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ABSTRACT gent algorithms to such domains will help in two key ways. First,

Researchers building multi-agent algorithms typically work with it will help future researchers in developing such applications, po-

problems abstracted away from real applications. The abstractedte_mially exPa”di”_g the rgnge_of applications for multia_ge_nt tech-
problem instances allow systematic and detailed investigations of Nidues. Second, it may identify key weaknesses of existing algo-

new algorithms. However, a key question is how to apply algo- rithms that make such applications difficult, enabling multiagent
rithm, developed on an abstract problem, in a real application. In researchers to identify assumptions in their research that may need

this paper, we report on what was required to apply a particular ©© P& modified to ease such applications. . o
distributed resource allocation algorithm developed for an abstract A 9°”°f_ete_ example that_ is the ve_hlcle of our |nv¢_est|gat|on S
coordination problem in a real hardware application. A probabilis- 2PPIying distributed constraint reasoning (DCR) algorithms to dis-
tic representation of resources and tasks was used to deal with un-tr_'bu_ted resource aIIocat!on problems, n particular, in a real-wqud
certainty and dynamics and local reasoning was used to deal WithQ|strlbuted sensor domain. DCR algorithms have been extensively

delays in the distributed resource allocation algorithm. The prob- nvestigated in the multiagent literature 3], but typically in the con-
text of abstract domains such as graph coloring problems, and have

abilistic representation and local reasoning enabled the use of the . . :
multi-agent algorithm which, in turn, improved the overall perfor- not bgen tested _pre_wously i real_-w_orld uncertain
mance of the system. dqmalns. The_ Q|str|buteq| sensor network domain mvesn_gated in
this paper exhibits three important real-world features which have
not been previously modelled in abstract DCR domains: a) task
1. INTRODUCTION uncertainty — the set of tasks to be performed can only be known
In the field of multiagent systems, researchers often abstract outprobabilistically, b) real-time constraints — resources must be allo-
key real-world coordination problems for investigation within soft- cated and tasks must be performed within hard time deadlines and
ware testbeds[2]. Abstracting out such key problem features is crit- €) task dynamism — the set of tasks are changing over time. Novel
ical to enable a systematic investigation of the coordination issues, techniques are required to apply existing DCR techniques to real-
unhindered by other complex factors in real-world environments. world domains that exhibit these properties.
One such coordination problem that has received significant at- In this paper, we consider how to apply DCR to domains where
tention recently is distributed resource allocation[9]. Researchers agents will have noisy information about which tasks are present,
have provided distributed constraint representation and reasoning,fesources are limited and tasks change dynamically over time. We
market-based approaches[10], argumentation[6], and several othepresent techniques for addressing each issue and how these tech-
approaches to address such problems. Significant success has beéndues can be incorporated into an existing DCR algorithm with
reported in development of new and efficient algorithms. minimal effort. We use a general, optimal algorithm for DCR named
The key question addressed in this paper is understanding tech-Adopt-SCto perform distributed resource allocation. Adopt-SC is
niques and principles required to apply such coordination algo- suitable for distributed resource allocation problems because it al-
rithms, developed in the context of software testbeds, to real-world lows agents taoptimize i.e., reason about allocating limited re-
environments. While some real-world environments are essentially sources to only the most important tasks. The key idea in this work
software or simulation tools which may more easily match the as- is to apply the Adopt-SC algorithm to a real-world domain using a
sumptions in such coordination algorithms, other real-world envi- two-layered architecture. The general principle is to allow a coordi-
ronments involve physical hardware, where uncertainty, real-time hation algorithm such as Adopt-SC to effectively perform the func-
constraints and dynamism prevails. It is the latter environment that tions for which it was designed by encapsulating the domain details
provides the bigger challenge in building applications, and they are into a lower layer. The lower layer is a probabilistic component that

the focus of this paper. Identifying the principles to apply multia- deals with task uncertainty and dynamics and allows an agent to do
local reasoning when time for coordination is not available. Adopt-
SC runs as the higher layer coordinating inter-agent activities. The
lower layer provides information to the higher layer about which
tasks are present, leaving Adopt-SC free to operate as if tasks are
Permission to make digital or hard copies of all or part of this work for known. The higher layer, which is able to communicate with other
personal or clgssroom use is g_ranted withou't fee provided that copies areagents, provides non-local information to the lower layer thereby
not magie or‘dlstrlbuted for profl_t or comme_rual advantage and that copies allowing it to update its probability model about which tasks are
bear this notice and the full citation on the first page. To copy otherwise, to present.

