
The Radon Transform

Carsten Høilund

Aalborg University, VGIS, 07gr721

November 12, 2007

Contents

1 Introduction 3

2 Theory 4

3 Implementation 9

4 Results 16

Bibliography 20

Chapter 1

Introduction

This is a report about the Radon transform for the course Image Processing held by Thomas Moeslund

at Aalborg University in the autumn of 2007.

The Radon transform is named after the Austrian mathematician Johann Karl August Radon (December

16, 1887 – May 25, 1956) [4]. The main application of the Radontransform is CAT scans, Figure 1.1,

where the inverse Radon transform is applied.

The Radon transform can also be used for line detection, which will be the focus of this report.

Chapter 2 on the next page explains the theory, mostly using pictures.

Chapter 3 on page 9 details the implementation using pictures. The MATLAB source code is also listed.

Chapter 4 on page 16 lists the results obtained with the implementation detailed in this report using two

different input images and compares this with the result obtained using the Radon transform found in

MATLAB.

Figure 1.1: A CAT scanner [1].

Chapter 2

Theory

This section is based on [2, 3].

Applying the Radon transform on an imagef (x,y) for a given set of angles can be thought of as com-

puting the projection of the image along the given angles. The resulting projection is the sum of the

intensities of the pixels in each direction, i.e. a line integral. The result is a new imageR(ρ,θ). This is

depicted in Figure 2.1 on the facing page.

This can be written mathematically by defining

ρ = xcosθ+ ysinθ (2.1)

after which the Radon transform can be written as

R(ρ,θ) =
Z ∞

−∞

Z ∞

−∞
f (x,y)δ(ρ− xcosθ− ysinθ)dx dy (2.2)

whereδ(·) is the Dirac delta function.

There are two distinct Radon transforms. The source can either be a single point (not shown) or it can

be a array of sources (as shown in Figure 2.1 on the next page).The method discussed in this report

uses an array of sources. The theory is explained in Figures 2.1 on the facing page to 2.7 on page 8.

The Radon transform is a mapping from the Cartesian rectangular coordinates(x,y) to a distance and

an angel(ρ,θ), also known as polar coordinates.

An example of the transform of an image for a specific angle is given in Figure 2.4 on page 6 and

Figure 2.6 on page 7. The transform for a set of angels can be depicted in an image, as in Figure 2.7 on

page 8.

5

Figure 2.1: The source and sensor contrapment is rotated about the center of the
object. For each angleθ the density of the matter the rays from the source passes
through is accumulated at the sensor. This is repeated for a given set of angels,
usually fromθ ∈ [0;180). The angel 180 is not included since the result would be
identical to the angel 0.

Figure 2.2: For each angleθ and each distanceρ the intensity of the matter a ray
perpendicular to theρ axis crosses are summed up atR(ρ,θ).

6

Figure 2.3: As an example, the line in this image will atθ = 19o be distributed over
a larger interval.

−150 −100 −50 0 50 100 150
0

5

10

15

20

25

30

35

40

ρ

C
um

ul
at

iv
e

in
te

ns
ity

θ = 19o

Figure 2.4: The result of a Radon transform withθ = 19o which there is no definite
peak.

7

Figure 2.5: Whenθ = 64o the line will be distributed over a very small interval.

−150 −100 −50 0 50 100 150
0

5

10

15

20

25

30

35

40

ρ

C
um

ul
at

iv
e

in
te

ns
ity

θ = 64o

Figure 2.6: The result of a Radon transform withθ = 64o, perpendicular to the
line in the image. This results in a peak, which makes it possible to read the line
parameters.

8

R(ρ,θ)

θ (degrees)

ρ

20 40 60 80 100 120 140 160 180

−100

−80

−60

−40

−20

0

20

40

60

80

100
0

5

10

15

20

25

30

35

Figure 2.7: The complete Radon transform of the image. The white spot is the
distance from the center and the angel at which the sum of intensities in the image
peaks. It is thus the slope of the line along with the position.

Chapter 3

Implementation

The method with an array of sources is chosen, since this is more straight forward. Also, there are two

general ways to implement the chosen Radon transform. It caneither be a function ofθ andρ for which

all matching pixels are calculated, or it could be implemented as a function of the image pixels. The

latter is the easiest but is, however, the Hough transform.

