
Are multiagent algorithms relevant for real hardware? A
case study of distributed constraint algorithms

ABSTRACT
Researchers building multi-agent algorithms typically work with
problems abstracted away from real applications. The abstracted
problem instances allow systematic and detailed investigations of
new algorithms. However, a key question is how to apply algo-
rithm, developed on an abstract problem, in a real application. In
this paper, we report on what was required to apply a particular
distributed resource allocation algorithm developed for an abstract
coordination problem in a real hardware application. A probabilis-
tic representation of resources and tasks was used to deal with un-
certainty and dynamics and local reasoning was used to deal with
delays in the distributed resource allocation algorithm. The prob-
abilistic representation and local reasoning enabled the use of the
multi-agent algorithm which, in turn, improved the overall perfor-
mance of the system.

1. INTRODUCTION
In the field of multiagent systems, researchers often abstract out

key real-world coordination problems for investigation within soft-
ware testbeds[2]. Abstracting out such key problem features is crit-
ical to enable a systematic investigation of the coordination issues,
unhindered by other complex factors in real-world environments.
One such coordination problem that has received significant at-
tention recently is distributed resource allocation[9]. Researchers
have provided distributed constraint representation and reasoning,
market-based approaches[10], argumentation[6], and several other
approaches to address such problems. Significant success has been
reported in development of new and efficient algorithms.

The key question addressed in this paper is understanding tech-
niques and principles required to apply such coordination algo-
rithms, developed in the context of software testbeds, to real-world
environments. While some real-world environments are essentially
software or simulation tools which may more easily match the as-
sumptions in such coordination algorithms, other real-world envi-
ronments involve physical hardware, where uncertainty, real-time
constraints and dynamism prevails. It is the latter environment that
provides the bigger challenge in building applications, and they are
the focus of this paper. Identifying the principles to apply multia-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

gent algorithms to such domains will help in two key ways. First,
it will help future researchers in developing such applications, po-
tentially expanding the range of applications for multiagent tech-
niques. Second, it may identify key weaknesses of existing algo-
rithms that make such applications difficult, enabling multiagent
researchers to identify assumptions in their research that may need
to be modified to ease such applications.

A concrete example that is the vehicle of our investigation is
applying distributed constraint reasoning (DCR) algorithms to dis-
tributed resource allocation problems, in particular, in a real-world
distributed sensor domain. DCR algorithms have been extensively
investigated in the multiagent literature [3], but typically in the con-
text of abstract domains such as graph coloring problems, and have
not been tested previously in the context of real-world uncertain
domains. The distributed sensor network domain investigated in
this paper exhibits three important real-world features which have
not been previously modelled in abstract DCR domains: a) task
uncertainty – the set of tasks to be performed can only be known
probabilistically, b) real-time constraints – resources must be allo-
cated and tasks must be performed within hard time deadlines and
c) task dynamism – the set of tasks are changing over time. Novel
techniques are required to apply existing DCR techniques to real-
world domains that exhibit these properties.

In this paper, we consider how to apply DCR to domains where
agents will have noisy information about which tasks are present,
resources are limited and tasks change dynamically over time. We
present techniques for addressing each issue and how these tech-
niques can be incorporated into an existing DCR algorithm with
minimal effort. We use a general, optimal algorithm for DCR named
Adopt-SCto perform distributed resource allocation. Adopt-SC is
suitable for distributed resource allocation problems because it al-
lows agents tooptimize, i.e., reason about allocating limited re-
sources to only the most important tasks. The key idea in this work
is to apply the Adopt-SC algorithm to a real-world domain using a
two-layered architecture. The general principle is to allow a coordi-
nation algorithm such as Adopt-SC to effectively perform the func-
tions for which it was designed by encapsulating the domain details
into a lower layer. The lower layer is a probabilistic component that
deals with task uncertainty and dynamics and allows an agent to do
local reasoning when time for coordination is not available. Adopt-
SC runs as the higher layer coordinating inter-agent activities. The
lower layer provides information to the higher layer about which
tasks are present, leaving Adopt-SC free to operate as if tasks are
known. The higher layer, which is able to communicate with other
agents, provides non-local information to the lower layer thereby
allowing it to update its probability model about which tasks are
present.