republish, to post on servers or to redistribute to lists, requires prior specific . . . .
peprmission arqd/or afee. g P P The two-layer architecture deals with the three “domain details”
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described above as follows. First, since agents cannot determine i Agent 2 Grid Configuration:

with certainty which tasks must be performed, they must repre- @ @ @
sent the probability that a particular task is present. The probabil-

ity distribution is updated using both information from the agent’s Targa 1, Targt2

0
sensors and using information inferred from the distributed con- ‘ @ @ @
5 Agent 4

straint problem-solving between agents. This probability distribu-

tion inherently captures the uncertainty that the agent has about Agen TargetS Target4
the presence of tasks. The dynamics of the environment are han- ﬂe
dled by continually updating the probability distribution, informing o @ @ @

Adopt-SC when “significant” changes occur. Adopt-SC allocates

[ﬁsouhrcleés g) taSkj‘ mthla prolbablllty of_gelng prigl_enttabovs SfomteFigure 1: Regions of overlapping sectors (left) and an exam-
reshold. second, the lower 'ayer provides an a lity to maxe last, ple of resource contention where all targets cannot be tracked
local resource allocation decisions when time for coordination is (right)

limited. Finally, while Adopt-SC has a capability for finding sub-
optimal solutions quickly, it takes some time to find even the first
solution once the situation changes. To ensure reasonable operation wWe model the distributed resource allocation problem as a Dis-
in a real-time environment, Adopt-SC is augmented by “locally in- tributed Constraint Optimization Problem (DCOP). DCOP signifi-
telligent reasoning” which can perform a simple allocation of re- cantly generalizes the Distributed Constraint Satisfaction Problem
sources while Adopt-SC works on finding a good global allocation (DisCSP) framework [11], which uses a satisfaction based repre-
of resources. sentation. DCOP consists ofvariablesV’ = {z1,z2, ...z, }, each

We present results obtained from an implementation of the sys- assigned to an agent, where the values of the variables are taken
tem described above on real hardware. The results show that thefrom finite, discrete domain®;, Ds,..., D,, respectively. Only
two-layered architecture is effective at tracking real moving targets. the agent who is assigned a variable has control of its value and
The probability model and local reasoning enabled the coordina- knowledge of its domain. The goal is to choose values for vari-
tion algorithm to deal with the difficulties posed by a real-world aples such that a given objective function is minimized or maxi-
distributed sensor domain. The use of a two-layered architecture, mized. The objective function is described as an aggregation over
where domain details are hidden from the coordination algorithm, gz set of cost functions, or valued constraints.
allowed us to incorporate an existing “off the shelf” distributed con-  The cost functions in DCOP are the analogue of constraints from
straint reasoning algorithm into a real application. As far as we are DisCSP (for convenience, we sometimes refer to cost functions as
aware, this paper reports on the results of the first successful ap-constraints). They take values of variables as input and, instead of
plication of distributed constraint reasoning on real hardware. We returning “satisfied or unsatisfied”, they return a valuation. Thus,
believe this is a significant first step towards moving multiagent al- for each pair of variables;, x;, we are given acost function
gorithms developed on abstract problems out of the lab and into thefij : D; x Dj - N Uoo. Figure 2.a shows an example con-

real world. straint graph with four agents and an associated cost function. Two
agentse;, z; areneighborsif they have a constraint between them.
2. SENSOR NETWORK DOMAIN Figure 2.az: andz3 are neighbors because a constraint exists be-

tween them, but, andz4 are not neighbors because they have no

sists of multiple fixed sensors, each controlled by an autonomous constraint. F_or_simplicity in the example,_all Fhe .const_raints are t_he
X same, but this is not necessary. The objective is to find an assign-

agent, and multiple targets moving through their sensing range[7]. N -
Each sensor is equipped with three radar heads, each covering 12 entA” of values to variables such that the total cost, dendted
is minimized and every variable has a value. Stated formally, we

degrees. The Doppler sensors are able to detect both the presenci DR
of a moving object and give an approximate measure of the veloc- wish to find A (= A”) such thatF"(A) is minimized, where the
objective functionF is defined as

ity of the object towards or away from the sensor. The sensors are

The distributed sensing application investigated in this paper con-

able to detect targets moving within about 20 feet. Three sensor F(A) = Y fildi,d;) ,wherez; « d;,
read!ngs are re_quwed to acc_urately Io_cz_illze a target, e_llthough. two z;,2;€V 2 —dj in A
readings can give an approximate position (especially if a previous o
position was known.) For example, in Figure 2(a):

