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Abstract

We consider multi-modal data from a first person video camera and from five inertial mea-
surement units (IMUs) as they capture subjects making brownies. We analyze this data
to extract a set of relevant features and identify algorithms that can help with two super-
vised learning tasks: (i) frame classification, and (ii) sequence classification. An inherent
challenge in working with this data is the difficulty of generalization from one subject to
another. Spriggs et al [3] provide baseline results that we build upon. We use features
extracted using dimensionality reduction techniques such as gist [2] and PCA. We apply
several supervised learning techniques and note varying performances. In particular, we
highlight the role of effective smoothing techniques.

1 Introduction

The CMU Multi-Modal Activity (CMU-MMAC) database contains multiple measures of the human activity
of subjects performing tasks involved in cooking and food preparation. This paper presents initial findings
from our analysis of a subset of this data. In particular, we consider data from a first-person video camera
and from five inertial measurement units (IMUs) as they capture subjects making brownies.

We analyze a set of extracted relevant features and identify algorithms that can help with two supervised
learning tasks: (i) frame classification, and (ii) sequence classification. Frame classification is the problem
where we identify the action being performed by the subject using a test sample of a single frame of data
from the first person video and from the IMU sensors. This classification process is then repeated for every
frame in the testing corpus. In sequence classification, the learning algorithm is tested on a sequence of
continuous frames which are known to be encoding a common subject activity (e.g. cracking eggs). A
frame classification algorithm allows the reconstruction of an entire set of subject activities without requiring
any prior knowledge. The sequence classification problem requires the starting and ending time of every
activity to be known, but a sequence classification algorithm will produce more accurate predictions. In our
work, we have tried several classifiers, including Naive Bayes, Neural Networks, Support Vector Machines
(SVMs), Hidden Markov Models(HMMs), and K-Nearest Neighbors (K-NN) algorithms. Our most effective
classification method was a combination of SVMs, K-NN, and the forward-backward HMM algorithm all
working in unison. In particular, we employ a variant of the combined K-NN/SVM algorithm devised by
Zhang et al[4].

2 Multi-Modal Data

The CMU-MMAC database was collected in Carnegie Mellon’s Motion Capture Lab1. A kitchen was built
and forty subjects have been recorded cooking five different recipes: brownies, pizza, sandwich, salad, and

1The data used in this paper was obtained from kitchen.cs.cmu.edu and the data collection was funded in part by the
National Science Foundation under Grant No. EEEC-0540865.
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scrambled eggs. Multi-modal data was recorded from five static video cameras, one wearable video camera,
five microphones, a motion capture system, five wired IMUs, four wireless IMUs, a galvanic skin response
sensor, and an RFID bracelet. We use the video data from the wearable camera and the wired IMU data
in our analysis primarily because previous research indicates that these are the most reliable data sources.
Moreover, these two data sources are time-synchronized into discrete frames, so they are easily combined.

The medium resolution (800x600) video streams are recorded at 30Hz. The video is discretized into a se-
quence of images which are then processed using a feature extraction algorithm that reduces the dimen-
sionality of the images. The IMU device contains 5 3DM-GX1 IMUs, each with a triaxial accelerometer,
gyroscopic and magnetometer sensor sampling at 125 Hz. The IMUs are placed on each of the subject’s
wrists, ankles, and one on the waist. We use post-processed IMU data that has been sampled down to 30Hz
from 125Hz to synchronize the frames with the video data. Furthermore, in order to reduce the dimensional-
ity of the combined video and IMU data, PCA was applied to the data, and we are able to extract features in
sorted order by their eigenvalues.

An inherent challenge in working with this data is the difficulty of generalization from one subject to another.
Since the subjects are given a great deal of freedom in how to execute a given recipe, the exact set of actions
performed and the sequence in which they are performed vary among subjects. Moreover, there is significant
variance in how a particular subject performs a certain action due to various factors (e.g., left-handed versus
right-handed subjects, cracking eggs using a fork versus cracking them on the edge of a bowl).

3 Prior Work

Spriggs et al [3] provide baseline results for supervised frame classification, as well as unsupervised clus-
tering. We do not address recipe classification in our analysis. Specifically, they apply Gaussian Mixture
Models (GMMs) and Hidden Markov Models (HMMs) in an unsupervised setting and HMMs and K-Nearest
Neighbors (K-NN) techniques in a supervised setting. Their experiments use data from seven subjects mak-
ing brownies. We include additional data that has been collected since, yielding a total of 16 subjects in our
experiments.