The two-layer architecture deals with the three “domain details”

described above as follows. First, since agents cannot determine
with certainty which tasks must be performed, they must repre-
sent the probability that a particular task is present. The probabil-
ity distribution is updated using both information from the agent’s
sensors and using information inferred from the distributed con-
straint problem-solving between agents. This probability distribu-
tion inherently captures the uncertainty that the agent has about
the presence of tasks. The dynamics of the environment are han-
dled by continually updating the probability distribution, informing
Adopt-SC when “significant” changes occur. Adopt-SC allocates
resources to tasks with a probability of being present above some
threshold. Second, the lower layer provides an ability to make fast,
local resource allocation decisions when time for coordination is
limited. Finally, while Adopt-SC has a capability for finding sub-
optimal solutions quickly, it takes some time to find even the first
solution once the situation changes. To ensure reasonable operation
in a real-time environment, Adopt-SC is augmented by “locally in-
telligent reasoning” which can perform a simple allocation of re-
sources while Adopt-SC works on finding a good global allocation
of resources.

We present results obtained from an implementation of the sys-
tem described above on real hardware. The results show that the
two-layered architecture is effective at tracking real moving targets.
The probability model and local reasoning enabled the coordina-
tion algorithm to deal with the difficulties posed by a real-world
distributed sensor domain. The use of a two-layered architecture,
where domain details are hidden from the coordination algorithm,
allowed us to incorporate an existing “off the shelf” distributed con-
straint reasoning algorithm into a real application. As far as we are
aware, this paper reports on the results of the first successful ap-
plication of distributed constraint reasoning on real hardware. We
believe this is a significant first step towards moving multiagent al-
gorithms developed on abstract problems out of the lab and into the
real world.

2. SENSOR NETWORK DOMAIN
The distributed sensing application investigated in this paper con-

sists of multiple fixed sensors, each controlled by an autonomous
agent, and multiple targets moving through their sensing range[7].
Each sensor is equipped with three radar heads, each covering 120
degrees. The Doppler sensors are able to detect both the presence
of a moving object and give an approximate measure of the veloc-
ity of the object towards or away from the sensor. The sensors are
able to detect targets moving within about 20 feet. Three sensor
readings are required to accurately localize a target, although two
readings can give an approximate position (especially if a previous
position was known.)

Resource contention may occur because an agent may activate
at most one radar head, or sector, at a given time. Three sensors
must turn on overlapping sectors to accurately track a target. For
example in Figure 1 (left), if agent 1 detects a target in its sector 0,
neighboring agents must activate their respective sectors that over-
lap with agent 1’s sector 0 so that the target is tracked. Targets in a
particular region are calledtasksthat need to be completed/tracked.
Figure 1(right) shows a configuration of 9 agents and an example
of resource contention. Since at least three neighboring agents are
required to track each target and no agent can track more than one,
only two of the four targets can be tracked. The agents must find
an allocation that minimizes the weight of the ignored targets.

3. DISTRIBUTED CONSTRAINT OPTIMIZA-
TION

Sector Number

1
O

2

Agent 3

Agent 2

Agent 4

Agent 1

Target 1

Target 2

.Target 1
50 .Target 2

70

.Target 3
80 .Target 4

20

Grid Configuration:

Figure 1: Regions of overlapping sectors (left) and an exam-
ple of resource contention where all targets cannot be tracked
(right)

We model the distributed resource allocation problem as a Dis-
tributed Constraint Optimization Problem (DCOP). DCOP signifi-
cantly generalizes the Distributed Constraint Satisfaction Problem
(DisCSP) framework [11], which uses a satisfaction based repre-
sentation. DCOP consists ofn variablesV = fx1;x2; :::xng, each
assigned to an agent, where the values of the variables are taken
from finite, discrete domainsD1; D2;:::; Dn, respectively. Only
the agent who is assigned a variable has control of its value and
knowledge of its domain. The goal is to choose values for vari-
ables such that a given objective function is minimized or maxi-
mized. The objective function is described as an aggregation over
a set of cost functions, or valued constraints.