Resource contention may occur because an agent may activate F({(21,0), (z2,0), (z3,0), (24,0)}) = 4

at most one radar head, or sector, at a given time. Three sensors

must turn on overlapping sectors to accurately track a target. Forand

example in Figure 1 (left), if agent 1 detects a target in its sector O, _

neighboring agents must activate their respective sectors that over- F({(@,1), (@2,1), (@3,1), (24, 1)}) = 0

lap with agent 1's sector 0 so that the target is tracked. Targets in aln this example A™ = {(z1, 1),(z2, 1), (%3,1), (z4,1)}.

particular region are calledsksthat need to be completed/tracked. We formulate distribute resource allocation as a DCOP in the

Figure 1(right) shows a configuration of 9 agents and an example following way. In resource allocation, we have a set of all pos-

of resource contention. Since at least three neighboring agents aresible tasksT,, where|T,| = K. N tasks will be present at any

required to track each target and no agent can track more than onefime, N < K. The set of tasks actually present &g|T,| =

only two of the four targets can be tracked. The agents must find V). For each task ifl,, a DCOP variable has a value from

an allocation that minimizes the weight of the ignored targets. {Allocated, Not Present, I gnore}, representing present, not pre-
sent and ignore respectively. Resources must be allocated to all

3. DISTRIBUTED CONSTRAINT OPTIMIZA- tasks_ withP value. If a task is g_ssigned the va_Iﬂgno_re, a cost
functionw: T,— N U oo quantifies the cost of ignoring the task.

TION The DCOP requires agents to choose value for variables such that



-«—VALUE/THRESHOL D messages

To use Adopt-SC in a distributed sensor domain it was necessary
~a - - COST messages

Neiahb _ to add an extra component which maintains a probabilistic repre-
agmors - —— Parent/Child sentation of the currently present tasks. This component abstracts
@ di_dj| f(di, dj) away the details of the domain for Adopt-SC and allows it to find
00

good solutions for a simplified problem. The probabilistic compo-
nent also performs resource allocation itself, when Adopt-SC does
not have solutions immediately available. In the remainder of this
section, we describe the workings of this probabilistic component
and its integration with Adopt-SC.

The probabilistic component has two distinct modes of opera-
tion. Which mode of operation to use is determined by whether
Adopt-SC has allocated the agent to a task that is currently present.

(@ (b) In the sensor network domain this can be determined by whether
Adopt-SC has specified using a radar head that can detect a target.
Figure 2: (a) Constraint graph. (b) Communication graph. If Adopt-SC has allocated resources of the agent to a present task
then the probabilistic component has a passive monitoring role. If
Adopt-SC allocates the agent to a task that is not present then the
resources are assigned to only the most important tasks and ignorg®robabilistic component acts pro-actively to determine which tasks
tasks with small costs when resources are limited. Section 3.1 de-are present. In other words, the probabilistic component is only
scribes Adopt-SC, an algorithm for optimally solving DCOP prob- Pro-active when Adopt-SC is failing. Adopt-SC is given responsi-
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lems. bility for making decisions if it can because it is able to make glob-
ally optimal allocation decisions while the probabilistic component
3.1 Adopt-SC can only randomly choose between detected targets. When Adopt-

The Adopt algorithm [5] performs a distributed asynchronous SC is failing, i.e., it i_s_ a§king for actions_towards a_task t_h_at is not
search for the optimal solution using linear space at each agent.Présent, the probabilistic component, with a superior ability to de-
Adopt has been theoretically shown to be complete, i.e., the glob- termine which tasks are present, assumes control. Notice, that the
ally optimal solution is guaranteed to be found using only localized, Probabilistic component does this reasoning asynchronously and in
asynchronous communication. Communication is local in the sense Parallél to Adopt-SC's resource allocation reasoning.
that agents only communicate with neighboring agents. Adopt-SC In 'tS_ passive, _rr_lonlt_ormg r_node the_ probabilistic component up-
(Adopt with Save Context) is a version of the Adopt algorithm that 9ates its probability distribution and informs Adopt-SC when the
stores all partially explored search paths in order to increase effi- Status of a task changes. In its active mode, the probabilistic com-
ciency, but at the expense of memory [4]. Adopt-SC requires expo- ponent takes actions which aim t_o_determlne the presence of a task
nential space at each agent in the worst case. However, in practice?S 9uickly as possible. Determining what action will most read-
for the sensor network domain discussed in this paper, we found ily determine the presence of tasks can be easily inferred from its