They find that the unsupervised methods perform quite well, in general, for recipe classification but not very
well for frame classification. In the supervised frame classification setting, they find that HMMs can achieve
accuracy of about 9.38% using video data only, about 10.4% using IMU data only, and about 12.34% using
multi-model data. Using K-NN with K=1, they achieve accuracy of 48.64%, 56.8% and 57.8% respectively.

Video is an important part of the multi-modal dataset, and the manner in which features are extracted from
image or video data has been shown to greatly influence the success or failure of many applications in com-
puter vision[1]. The ’gist’ algorithm is a context-based approach to image feature extraction that attempts to
discover the salient quality of an image through the use of low-level feature channels[2]. Gist features have
been used in a variety of video applications, including previous work with the CMU-MMAC data.

4 Methodology

For this project, we focus on the supervised classification of actions from a corpus of 203,581 frames taken
from 16 subjects preparing the brownies recipe. Data from wired IMU’s as well as gist features are given for
all frames in the dataset. The frames have been manually annotated with action labels; however some of the
frames have been given no label, therefore these frames have been excluded from our dataset. All algorithms
were run on 32 PCA features extracted from the IMU and gist data.

We have considered many classification models in this work: K-Nearest Neighbors, Feed-forward Neural
Networks, Naive Bayes, Hidden Markov Models, and Support Vector Machines with a radial basis kernel
function. We also consider combinations of these constituent algorithms. The supervised learning task for
our classification algorithms is to predict the correct label for a frame or for a sequence of frames taken from
the data. We have taken the data from 15 subjects to use as training data, and retained data from the remaining
subject for testing.

4.1 Smoothing

For the frame classification algorithm, we note that the predictions for the entire testing set do not obey
the interval structure of the ground truth, in which a single action is performed continuously for some time.
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Therefore, we apply a smoothing operation on the predicted labels in order to approximate this structure. The
first smoothing algorithm we employed is called fixed smoothing, in which we segment the n frames into
continuous intervals of size c, for some constant c. This gives us a set of intervals of frames, denoted I:

I = {[x1, xc], [xc + 1, x2c]...[xkc + 1, xn]}

Where xi represents the ith frame, and k = floor
[

n
c

]
. For every interval in I, we change the label of all

frames in the interval to the mode label for the interval. We have used 10-fold cross validation to discover
effective values of c. This technique is intended as a baseline of comparison for similar smoothing techniques.
The fixed smoothing technique is the simplest type of smoothing, and provides a useful lower bound on the
effectiveness of a smoothing operation.

We have also employed a dynamic smoothing algorithm, which allows for windows of varying width. In this
framework, we define a minimum and maximum size for the windows Wmin and Wmax. We wish to find
an ideal window size for an interval beginning at frame S. For every possible window size w, we take the
predicted labels Ŷ and compute the mode label in the window and denote this mode by mw. We then select
the value of w that minimizes a variance metric, as described in the following formula:

WIdeal,S = max
w∈A

1
w1.15

S+w∑
i=S

I(Ŷi = mw)

A = [S +Wmin, S +Wmax]

We divide the number of agreeing labels in the interval by w1.15, a slightly super-linear quantity, in order to
avoid interval lengths that are over-long. In particular, we note that the activity ’stir mix’ occurs very often
in our data set (20%-40% of frames represent this activity, depending on the subject). We observed that the
variance of an interval would drop considerably once the window contained a sequence of the stirring action,
so WIdeal for an arbitrary S was often picked to be close to Wmax in order to capture the closet stirring
action. To prevent this phenomenon, we make the window sizes pay a slight cost in the metric function for
becoming too large.

After the dynamic window sizes are computed, the estimate for the intervals on n test frames becomes:

I = {[X1,WIdeal,X1 ], [X2 = WIdeal,X1 + 1,WIdeal,X2 ]...[XIdeal,k, n]}

Once again, every frame in a given interval is assigned the mode predicted label for that sequence of frames.
We note that for sequence classification, the ground truth interval lengths are known ahead of time, so smooth-
ing techniques are unnecessary.

We implemented the fixed and dynamic smoothing techniques for an SVM classifier, and the results are
shown in the next section. We tried a different type of smoothing for a nearest neighbor classifier. Rather than
labeling the frames individually, and then smoothing the sequence of predicted labels, we instead grouped
v frames into a single input to the algorithm. In this case, the inputs are of dimension v · m, where m is
the number of features for a single frame. The algorithm is trained on the grouped frames, and an interval
of frames is given the ground truth label corresponding to the mode label of the frames in the interval. We
implemented this type of smoothing for v = 10 and v = 50.