The cost functions in DCOP are the analogue of constraints from
DisCSP (for convenience, we sometimes refer to cost functions as
constraints). They take values of variables as input and, instead of
returning “satisfied or unsatisfied”, they return a valuation. Thus,
for each pair of variablesxi, xj , we are given acost function
fij : Di � Dj ! N [1. Figure 2.a shows an example con-
straint graph with four agents and an associated cost function. Two
agentsxi; xj areneighborsif they have a constraint between them.
Figure 2.a,x1 andx3 are neighbors because a constraint exists be-
tween them, butx1 andx4 are not neighbors because they have no
constraint. For simplicity in the example, all the constraints are the
same, but this is not necessary. The objective is to find an assign-
mentA� of values to variables such that the total cost, denotedF ,
is minimized and every variable has a value. Stated formally, we
wish to findA (= A�) such thatF (A) is minimized, where the
objective functionF is defined as

F (A) =
P

xi;xj2V

fij(di; dj) ; where xi di;

xj dj in A

For example, in Figure 2(a):

F (f(x1; 0); (x2; 0); (x3; 0); (x4; 0)g) = 4

and

F (f(x1; 1); (x2; 1); (x3; 1); (x4; 1)g) = 0

In this example,A� = f(x1; 1),(x2; 1), (x3; 1), (x4; 1)g.
We formulate distribute resource allocation as a DCOP in the

following way. In resource allocation, we have a set of all pos-
sible tasksTa, wherejTaj = K. N tasks will be present at any
time, N < K. The set of tasks actually present areTp(jTpj =
N). For each task inTa, a DCOP variable has a value from
fAllocated;NotPresent; Ignoreg, representing present, not pre-
sent and ignore respectively. Resources must be allocated to all
tasks withP value. If a task is assigned the valueIgnore, a cost
functionw: Ta! N [1 quantifies the cost of ignoring the task.
The DCOP requires agents to choose value for variables such that

x1

x2

x3 x4

Neighbors

x1

x2

x3 x4

Parent/Child

COST messages
VALUE/THRESHOLD messages

(b)

1
2

0

2

(a)

0 0
di dj f(di, dj)

0 1

1 0

1 1

Figure 2: (a) Constraint graph. (b) Communication graph.

resources are assigned to only the most important tasks and ignore
tasks with small costs when resources are limited. Section 3.1 de-
scribes Adopt-SC, an algorithm for optimally solving DCOP prob-
lems.

3.1 Adopt-SC
The Adopt algorithm [5] performs a distributed asynchronous

search for the optimal solution using linear space at each agent.
Adopt has been theoretically shown to be complete, i.e., the glob-
ally optimal solution is guaranteed to be found using only localized,
asynchronous communication. Communication is local in the sense
that agents only communicate with neighboring agents. Adopt-SC
(Adopt with Save Context) is a version of the Adopt algorithm that
stores all partially explored search paths in order to increase effi-
ciency, but at the expense of memory [4]. Adopt-SC requires expo-
nential space at each agent in the worst case. However, in practice
for the sensor network domain discussed in this paper, we found
that the benefits of the efficiency outweighted the cost of the addi-
tional memory requirement.