that the benefits of the efficiency outweighted the cost of the addi- S€NsOr model. That is, the action that is most likely to resolve un-
tional memory requirement. certainty, given the current state BR is chosen.

We briefly describe the Adopt algorithm. Agents are ordered in T_he_ interf_ace between_the probabilistic represent_ation and Adopt-
a Depth-First Search (DFS) tree and each agent chooses its vari>C IS intentionally kept simple so that changes to either component
able value concurrently. The DFS tree defines parent and child 90 not require significant changes in the other. Information flows
relationships. Figure 2.b shows a DFS tree formed from the con- fr_om_the probabilistic representation to Adopt-SC via messages in-
straint graph in Figure 2.a # is the root,z; is the parent ofc» dlcatlng that the status of a task has changed. For example, a mes-
andz is the parent of botlrs andz4. Each agent sends its value ~S29€ iS sent when the status of a task changes ffamP. In the
choice (via a VALUE message) to the descendents in the DFS tree@ther direction, Adopt-SC sends messages indicating which tasks
with which it has a constraint. Each agent then computesuad other agents believe to be present, whenever it receives a commu-
interval on cost for its subtree given these value assignments and Nication providing that information. For example, if Agent 2 com-
asynchronously reports this information (via a COST message) to Municates the presence of Task 1 to Agent 1, Adopt-SC at Agent 1
its parent in the DFS tree. A bound interval consists of a least will send a message to t_he probabilistic component _|nd|cat|ng the
lower bound and a least upper bound on solution cost. The size ofPrésence of Task 1. Notice that Adopt-SC sends this message re-
the bound interval decreases over time as cost information perco-9ardless of its beliefs about the task, since the probabilistic compo-
lates up the tree to an agent from its children. Figure 2.b shows NENt can use the information to change its probability distribution,
the flow of messages between agents. The asynchronous messag&nforcing or lessening the probability a task is present.
passing of variable values from parents to descendents and bound L .
intervals (COST messages) from children to parent continues until 4.1 Probabilistic Task Representation
each agent’s least lower bound is equal to its least upper bound, Figure 3 shows the channels of communication and the infor-
in which case the globally optimal solution has been found. This mation that flows along those channels in an agent. Notice that
is guaranteed to eventually occur and the algorithm will terminate information flows in both directions, i.e., it flows down from the
with the optimal solution. In addition, Adopt can take as input a high level negotiation reasoning and up from the low level sensor
cost threshold, which is used for terminating with a sub-optimal readings. This allows the agent to take advantage of both local
solution when there is insufficient time to find the optimal solution. information, i.e., sensor readings, and global information, i.e., in-
ferred information from other agents, giving it an accurate picture
4. APPLYING ADOPT-SCINADISTRIBUTED  of Which tasks are present. .
For each task iff,, a task status froiP, NP, U}, representing
SENSOR DOMAIN present, not present and unknown respectively, is maintained. The



Other agents given the probability that it was present earlier. Formally,
this information isPr(T;|Pr(T:-1)), where Pr(T}) is the

probability taskT" is present at time.

DCSP DCSP
Communication | Agent Communication

e Updates based on probabilistic information about relation-

{T1=U,T2=R T3=NP} ships between tasks. Formally, this informatiofis(T: | Pr(T>)A

...\ Pr(Tn)).
Inferences Mapping Inferences
from comm. from comm. We refer to each type of information as an observation, denoted
. R O. Each of the types of observation provides some evidence about
{T1=025T2=07,T3=0.05 the presence of a task,. In particular, given a model of the types

of observation that can be received we can calcult€I’|O).

That evidence should be combined with previous evidence to make
Pr(T) more accurate. However, since the situation changes dy-
Information from namically, more recent evidence should be weighted more heavily
Sensors than older information. The integration of the new observations

with the previous evidence uses a variation on Bayes’ rule:

Figure 3: Diagram of the basic information flows around an
agent.