It is implemented in MATLAB. The source is shown in Listing 3.1 on page 13. The function takes a

grayscale image as input and displays the Radon transform asdescribed herein.

10

Figure 3.1: The pixel coordinates in an image is usually only positive. The first step
is therefore to center the image which can be accomplished bysubtracting half the
width from eachx coordinate and likewise half the height from eachy coordinate.

Figure 3.2: The equation of the summation line is given asy = ax + b. As can
be seen by using trigonometry, the inclination isa = − cos(θ)

sin(θ) and the intersection

with they axis isb = ρ
sin(θ) . This fits with Eq. (2.1) on page 4. These parameters

are determined for each combination ofθ andρ. The maximumρ is set equal to
the length of the diagonal of the image. Theρ coordinates are, likex andy, also
centered.

11

Figure 3.3: In order to reduce the number of calculations necessary the maximum
and minimum of eitherx or y are determined.

Figure 3.4: Whetherx or y is used as the variable and how the minimum and maxi-
mum of said variable is calculated depends on in which of the four areas depicted
θ is in since using e.g.x as the variably when the summation line has an absolute
inclination of more than 1 will cause some pixels to be skipped. Neitherθ = 0
nor θ = 180 is included since the line perpendicular to this would have infinite
inclination.

12

0 < θ ≤ 45 : x =
y−b

a
ymin = max(−n,am+b)

ymax = min(n,−am+b)

45< θ ≤ 90 : y = ax+b

ymin = max(−m,
n−b

a
)

ymax = min(m,
−n−b

a
)

90< θ ≤ 135 : y = ax+b

ymin = max(−m,
−n−b

a
)

ymax = min(m,
n−b

a
)

135< θ < 180 : x =
y−b

a
ymin = max(−n,−am+b)

ymax = min(n,am+b)

θ = 180 : ρ = x+ ⌊
ρmax −2m

2
⌉

y = [−m,m]

Figure 3.5: The formulas used to calculate the coordinates and the minimum and
maximum of the variable depending on the angleθ, wherem is half the width
of the image andn is half the height of the image,a is the inclination,b is the
intersection with they axis, andρmax is the size of the diagonal of the image, i.e.
ρmax = ⌈

√

(2m)2 +(2n)2⌉. In e.g. the first equation thex coordinate depends on
the choseny coordinate in order to make sure all pixels along this line istaken into
account when calculating the transform, as noted in Figure 3.4 on the preceding
page.

13

Listing 3.1: Implementation

1 f u n c t i o n [r e s] = myradon (f)

2

3 [N M] = s i z e (f) ;

4

5 % C e n t e r o f t h e image

6 m = round (M/ 2) ;

7 n = round (N/ 2) ;

8

9 % The t o t a l number o f rho ’ s i s t h e number o f p i x e l s on t h e d iagona l , s i n c e

10 % t h i s i s t h e l a r g e s t s t r a i g h t l i n e on t h e image when r o t a t i n g

11 rhomax = c e i l (s q r t (Mˆ2 + Nˆ 2)) ;

12 r c = round (rhomax / 2) ;

13 mt = max (t h e t a) ;

14

15 % P r e a l l o c a t e t h e m a t r i x used t o s t o r e t h e r e s u l t

16 % add 1 t o be sure , c o u l d a l s o be s u b t r a c t e d when c h e c k i n g bounds

17 r e s = c a s t (z e r o s (rhomax +1 , mt) , ’ doub le ’) ;

18

19 t i c

20 f o r t = 1 :45 % below 45 degrees , use y as v a r i a b l e

21 c o s t h e t a = cos (t ∗ pi / 1 8 0) ;

22 s i n t h e t a = s i n (t ∗ pi / 1 8 0) ;

23 a = −c o s t h e t a / s i n t h e t a ;% y = ax + b

24 f o r r = 1 : rhomax

25 rho = r − r c ;

26 b = rho / s i n t h e t a ;% y = ax + b

27 ymax = min (round(−a∗m+b) , n−1) ;

28 ymin = max (round (a∗m+b) ,−n) ;

29 f o r y = ymin : ymax

30 x = (y−b) / a ;

31 x f l o o r = f l o o r (x) ; % The i n t e g e r p a r t o f x

32 xup = x − x f l o o r ; % The d e c i m a l s o f x

33 xlow = 1 − xup ; % What i t s a y s

34 x = x f l o o r ;