We briefly describe the Adopt algorithm. Agents are ordered in
a Depth-First Search (DFS) tree and each agent chooses its vari-
able value concurrently. The DFS tree defines parent and child
relationships. Figure 2.b shows a DFS tree formed from the con-
straint graph in Figure 2.a –x1 is the root,x1 is the parent ofx2
andx2 is the parent of bothx3 andx4. Each agent sends its value
choice (via a VALUE message) to the descendents in the DFS tree
with which it has a constraint. Each agent then computes abound
interval on cost for its subtree given these value assignments and
asynchronously reports this information (via a COST message) to
its parent in the DFS tree. A bound interval consists of a least
lower bound and a least upper bound on solution cost. The size of
the bound interval decreases over time as cost information perco-
lates up the tree to an agent from its children. Figure 2.b shows
the flow of messages between agents. The asynchronous message
passing of variable values from parents to descendents and bound
intervals (COST messages) from children to parent continues until
each agent’s least lower bound is equal to its least upper bound,
in which case the globally optimal solution has been found. This
is guaranteed to eventually occur and the algorithm will terminate
with the optimal solution. In addition, Adopt can take as input a
cost threshold, which is used for terminating with a sub-optimal
solution when there is insufficient time to find the optimal solution.

4. APPLYING ADOPT-SC IN A DISTRIBUTED
SENSOR DOMAIN

To use Adopt-SC in a distributed sensor domain it was necessary
to add an extra component which maintains a probabilistic repre-
sentation of the currently present tasks. This component abstracts
away the details of the domain for Adopt-SC and allows it to find
good solutions for a simplified problem. The probabilistic compo-
nent also performs resource allocation itself, when Adopt-SC does
not have solutions immediately available. In the remainder of this
section, we describe the workings of this probabilistic component
and its integration with Adopt-SC.

The probabilistic component has two distinct modes of opera-
tion. Which mode of operation to use is determined by whether
Adopt-SC has allocated the agent to a task that is currently present.
In the sensor network domain this can be determined by whether
Adopt-SC has specified using a radar head that can detect a target.
If Adopt-SC has allocated resources of the agent to a present task
then the probabilistic component has a passive monitoring role. If
Adopt-SC allocates the agent to a task that is not present then the
probabilistic component acts pro-actively to determine which tasks
are present. In other words, the probabilistic component is only
pro-active when Adopt-SC is failing. Adopt-SC is given responsi-
bility for making decisions if it can because it is able to make glob-
ally optimal allocation decisions while the probabilistic component
can only randomly choose between detected targets. When Adopt-
SC is failing, i.e., it is asking for actions towards a task that is not
present, the probabilistic component, with a superior ability to de-
termine which tasks are present, assumes control. Notice, that the
probabilistic component does this reasoning asynchronously and in
parallel to Adopt-SC’s resource allocation reasoning.

In its passive, monitoring mode the probabilistic component up-
dates its probability distribution and informs Adopt-SC when the
status of a task changes. In its active mode, the probabilistic com-
ponent takes actions which aim to determine the presence of a task
as quickly as possible. Determining what action will most read-
ily determine the presence of tasks can be easily inferred from its
sensor model. That is, the action that is most likely to resolve un-
certainty, given the current state ofPR is chosen.

The interface between the probabilistic representation and Adopt-
SC is intentionally kept simple so that changes to either component
do not require significant changes in the other. Information flows
from the probabilistic representation to Adopt-SC via messages in-
dicating that the status of a task has changed. For example, a mes-
sage is sent when the status of a task changes fromU to P . In the
other direction, Adopt-SC sends messages indicating which tasks
other agents believe to be present, whenever it receives a commu-
nication providing that information. For example, if Agent 2 com-
municates the presence of Task 1 to Agent 1, Adopt-SC at Agent 1
will send a message to the probabilistic component indicating the
presence of Task 1. Notice that Adopt-SC sends this message re-
gardless of its beliefs about the task, since the probabilistic compo-
nent can use the information to change its probability distribution,
reinforcing or lessening the probability a task is present.

4.1 Probabilistic Task Representation
Figure 3 shows the channels of communication and the infor-

mation that flows along those channels in an agent. Notice that
information flows in both directions, i.e., it flows down from the
high level negotiation reasoning and up from the low level sensor
readings. This allows the agent to take advantage of both local
information, i.e., sensor readings, and global information, i.e., in-
ferred information from other agents, giving it an accurate picture
of which tasks are present.

For each task inTa, a task status fromfP;NP; Ug, representing
present, not present and unknown respectively, is maintained. The

DCSP
Communication

Inferences
from comm.