Pr(O|T) x Pr(T)
Pr(0)
In this equatiorO is the new observatior?r(O|T') is the prob-

set of task status fof,is called thetask status vectordenoted ability of getting the observation given that the task is present. This
VAnfor Agent An. The task status vector is used by Adopt-SC probablllﬁy is calculated in different ways, depending on _the typ_e c_>f
to decide which variable values to assign. Tasks, which map to observation. For example, a model of the sensors provides this in-

Pr(T|0O) =

variables, with statu# could be assigned either valulocated formation for sensor observationBr(T') is the a priori probability
or Ignored by Adopt-SC. Tasks with stati¥ P must be assigned ~ of taskT". Since we know the probability that the task was present
the valueNot Present by Adopt-SC. Finally, tasks with statds in the previous time step we can use that information to calculate

can be assigned any value, depending on the value at other agentgﬂe probability that the task is present in the current time step. That
by Adopt-SC. Atask status vector projectios the set of tasks in Is:
V“4nwhere the value is of a certain type, e.g. the‘éﬁfis those

tasks for whichA,, has the valud/. The aim of the uncertainty Pr(T.) — Pr(Ty|Ti—1) x Pr(Ti—1)

rﬁ_askoning is to malgég‘,‘;" =T, i.e.,hto mall(ke tt]he tasks the”agent r(Ty) = Pr(Ti—1|Ty)

thinks are present be the same as the tasks that are actually present. . o . .
For eachl’ € T, the probability that the task is currently present wherePr(T;) is theper(c:’p?g?lhlty of task’ being present at timke

is Pr(T). The agent maintains this probability for each task, i.e., For simplicity, we setz7—75 = w. Essentially, this assumes

it maintains probabilite®PR = {Pr(Ti)...Pr(Tn)}. Each that the dynamics of the environment are uniform across tasks and
agent’s probability distribution is maintained locally, hence differ- times. Thus, the calculation of the probability of a task given a new
ent agents may have different probabilities that a task is present. Ameasurement and an previous probability is:

function mapsPR to V4. The details of this mapping are some-

what arbitrary and need to chosen in a domain dependent manner. Pr(O|T;) x wPr(T;—1)

In the sensor network domain we use the following mapping: Pr(T:|0) = Pr(0)
The integration of new observations iteratively upd®&s. When
if Pr(T) < 0.2 thenNP 1) any Pr(T)changes enough that it causes the status of a task to
else if Pr(T) > 0.8  thenP change, e.gN P to P, a message is sent to Adopt-SC which then

may start a new round of negotiation to determine a new optimal
task allocation.
Maintaining as accurate as possible distribution is essential to the ~ Adopt-SC assigns weights to tasks, prioritizing tasks with higher
success of the approach. To create and maintain this distribution inweights. Normally, if the status of some tasKighe agent will not
a noisy, dynamic environment requires the combination of multi- actively try to allocate resources to that task, nor will it take actions
ple measurements to reduce uncertainty, giving more weight to theto determine whether or not the task is actually present. However,
most recent measurements to ensure the current situation is capif it is currently allocating resources to a task with lower weight
tured. Four pieces of information are used to update the probability than a task with statu&’ it will periodically schedule actions to
distribution. resolve the uncertainty surrounding that task. In particular, in the
) ] ) sensor network domain it can switch to the sector most likely to
» Updates based on observations made while performing a task getermine whether or not the task is present. This behavior ensures
using a learned environment model. Formally, this informa-  thatimportant tasks are not ignored simply because no agent checks
tionis Pr(T'|S), whereS is a sensor reading. whether the task is present. However, agents do not spend time
checking for tasks that are of lower priority than the one to which
they are currently allocating resources.

else U

e Updates made based on inferences from overheard commu-
nications from other nodes. Formally, this information is

Pr(T|M) whereM is a message. 4.1.1 Updates from Sensors

e Updates made based on knowledge of the dynamics of the Inthe sensor network domain, the same domain actions are taken
domain. In particular, the probability that a task is present to detect tasks as to perform those tasks. Using a learned model



Task
Reading| T1 T2 T3 T4 T5 T6 T7 T8
0 0.83| 0.69| 0.65| 0.51| 0.39| 0.39| 0.78 | 0.89
0.16 | 0.29| 0.28| 0.27 | 0.19| 0.15| 0.15| 0.10
0.0 | 0.01| 0.05| 0.17| 0.17| 0.14| 0.03| 0.0
00| 0.0 | 00 |0.03]0.15|0.11|0.02| 0.0
00| 00| 0O| 0.0 | 0.05|0.05| 0.0 | 0.0
00| 00| 0O| 0.0 |0.01|0.13| 00| 0.0

abhwNPE

Table 1: Probability of a particular radar sector getting a par-
ticular reading when a task is present.