35 x = max (x ,−m) ;

36 x = min (x ,m−2) ;

37 r e s (rhomax− r + 1 , mt−t) = r e s (rhomax− r + 1 , mt−t) + xlow∗ f (y+n +1 , x+mց

+1) ;

38 r e s (rhomax− r + 1 , mt−t) = r e s (rhomax− r + 1 , mt−t) + xup∗ f (y+n +1 , x+m+2)ց

;

39 end

40 end

41 end

42 f o r t = 46 :90

43 c o s t h e t a = cos (t ∗ pi / 1 8 0) ;

44 s i n t h e t a = s i n (t ∗ pi / 1 8 0) ;

45 a = −c o s t h e t a / s i n t h e t a ;% y = ax + b

46 f o r r = 1 : rhomax

14

47 rho = r − r c ;

48 b = rho / s i n t h e t a ;% y = ax + b

49 xmax = min (round ((−n−b) / a) ,m−1) ;

50 xmin = max (round ((n−b) / a) ,−m) ;

51 f o r x = xmin : xmax

52 y = a∗x+b ;

53 y f l o o r = f l o o r (y) ;

54 yup = y − y f l o o r ;

55 ylow = 1 − yup ;

56 y = y f l o o r ;

57 y = max (y ,−n) ;

58 y = min (y , n−2) ;

59 r e s (rhomax− r + 1 , mt−t) = r e s (rhomax− r + 1 , mt−t) + ylow∗ f (y+n +1 , x+mց

+1) ;

60 r e s (rhomax− r + 1 , mt−t) = r e s (rhomax− r + 1 , mt−t) + yup∗ f (y+n +2 , x+m+1)ց

;

61 end

62 end

63 end

64 f o r t = 91:135

65 c o s t h e t a = cos (t ∗ pi / 1 8 0) ;

66 s i n t h e t a = s i n (t ∗ pi / 1 8 0) ;

67 a = −c o s t h e t a / s i n t h e t a ;% y = ax + b

68 f o r r = 1 : rhomax

69 rho = r − r c ;

70 b = rho / s i n t h e t a ;% y = ax + b

71 xmax = min (round ((n−b) / a) ,m−1) ;

72 xmin = max (round ((−n−b) / a) ,−m) ;

73 f o r x = xmin : xmax

74 y = a∗x+b ;

75 y f l o o r = f l o o r (y) ;

76 yup = y − y f l o o r ;

77 ylow = 1 − yup ;

78 y = y f l o o r ;

79 y = max (y ,−n) ;

80 y = min (y , n−2) ;

81 r e s (rhomax− r + 1 , mt−t) = r e s (rhomax− r + 1 , mt−t) + ylow∗ f (y+n +1 , x+mց

+1) ;

82 r e s (rhomax− r + 1 , mt−t) = r e s (rhomax− r + 1 , mt−t) + yup∗ f (y+n +2 , x+m+1)ց

;

83 end

84 end

85 end

86 f o r t = 136:179 % above 135 degrees , use y as v a r i a b l e

87 c o s t h e t a = cos (t ∗ pi / 1 8 0) ;

88 s i n t h e t a = s i n (t ∗ pi / 1 8 0) ;

89 a = −c o s t h e t a / s i n t h e t a ;% y = ax + b

90 f o r r = 1 : rhomax

91 rho = r − r c ;

15

92 b = rho / s i n t h e t a ;% y = ax + b

93 ymax = min (round (a∗m+b) , n−1) ;

94 ymin = max (round(−a∗m+b) ,−n) ;

95 f o r y = ymin : ymax

96 x = (y−b) / a ;

97 x f l o o r = f l o o r (x) ;

98 xup = x − x f l o o r ;

99 xlow = 1 − xup ;

100 x = x f l o o r ;

101 x = max (x ,−m) ;

102 x = min (x ,m−2) ;

103 r e s (rhomax− r + 1 , mt−t) = r e s (rhomax− r + 1 , mt−t) + xlow∗ f (y+n +1 , x+mց

+1) ;

104 r e s (rhomax− r + 1 , mt−t) = r e s (rhomax− r + 1 , mt−t) + xup∗ f (y+n +1 , x+m+2)ց

;

105 end

106 end

107 end

108 f o r t = 180 % t h e sum− l i n e i s v e r t i c a l

109 r h o o f f s e t = round ((rhomax − M) / 2) ;