DCSP
Communication

Inferences
from comm.

Information from
Sensors

{T1 = U, T2 = P, T3 = NP}

{T1 = 0.25, T2 = 0.7, T3 = 0.05}

Mapping

Agent

Other agents

Figure 3: Diagram of the basic information flows around an
agent.

set of task status forTais called thetask status vector, denoted
V An for AgentAn. The task status vector is used by Adopt-SC
to decide which variable values to assign. Tasks, which map to
variables, with statusP could be assigned either valueAllocated
or Ignored by Adopt-SC. Tasks with statusNP must be assigned
the valueNotPresent by Adopt-SC. Finally, tasks with statusU
can be assigned any value, depending on the value at other agents
by Adopt-SC. Atask status vector projectionis the set of tasks in
V Anwhere the value is of a certain type, e.g. the setV An

U is those
tasks for whichAn has the valueU . The aim of the uncertainty
reasoning is to makeV An

P = Tp, i.e., to make the tasks the agent
thinks are present be the same as the tasks that are actually present.

For eachT 2 Ta the probability that the task is currently present
is Pr(T). The agent maintains this probability for each task, i.e.,
it maintains probabilitiesPR = fPr(T1) : : : P r(TN)g. Each
agent’s probability distribution is maintained locally, hence differ-
ent agents may have different probabilities that a task is present. A
function mapsPR to V An . The details of this mapping are some-
what arbitrary and need to chosen in a domain dependent manner.
In the sensor network domain we use the following mapping:

if Pr(T) < 0:2 thenNP (1)

else ifPr(T) > 0:8 thenP

else U

Maintaining as accurate as possible distribution is essential to the
success of the approach. To create and maintain this distribution in
a noisy, dynamic environment requires the combination of multi-
ple measurements to reduce uncertainty, giving more weight to the
most recent measurements to ensure the current situation is cap-
tured. Four pieces of information are used to update the probability
distribution.

� Updates based on observations made while performing a task,
using a learned environment model. Formally, this informa-
tion isPr(T jS), whereS is a sensor reading.

� Updates made based on inferences from overheard commu-
nications from other nodes. Formally, this information is
Pr(T jM) whereM is a message.

� Updates made based on knowledge of the dynamics of the
domain. In particular, the probability that a task is present

given the probability that it was present earlier. Formally,
this information isPr(TtjPr(Tt�1)), wherePr(Tt) is the
probability taskT is present at timet.

� Updates based on probabilistic information about relation-
ships between tasks. Formally, this information isPr(T1jPr(T2)^
: : : ^ Pr(TN)).

We refer to each type of information as an observation, denoted
O. Each of the types of observation provides some evidence about
the presence of a task,T . In particular, given a model of the types
of observation that can be received we can calculatePr(T jO).
That evidence should be combined with previous evidence to make
Pr(T) more accurate. However, since the situation changes dy-
namically, more recent evidence should be weighted more heavily
than older information. The integration of the new observations
with the previous evidence uses a variation on Bayes’ rule:

Pr(T jO) =
Pr(OjT)� Pr(T)

Pr(O)

In this equationO is the new observation.Pr(OjT) is the prob-
ability of getting the observation given that the task is present. This
probability is calculated in different ways, depending on the type of
observation. For example, a model of the sensors provides this in-
formation for sensor observations.Pr(T) is the a priori probability
of taskT . Since we know the probability that the task was present
in the previous time step we can use that information to calculate
the probability that the task is present in the current time step. That
is:

Pr(Tt) =
Pr(TtjTt�1)� Pr(Tt�1)

Pr(Tt�1jTt)

wherePr(Tt) is the probability of taskT being present at timet.

For simplicity, we setPr(TtjTt�1)
Pr(Tt�1jTt)

= w. Essentially, this assumes
that the dynamics of the environment are uniform across tasks and
times. Thus, the calculation of the probability of a task given a new
measurement and an previous probability is:

Pr(TtjO) =
Pr(OjTt)� wPr(Tt�1)

Pr(O)

The integration of new observations iteratively updatesPR. When
any Pr(T)changes enough that it causes the status of a task to
change, e.g.,NP to P , a message is sent to Adopt-SC which then
may start a new round of negotiation to determine a new optimal
task allocation.