4.2 K-NN/SVM and Hidden Markov Models

We employed a classification algorithm that combines K-Nearest Neighbors and Support Vector Machines,
which has been shown to work well in practice for image data[4]. In the prior work by Zhang et al, a similarity
matrix was computed for frame i with regards to its k-nearest neighbors according to a pre-defined distance
metric. In our work, we employ a variation of this algorithm. For a frame i, we compute its 9-nearest
neighbors according to euclidean distance, we concatenate the features of frame i with the features of its
neighbors. Each frame initially begins with 32 PCA selected features, so the new feature set has dimension
320. After this new feature space is computed for all frames, we run an SVM with the radial basis kernel
function on the new dataset. For frames in the testing set, we select only nearest neighbors in the training set
to concatenate with the frame being input to the SVM.

For the sequence classification problem, we combined the K-NN/SVM method with a forward backward
Hidden Markov Model. In the sequence classification problem, we are given a set of starting times of activities
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{A1, A2...Ak}, such that only a single ground truth activity occurs in an interval [Ai, Ai+1 − 1]. We then
label every one of the n frames individually using the K-NN/SVM algorithm. Using the training data, we
empirically estimate the probability of activity i being followed by activity j, for all pairs (i, j). We also
estimate the probability of activity i occurring first and last in the sequence.

We now compute the alpha and beta parameters for the forward-backward HMM. We denote the label of
interval [Ai, Ai+1 − 1] as Yi, and Xi represents the features of the frames in the interval:

α1(Y1) = P (Y1 is first label)P (X1|Y1)

αi(Yi) =
∑
yi−1

P (Xi|Yi)P (Yi|Yi−1 = yi−1)αi−1

βn(Yn) = P (Yn is last label)P (Xn|Yn)

βi(Yi) =
∑
yi+1

P (Xi|Yi)P (Yi|Yi+1 = yi+1)βi+1

The factor P (Xi|Yi) represents the probability of this data given the label. In our case, this is the probability
of all the features of the frames in the interval given the label. This quantity is normally estimated empirically,
but we instead use the output of our K-NN/SVM algorithm to estimate this quantity. We simply use the
proportion of labels in Ai with label Yi to create our estimate. Specifically, if ŷj represents the predicted
label of frame j given by K-NN/SVM, we have the following approximation:

P (Xi|Yi) =
1

|[Ai, Ai+1 − 1]|

Ai+1−1∑
j=Ai

I(ŷj = Yi)

After these parameters have been computed, we assign every frame in interval [Ai, Ai+1 − 1] the following
label:

max
Yi

αi(Yi)βi(Yi)

We applied this HMM framework to the sequence classification problem, but it is less clear how to apply it
to the frame classification problem. In particular, if we compute the probability of label i being followed by
label j for every frame in the set, we find that this probability is approximately 99.6% for i = j. On a frame
by frame basis, two adjacent frames share a label nearly all of the time (only around 35/10,000 frames in a
testing set will have a different label than the frame that preceded it). The fact that a frame is usually followed
by another frame of the same label is a phenomenon that we tried to capture with the smoothing techniques,
but making this behavior explicit using the forward-backward algorithm generally results in every testing
frame being given the same label. As such, a slightly different approach would be required to apply an HMM
to the frame classification problem.

5 Results

Table 1: Result synopsis

Technique Problem setting Frame classification accuracy
Neural Nets Frame classification 4.32%
Naive Bayes Frame classification 12.6%
K-NN (K=1) Frame classification 23.4%

SVM (Unsmoothed) Frame classification 46.4%
SVM (Fixed smoothing) Frame classification 50.4%

SVM Sequence classification 61.4%
K-NN/SVM (Dynamic smoothing) Frame classification 64.0% (Average over 2 subjects)

K-NN/SVM (Fixed smoothing) Frame classification 64.1% (Average over 2 subjects)
K-NN/SVM/HMM Sequence classification 74.8% (Average over 2 subjects)
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Figure 1: SVM performance

0 5 10 15
x 104

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Training Set Size

Er
ro

r R
at

e

 

 
v=50
v=10

Figure 2: Nearest neighbor performance
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Figure 3: SVM cross validation of window size
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Figure 4: K-NN/SVM/HMM sequence prediction on subject 16
Frame classification accuracy: 73.2%

6



0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
    ’open−cupboard_top−action−’

    ’open−drawer−action−’
    ’close−fridge−−’

    ’crack−egg−−’
    ’none−−−’

    ’open−brownie_bag−−’
    ’open−brownie_box−−’

    ’open−fridge−−’
    ’pour−big_bowl−into−baking_pan’

    ’pour−brownie_bag−into−big_bowl’
    ’pour−oil−into−big_bowl’

    ’pour−oil−into−measuring_cup_small’
    ’pour−water−into−big_bowl’

    ’pour−water−into−measuring_cup_big’
    ’put−baking_pan−into−oven’