Strength 0 1 2 3 4 5
Probability | 0.83 | 0.09 | 0.02 | 0.01 | 0.01 | 0.02

Table 2: Probability of getting a reading of a certain strength . ) )
from a particular sensor and sector. Figure 4: Left: A Doppler radar for tracking moving targets.

Right: Target to be tracked.

of the environment the agent can leverage measurements taken in . .
the course of performing a task to reason about the presence of alPa9¢€ aIIocatmg_ resources to a tafkhe agent receiving the mes-
tasks. This technique for reducing uncertainty is purely local, i.e., S29€ can only infefhreshold < Pra(T) < 1.0. Potentially, the
the agent uses only local information to reduce uncertainty. Ta- agents COUl.d also communl_cate their perspective of_the probab|l|t_y
ble 1 shows part of the model faPr(O|T) for a subset of zones that a task is present but this would add to the required communi-

for a particular node and sector. Column 1 gives the strength of cation bandwidth and has so far not been required.

the reading, i.e., the observation, with higher numbers representingg 1.3 Dynamics and Task Relationships
stronger readings. Readings of strength 0 and 1 cannot be distin-
guished from noise. Columns 2-9 show the probability of getting a

reading of that strength given that the task is currently present. In

Finally, the probability distribution is updated using a model of
the dynamics of the domain and a model of relationships between
tasks. The dynamics model captures probabilistic temporal rela-

this example, the sensor can give little information about the pres- tionships between tasks. For example, in the distributed sensor do-
ence of Task 1, since even if the task is present the readings will bemain VF\)/e model the robabilit tha‘t)Tr;lsk 2 is present at 2 if
no stronger than noise. On the other hand, for Task 6, the sensor. ' P y P

will get a reading of strength 5 13% of the time. Table 2 shows the Task 1is pkressnt a‘td: Il. S|rt1)ce, we are tracklrg)g trfalnsh moving

a priori probability of getting readings of various strengths. The OP fft tracks this mg Ie can ?qul'te acgulrart]e, #t Ot:.t e_pul_rEolses
table shows that readings of strength 5 are quite rare. Using Bayes’?0 %ﬁfg?fngrgi c:n(iw ;\fseitisg:]nﬁ] ytkr]r; On:)(tt ti?rt'lé setg Je.?h:: r:1 s d)clal
rule and the initial probability of Task 6 being present, a reading of f relationshi d t pt ks i ful when th p. ltiol
strength 5 would increase the probability of Task 6 being present. ot rerationsnips between 1asks IS Useiul when there are muiliple

For the distributed sensor domain, these probabilities tables can betaSkS that have some probabilistic relationship between them. For

calculated analytically from a model of the sensor example, in the distributed sensor domain for a military applica-
' tion, detecting an object at one point can lead to expectations about

4.1.2 Updates from Overheard Communication where other objects might be because objects might be moving in

In order to find a good (optimal, if time is available) allocation of tsoime gﬂg OtLL(;m?r?l?g;/eStl;\Zhir?fcr)]:r%i?iloﬁatnh;?rr dec: rﬁggcis%gcte;
resources to tasks, Adopt-SC requires agents negotiate as describea Ioc);te re’sourc;as P P
above. Since the task status vector for each agent will be differ- ’

ent, agents can infer useful information from communications from

other agents. The local sensing actions of each agent are suited t(}r’- HARDWARE EXPERIMENTS

detecting particular tasks. Inferring information from communi- In this section we describe the hardware setup, experiment and
cation allows an agent to leverage the ability of another agent to results. The sensors were arranged in a diamond in a small room
accurately detect a particular task. inside the Information Sciences Institute (a very noisy environment
At the level of Adopt-SC negotiations the agents are not dealing for the sensors). The configuration is shown in Figure 6 (a photo-
with the probability a task exists, instead they are udipgore, graph of the radar and target (toy train) are shown in Figure 5). The
Allocated andNot Present. Messages witlignore or Allocated lines on the sensors show the orientation of the radar heads. Notice
imply the presence of the task, while messages Witlt Present that the sensors at the ends of the room did not need to change sec-