Adopt-SC assigns weights to tasks, prioritizing tasks with higher
weights. Normally, if the status of some task isU the agent will not
actively try to allocate resources to that task, nor will it take actions
to determine whether or not the task is actually present. However,
if it is currently allocating resources to a task with lower weight
than a task with statusU it will periodically schedule actions to
resolve the uncertainty surrounding that task. In particular, in the
sensor network domain it can switch to the sector most likely to
determine whether or not the task is present. This behavior ensures
that important tasks are not ignored simply because no agent checks
whether the task is present. However, agents do not spend time
checking for tasks that are of lower priority than the one to which
they are currently allocating resources.

4.1.1 Updates from Sensors
In the sensor network domain, the same domain actions are taken

to detect tasks as to perform those tasks. Using a learned model

Task
Reading T1 T2 T3 T4 T5 T6 T7 T8

0 0.83 0.69 0.65 0.51 0.39 0.39 0.78 0.89
1 0.16 0.29 0.28 0.27 0.19 0.15 0.15 0.10
2 0.0 0.01 0.05 0.17 0.17 0.14 0.03 0.0
3 0.0 0.0 0.0 0.03 0.15 0.11 0.02 0.0
4 0.0 0.0 0.0 0.0 0.05 0.05 0.0 0.0
5 0.0 0.0 0.0 0.0 0.01 0.13 0.0 0.0

Table 1: Probability of a particular radar sector getting a par-
ticular reading when a task is present.

Strength 0 1 2 3 4 5
Probability 0.83 0.09 0.02 0.01 0.01 0.02

Table 2: Probability of getting a reading of a certain strength
from a particular sensor and sector.

of the environment the agent can leverage measurements taken in
the course of performing a task to reason about the presence of all
tasks. This technique for reducing uncertainty is purely local, i.e.,
the agent uses only local information to reduce uncertainty. Ta-
ble 1 shows part of the model forPr(OjT) for a subset of zones
for a particular node and sector. Column 1 gives the strength of
the reading, i.e., the observation, with higher numbers representing
stronger readings. Readings of strength 0 and 1 cannot be distin-
guished from noise. Columns 2-9 show the probability of getting a
reading of that strength given that the task is currently present. In
this example, the sensor can give little information about the pres-
ence of Task 1, since even if the task is present the readings will be
no stronger than noise. On the other hand, for Task 6, the sensor
will get a reading of strength 5 13% of the time. Table 2 shows the
a priori probability of getting readings of various strengths. The
table shows that readings of strength 5 are quite rare. Using Bayes’
rule and the initial probability of Task 6 being present, a reading of
strength 5 would increase the probability of Task 6 being present.
For the distributed sensor domain, these probabilities tables can be
calculated analytically from a model of the sensor.

4.1.2 Updates from Overheard Communication
In order to find a good (optimal, if time is available) allocation of

resources to tasks, Adopt-SC requires agents negotiate as described
above. Since the task status vector for each agent will be differ-
ent, agents can infer useful information from communications from
other agents. The local sensing actions of each agent are suited to
detecting particular tasks. Inferring information from communi-
cation allows an agent to leverage the ability of another agent to
accurately detect a particular task.

At the level of Adopt-SC negotiations the agents are not dealing
with the probability a task exists, instead they are usingIgnore,
Allocated andNotPresent. Messages withIgnore orAllocated
imply the presence of the task, while messages withNotPresent
imply the absence of a task. Since each agent uses the same prob-
abilistic reasoning if an agent sends a message indicating the pres-
ence (absence) of a task it must have a probability above (below)
its threshold. If the thresholds are reasonably high (low) commu-
nicated messages provide good information about the presence of
tasks.

