
examples of exploiting structure in MDPs/POMDPs include
soft-state aggregation (Singh, Jaakkola, and Jordan 1994),
semi-Markovian options (Sutton, Precup, and Singh 1999),
layered Q-learning (Melo and Veloso 2009), and oracular
POMPDs (Armstrong-Crews and Veloso 2007). Partially-
observable stochastic games (POSGs) offer the most gen-
eral representation but corresponding algorithms generally
do not scale well (Emery-Montemerlo et al. 2004). A key
aspect of our Negotiable Entity Selection Process represen-
tation is that it trades off some generality to expose elements
of multiagent structure that are lost in other representations.

No-regret online learning (Foster and Vohra 1999) is
closely related to the tariff selection problem and our ap-
proach is related to fictitious play (Fudenberg and Levine
1999) (Hart and Mas-Colell 2000). The Exp3 algorithms
that we compare with in the multiarmed adversarial bandit
setting are detailed in (Auer et al. 1995). Note that while
we pursue the acquisition of partially hidden information,
our setting does not match that of full-information no-regret
learning (Littlestone and Warmuth 1994) where the payoffs
of each expert are revealed after the current time step.

Extensive work also exists in dynamic coalition forma-
tion (Sandholm and Lesser 1995) but our Negotiated Learn-

ing approach varies in that each negotiation is a point-in-
time transaction and there are no joint payoffs. (Crawford
and Veloso 2008) demonstrate the elicitation of hidden at-
tributes about neighbors through semi-cooperative negoti-
ations, but they do not consider cost/payments or quality
of information. Our use of Attractions is based largely on
(Camerer and Ho 1999) who propose a behavioral frame-
work that combines reinforcement learning and no-regret
learning to learn from own experiences as well as beliefs
about other agents’ experiences. Cognitive hierarchies as a
partition of agent populations with different levels of reason-
ing capability, which rationalizes our use of agent classes,
is also due to (Camerer 2008). Our use of upper and lower
confidence bounds in the Attractions draws upon model-
based interval estimation (Strehl and Littman 2008) and the
principle of communicating only when acquired information
may change the agent’s policy action (Roth 2003). However,
none of these works combine negotiating for paid informa-
tion and simultaneously learning a negotiation model to ad-
dress partial observability.

Conclusion
We have contributed general models and algorithms for en-
tity selection based on dynamic partially observable fea-
tures, and have applied them towards variable rate tariff se-
lection by Smart Grid customer agents. Our Negotiated En-
tity Selection Process is a novel representation, which cap-
tures the multiagent structure that enables the development
of our Negotiated Learning algorithm. We have demon-
strated through experimental results (i) the value of negoti-
ated information, (ii) the importance of a well-informed ne-
gotiation model, and (iii) learnability of negotiation models.
Future work could explore other negotiation models (e.g.,
bipartite multigraphs) and negotiation selection approaches
that constrain the budget for specific negotiations.
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