imply the absence of a task. Since each agent uses the same proltors, while the sensors on the sides of the room needed to switch
abilistic reasoning if an agent sends a message indicating the presbetween two sectors.
ence (absence) of a task it must have a probability above (below) The aim of the sensor network is to obtain an accurate track of
its threshold. If the thresholds are reasonably high (low) commu- one or more moving targets. Creating such a track involves a va-
nicated messages provide good information about the presence ofiety of algorithms working together, e.g., the task allocation algo-
tasks. rithm and an algorithm for combining measurements from multiple
However, a communication does not give detailed information sensors. A sample track is shown in Figure 7. For this experiment
about the certainty with which the communicating agent believes we are only interested in the performance of the task allocation
in the presence of the task. For example, if agent A sends a mes-algorithm and in particular the way the algorithm deals with un-
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Figure 5: Photograph of target (train) with sensor during ex- Figure 7: Track produced by four sensors following a target
periment. moving on an oval track.

\\\\\\\\\\\\\\unm///////////// - Approx.
N 7 /
§\\\ ////2 | range of
; Measurements / Setup
= «w 1750
= g 1650 |
= o 1600
= = 5 1550 |
= = $ 1500 |
= = L 1450
= = = 1400 |
% § * 1350 : : :
Z N 2 DT © =} =} o
%, Track 2 3 g 8 8 8
////// \\\\\\ 2 o Q ry) N -
QTN x 2 L LA
LT

Figure 8: Number of measurements made by various algo-
rithms.

Figure 6: The configuration of the room, sensors and target

track for hardware experiments. Dotted ellipses from sensor on

left hand sensor show approximate range of two of the sensors

radar heads.



certainty. Hence, the quality of the track produced is not a good
metric, rather we use a metric which gives the number of measure-
ments of the target taken by the agents. The more measurements
taken the more often the sensors were focused on the target and not
searching for it or looking in the wrong sector. Three different al-
gorithms were used. The results are shown in Figure 8 (the x-axis
shows the number of measurements taken and the y-axis shows the
algorithm used). The first algorithm used a fixed configuration of
sectors based on the known track of the target. One configuration
had the sensors on the sides of the room both looking towards one
end of the room (“fixed up” in the figure), while the other had the
sensors on the sides of the room looking to opposite ends of the
room (“fixed u/d” in the figure). The next algorithm ("local” in
the figure) used only local sensing information, changing sectors
whenever it failed to sense a target in the sector it was currently
using. Finally, Adopt-SC was used with various timeout lengths (1
second — “T=1000" in the figure, 2 seconds — “T=2000" and 5 sec-
onds — “T=5000"). Each algorithm was run three times, each time
for 20 minutes. The values shown on the graphs are the average
number of measurements across the three runs. [
Adopt-SC performed clearly better than the other algorithms be-
cause the four nodes together were better able to resolve uncertainty
and find the target than the localized algorithms. The “local” algo-

rithm performed worst because it was most susceptible to the noisel11]

in the environment. A single false reading indicating the presence
of a target would result in the agent wasting a significant amount
of time. The algorithms utilizing information from others as well
as their own information were less susceptible to single noisy mea-
surements. The reason for the difference in performance of Adopt-
SC with different time out values is not exactly clear but it likely
related to the speed of the moving target.

6. CONCLUSIONS AND FUTURE WORK

Using a multiagent coordination for task allocation in a real world
application involves dealing with issues that are not addressed in an
algorithm developed on an abstract problem. In particular, dynam-
ics, uncertainty and real-time constraints need to be addressed. In
this paper we have proposed extensions to an asynchronous, dis-
tributed constraint optimization algorithm that addresses these is-
sues. In particular, we use a probability model over possible tasks,
updating that model with information from sensors, communica-
tion from other agents and knowledge of the dynamics of the en-
vironment. Reasoning based on that probability model was used
to choose actions for not only which tasks to attend to but also to
choose actions to find whether tasks are currently present. Future
work will use a realistic simulator of the problem to investigate in
detail the factors that effect performance. Specifically, we intend to
investigate the effect of the speed at which the set of present tasks
changes on the usefulness of the algorithm.
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