However, a communication does not give detailed information
about the certainty with which the communicating agent believes
in the presence of the task. For example, if agent A sends a mes-

Figure 4: Left: A Doppler radar for tracking moving targets.
Right: Target to be tracked.

sage allocating resources to a task,T , the agent receiving the mes-
sage can only inferthreshold < PrA(T) < 1:0. Potentially, the
agents could also communicate their perspective of the probability
that a task is present but this would add to the required communi-
cation bandwidth and has so far not been required.

4.1.3 Dynamics and Task Relationships
Finally, the probability distribution is updated using a model of

the dynamics of the domain and a model of relationships between
tasks. The dynamics model captures probabilistic temporal rela-
tionships between tasks. For example, in the distributed sensor do-
main, we model the probability that Task 2 is present att = 2 if
Task 1 is present att = 1. Since, we are tracking trains moving
on set tracks this model can be quite accurate, but for the purposes
of the experiments below we simply model that the object is likely
to move to an adjacent position in the next time step. The model
of relationships between tasks is useful when there are multiple
tasks that have some probabilistic relationship between them. For
example, in the distributed sensor domain for a military applica-
tion, detecting an object at one point can lead to expectations about
where other objects might be because objects might be moving in
some sort of formation. Such a model can further reduce uncer-
tainty and, thus, improve the information that Adopt-SC uses to
allocate resources.

5. HARDWARE EXPERIMENTS
In this section we describe the hardware setup, experiment and

results. The sensors were arranged in a diamond in a small room
inside the Information Sciences Institute (a very noisy environment
for the sensors). The configuration is shown in Figure 6 (a photo-
graph of the radar and target (toy train) are shown in Figure 5). The
lines on the sensors show the orientation of the radar heads. Notice
that the sensors at the ends of the room did not need to change sec-
tors, while the sensors on the sides of the room needed to switch
between two sectors.

The aim of the sensor network is to obtain an accurate track of
one or more moving targets. Creating such a track involves a va-
riety of algorithms working together, e.g., the task allocation algo-
rithm and an algorithm for combining measurements from multiple
sensors. A sample track is shown in Figure 7. For this experiment
we are only interested in the performance of the task allocation
algorithm and in particular the way the algorithm deals with un-

Figure 5: Photograph of target (train) with sensor during ex-
periment.

Sensor

Approx.
range of
radar

Track

Figure 6: The configuration of the room, sensors and target
track for hardware experiments. Dotted ellipses from sensor on
left hand sensor show approximate range of two of the sensors
radar heads.

6
7
8
9

10
11
12
13
14
15

6.5 7 7.5 8 8.5 9 9.5 10 10.5

"t.txt" index 6 using 2:3

Figure 7: Track produced by four sensors following a target
moving on an oval track.

1350
1400
1450
1500
1550
1600
1650
1700
1750

F
ix

ed
 u

p

F
ix

ed
 u

/d

Lo
ca

l

T
=

50
00

T
=

20
00

T
=

10
00

M

ea
su

re
m

en
ts

Measurements / Setup

Figure 8: Number of measurements made by various algo-
rithms.

certainty. Hence, the quality of the track produced is not a good
metric, rather we use a metric which gives the number of measure-
ments of the target taken by the agents. The more measurements
taken the more often the sensors were focused on the target and not
searching for it or looking in the wrong sector. Three different al-
gorithms were used. The results are shown in Figure 8 (the x-axis
shows the number of measurements taken and the y-axis shows the
algorithm used). The first algorithm used a fixed configuration of
sectors based on the known track of the target. One configuration
had the sensors on the sides of the room both looking towards one
end of the room (“fixed up” in the figure), while the other had the
sensors on the sides of the room looking to opposite ends of the
room (“fixed u/d” in the figure). The next algorithm (”local” in
the figure) used only local sensing information, changing sectors
whenever it failed to sense a target in the sector it was currently
using. Finally, Adopt-SC was used with various timeout lengths (1
second – “T=1000” in the figure, 2 seconds – “T=2000” and 5 sec-
onds – “T=5000”). Each algorithm was run three times, each time
for 20 minutes. The values shown on the graphs are the average
number of measurements across the three runs.