    ’put−oil−into−cupboard’
    ’put−pam−into−cupboard’

    ’read−brownie_box−−’
    ’spray−pam−−’

    ’stir−big_bowl−−’
    ’stir−egg−−’

    ’switch_on−−−’
    ’take−baking_pan−−’

    ’take−big_bowl−−’
    ’take−brownie_box−−’

    ’take−egg−−’
    ’take−fork−−’

    ’take−measuring_cup_big−−’
    ’take−measuring_cup_small−−’

    ’take−oil−−’
    ’take−pam−−’

    ’twist_off−cap−−’
    ’twist_on−cap−−’

    ’walk−−to−counter’
    ’walk−−to−fridge’

 

 
Ground Truth
Predictions

Figure 5: K-NN/SVM frame classification with fixed smoothing on subject 16
Frame classification accuracy: 63.4%
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Figure 6: K-NN/SVM frame classification with dynamic smoothing on subject 16
Frame classification accuracy: 62.9%

6 Analysis

6.1 Separate Classfiers

The results from the SVM and K-NN models are shown above in figures 1 and 2. In addition, we employed
Naive Bayes and Feed-forward Neural Networks to the dataset, but both of these models failed to achieve the
best prior accuracy2. Naive Bayes trained on 15 subjects achieved a maximum testing accuracy of 12.6%,
while the feedforward nets attained 4.32% accuracy. For the SVM classifier shown above, we used cross
validation to select a window size of 70 for the fixed smoothing procedure (although the cross-validation

2The best prior accuracy is realized by the “stir mix” label, which occurs in 25% of all frames.
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curve above shows that larger values may also be effective) and a slack variable value of 10. We used K = 1
for the K-NN algorithm.

We also tried partitioning the full set of frames into a randomly selected testing and training sets. We observed
that under these conditions the SVM algorithm achieved 90-100% testing accuracy. We believe this is because
of the remarkable similarity of consecutive frames in the dataset, so these results do not represent a realistic
scenario for classification testing.

We observed expected results for the SVM testing, but the K-NN testing error was lower than anticipated
based on prior work[3]. We believe that the corpus of frames may have been too large for K-NN to be useful
with K = 1, even with the smoothing procedure. We also noted a significant drop in accuracy when K-NN
with v = 10 was applied to a training set of 100,000 frames. Our testing was conducted on a single subject,
and it is possible that this subject’s data was not amiable to the nearest neighbor algorithm.

6.2 Combined Classifiers

As expected, the classifier for the sequence classification problem outperformed the frame classification algo-
rithm (figure 4). Without the Hidden Markov Model, the sequence classification algorithm produced 69.5%
accuracy, indicating that the HMM framework provides some benefit. However, using the HMM alone for
sequence classification (using empirical estimates for P (Xi|Yi), rather than the K-NN/SVM output) yields
only 18.6% accuracy, so the forward-backward algorithm was only seen to be effective when combined with
another classifier. The K-NN/SVM/HMM algorithm was also tested on subject 3 with frame classification
accuracy 76.3%, giving an average accuracy over both subjects of 74.8%.

Using K-NN/SVM on the frame classification problem (figures 5 and 6) yielded slightly higher accuracy
than SVM alone. What was slightly surprising was that the dynamic smoothing algorithm performed slightly
worse than the fixed smoothing algorithm. The dynamic smoothing algorithm was run with Wmin = 40 and
Wmax = 5, 000. The largest window selected was 1,361 frames, and the average window size was 60.5. It is
worth noting that the average dynamic window size was very near the static window size of 75, and we see that
the final predictions are very similar. As such, we conjecture that the fixed smoothing algorithm, which also
has lower computational complexity, is the preferred method. However, a different metric function for the
dynamic smoothing algorithm may produce results more comparable to the sequence classification accuracy.
In particular, if a classifier is used that provides confidence measures of a labeled examples (such as the
distance from a separating hyperplane in an SVM), these measures could be used directly in the smoothing
metric.

The K-NN/SVM frame classifier was also run on subject 3, with fixed smoothing accuracy 64.8% and dy-
namic smoothing accuracy 65.1%. In this case, the dynamic smoothing algorithm performed slightly better,
but as with subject 16, the set of predicted labels for the two smoothing algorithms were very similar.

7 Conclusion

Our work indicates that smoothing techniques and consideration of the probable ordering of activities can
be used to increase the effectiveness of algorithms for both classification problems. Although our work has
focused on a somewhat myopic feature extraction scheme oriented around individual frames, we feel that
these techniques could also be successfully applied to features extracted from windows of frames—which
may eventually lead to more effective activity recognition algorithms.
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