110 f o r x = 1 :M % c a n n o t use r as x i n bo th r e s and f s i n c e t h e y are n o t t h e same ց

s i z e

111 r = x+ r h o o f f s e t ;

112 r = rhomax − r + 1 ;

113 f o r y = 1 :N

114 r e s (r , t) = r e s (r , t) + f (y , x) ;

115 end

116 end

117 end

118 t o c

119 r h o a x i s = (1 : rhomax +1)− r c ;

120 f i g u r e

121 imagesc (1 : 1 8 0 , r h o a x i s , r e s) ;

122 colormap (hot) , c o l o r b a r

As can be seen, linear interpolation is used as given in Listing 3.2, whereylow gives the amount that falls

into they bin andyup gives the amount that falls into they+1 bin.

Listing 3.2: Linear Interpolation

1 y f l o o r = f l o o r (y) ;

2 yup = y − y f l o o r ;

3 ylow = 1 − yup ;

4 y = y f l o o r ;

This concludes the implementation. The results obtained with this implementation is given in the next

chapter.

Chapter 4

Results

The results obtained with the algorithm as described here differs from the built-in MATLAB Radon

function. Using Figure 4.1 as the input image Figure 4.2 on the facing page shows the result of the

algorithm as described in this report and Figure 4.3 on the next page depicts the result from the built-in

MATLAB Radon transform.

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

50

100

150

200

250

Figure 4.1: The input image. Notice the two lines faintly visible.

17

θ (degrees)

ρ

R(ρ,θ)

20 40 60 80 100 120 140 160 180

−100

−80

−60

−40

−20

0

20

40

60

80

100
0

0.5

1

1.5

2

2.5

x 10
4

Figure 4.2: The result obtained with the implementation given herein. The two
small, bright spots are the lines visible in the input image.

R(ρ,θ)

θ (degrees)

ρ

20 40 60 80 100 120 140 160 180

−100

−80

−60

−40

−20

0

20

40

60

80

100
0

0.5

1

1.5

2

2.5

x 10
4

Figure 4.3: The result obtained using the built-in MATLAB Radon transform. The
two lines are also visible here, but competes with the general accumulation of pixel
intensities atθ = 45o andθ = 135o.

18

This does not, however, imply that this implementation is useless. It has some advantages. Compared
to Figure 4.3 on the preceding page the image in Figure 4.2 on the previous page can more easily be
thresholded leaving only the pixels of importance.

The results are not always this different as can be seen when using Figure 4.4 as input which gives
Figure 4.5 and Figure 4.6 on the next page, respectively.

50 100 150 200

20

40

60

80

100

120

140

160

180

200 0

50

100

150

200

250

Figure 4.4: Another image used as input.

19

θ (degrees)

ρ

R(ρ,θ)

20 40 60 80 100 120 140 160 180

−100

−50

0

50

100

0

0.5

1

1.5

2

2.5

3

3.5

x 10
4

Figure 4.5: Result obtained with the implementation from this report. The fat line
is the largest, bright spot and the thin line is the small, bright spot. The curves not
meeting to form a bright spot is the wavy line.

R(ρ,θ)

θ (degrees)

ρ

20 40 60 80 100 120 140 160 180

−100

−50

0

50

100

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Figure 4.6: Result obtained with the implementation from MATLAB. This is nearly
identical to Figure 4.5. The difference is presumably due tousing a different inter-
polation.

Bibliography

[1] Muffet. CAT scanner for simulation. http://flickr.com/photos/calliope/357130113/.

[2] The MathWorks. Radon Transform . http://www.mathworks.com/access/helpdeskr13/help/toolbox/images/transfo9.html.

[3] Peter Toft. The Radon Transform . http://eivind.imm.dtu.dk/staff/ptoft/Radon/Radon.html.

[4] Wikipedia. Johann Radon. http://en.wikipedia.org/wiki/JohannRadon.

http://flickr.com/photos/calliope/357130113/
http://www.mathworks.com/access/helpdesk_r13/help/toolbox/images/transfo9.html
http://eivind.imm.dtu.dk/staff/ptoft/Radon/Radon.html
http://en.wikipedia.org/wiki/Johann_Radon

	1 Introduction
	2 Theory
	3 Implementation
	4 Results
	Bibliography