Adopt-SC performed clearly better than the other algorithms be-
cause the four nodes together were better able to resolve uncertainty
and find the target than the localized algorithms. The “local” algo-
rithm performed worst because it was most susceptible to the noise
in the environment. A single false reading indicating the presence
of a target would result in the agent wasting a significant amount
of time. The algorithms utilizing information from others as well
as their own information were less susceptible to single noisy mea-
surements. The reason for the difference in performance of Adopt-
SC with different time out values is not exactly clear but it likely
related to the speed of the moving target.

6. CONCLUSIONS AND FUTURE WORK
Using a multiagent coordination for task allocation in a real world

application involves dealing with issues that are not addressed in an
algorithm developed on an abstract problem. In particular, dynam-
ics, uncertainty and real-time constraints need to be addressed. In
this paper we have proposed extensions to an asynchronous, dis-
tributed constraint optimization algorithm that addresses these is-
sues. In particular, we use a probability model over possible tasks,
updating that model with information from sensors, communica-
tion from other agents and knowledge of the dynamics of the en-
vironment. Reasoning based on that probability model was used
to choose actions for not only which tasks to attend to but also to
choose actions to find whether tasks are currently present. Future
work will use a realistic simulator of the problem to investigate in
detail the factors that effect performance. Specifically, we intend to
investigate the effect of the speed at which the set of present tasks
changes on the usefulness of the algorithm.

7. REFERENCES
[1] Collin and Dechter. A distributed solution to the network

consistency problem.AI Journal, pages 242–251, 1990.
[2] Steve Hanks, Martha Pollack, and Paul Cohen. Benchmarks,

testbeds, controlled experimentation, and the design of agent
architectures.AI Magazine, 14(4):17–42, 1993.

[3] M. Yokoo E.H. Durfee T. Ishida and K. Kuwabara. The
distributed constraint satisfaction problem: Formalization
and algorithms.IEEE Transactions on Knowledge and Data
Engineering, 10(5):673–685, 1998.

[4] P. J. Modi, W. Shen, and M. Tambe. Distributed constraint
optimization and its application. Technical Report

ISI-TR-509, University of Southern California/Information
Sciences Institute, 2002.

[5] P. J. Modi, W. Shen, M. Tambe, and M. Yokoo. An
asynchronous complete method for general distributed
constraint optimization. InProc of Autonomous Agents and
Multi-Agent Systems Workshop on Distributed Constraint
Reasoning, 2002.

[6] S. Parsons, C. Sierra, and N.R. Jennings. Agents that
negotiate by arguing.Journal of Logic and Computation,
1998.

[7] BAE Systems / Sanders. ECM challenge problem.
http://www.sanders.com/ants/ecm.htm, 2001.

[8] Noam M. Shazeer, Michael L. Littman, and Greg A. Keim.
Solving crossword puzzles as probabilistic constraint
satisfaction. InAAAI/IAAI, pages 156–162, 1999.

[9] O. Shehory and S. Kraus. Task allocation via coalition
formation among autonomous agents. InProceedings of
IJCAI’95, pages 655–661, 1995.

[10] William Walsh and Michael Wellman. A market protocol for
decentralized task allocation. InProceedings of the
International conference on multi-agent systems, pages
325–332, Paris, July 1998.

[11] Makoto Yokoo, Edmund H. Durfee, Toru Ishida, and
Kazuhiro Kuwabara. The distributed constraint satisfaction
problem: Formalization and algorithms.Knowledge and
Data Engineering, 10(5):673–685, 1998.

	author: Paul Scerri, Jay Modi, Wei-Min Shen and Milind Tambe
	Address: USC Information Sciences Institute
	email: {scerri,modi,shen,tambe}@isi.edu
	Acknoledge: This research is supported in part by DARPA/IPTO under contract F30602-99-2-0507 and in part by AFOSR under grant F49620-01-1-0020
	AckHead: Acknowledgements

