
A Dynamic Distributed Constraint Satisfaction
Approach to Resource Allocation

Pragnesh Jay Modi Hyuckchul Jung Milind Tambe
Wei-Min Shen Shriniwas Kulkarni

University of Southern California/Information Sciences Institute
4676 Admiralty Way, Marina del Rey, CA 90292, USAfmodi,jungh,tambe,shen,kulkarnig@isi.edu

Abstract. In distributed resource allocation a set of agents must assign their re-
sources to a set of tasks. This problem arises in many real-world domains such
as disaster rescue, hospital scheduling and the domain described in this paper:
distributed sensor networks. Despite the variety of approaches proposed for dis-
tributed resource allocation, a systematic formalizationof the problem and a gen-
eral solution strategy are missing. This paper takes a step towards this goal by
proposing a formalization of distributed resource allocation that represents both
dynamic and distributed aspects of the problem and a generalsolution strategy
that uses distributed constraint satisfaction techniques. This paper defines the no-
tion of Dynamic Distributed Constraint Satisfaction Problem (DyDCSP) and pro-
poses two generalized mappings from distributed resource allocation to DyDCSP,
each proven to correctly perform resource allocation problems of specific diffi-
culty and this theoretical result is verified in practice by an implementation on a
real-world distributed sensor network.

1 Introduction
Distributed resource allocation is a general problem in which a set of agents must intelli-
gently perform operations and assign their resources to a set of tasks such that all tasks
are performed. This problem arises in many real-world domains such as distributed
sensor networks [7], disaster rescue[4], hospital scheduling[2], and others. Resource
allocation problems of this type are difficult because they are bothdistributedanddy-
namic. A key implication of the distributed nature of this problemis that the control is
distributed in multiple agents; yet these multiple agents must collaborate to accomplish
the tasks at hand. Another implication is that the multiple agents each obtain only local
information, and face global ambiguity — an agent may know the results of its local
operations but it may not know which other collaborators must be involved to fulfill the
global task and which operations these collaborators must perform for success. Finally,
the situation is dynamic so a solution to the resource allocation problem at one time
may become obsolete when the underlying tasks have changed.This means that once a
solution is obtained, the agents must continuously monitorit for changes and must have
a way to express such changes in the problem.

In this paper, we first propose a formalization of distributed resource allocation that
is expressive enough to represent both dynamic and distributed aspects of the problem.
This formalization allows us to understand the complexity of different types of resource
allocation problems. Second, in order to address this type of resource allocation prob-
lem, we define the notion of a Dynamic Distributed ConstraintSatisfaction Problem

(DyDCSP). DyDCSP is a generalization of DCSP (Distributed Constraint Satisfaction
Problem) [8] that allows constraints to be added or removed from the problem as exter-
nal environmental conditions change. Third, we present tworeusable, generalized map-
pings from distributed resource allocation to DyDCSP, eachproven to correctly perform
resource allocation problems of specific difficulty and experimentally verified through
implementation in a real-world application. In summary, our central contribution is 1) a
formalization that may enable researchers to understand the difficulty of their resource
allocation problem and 2) generalized mappings to DyDCSP which provide automatic
guarantees for correctness of the solution.

There is significant research in the area of distributed resource allocation; for in-
stance, Liu and Sycara’s work[5] extends dispatch scheduling to improve resource allo-
cation. Chia et al’s work on distributed vehicle monitoringand general scheduling (e.g.
airport ground service scheduling) is well known but space limits preclude us from a
detailed discussion [1]. However, a formalization of the general problem in distributed
settings is yet to be forthcoming. Some researchers have focused on formalizing re-
source allocation as a centralized CSP, where the issue of ambiguity does not arise[3].
The fact that resource allocation is distributed means thatambiguity must be dealt with.
Dynamic Constraint Satisfaction Problem has been studied in the centralized case by
[6]. However, there is no distribution or ambiguity during the problem solving process.

The paper is structured as follows: Section 2 describes the application domain of
our resource allocation problem and Section 3 presents a formal model and defines sub-
classes of the resource allocation problem. Section 4 introduces Dynamic Distributed
Constraint Satisfaction Problems. Then, Sections 5 and 6 describe solutions to sub-
classes of resource allocation problems of increasing difficulty, by mapping them to
DyDCSP. Section 7 describes empirical results and Section 8concludes.

2 Application Domain
The domain in which this work has been applied is a distributed sensor domain. This
domain consists of multiple stationary sensors, each controlled by an independent agent,
and targets moving through their sensing range (Figure 1.a)illustrates the real hardware
and simulator screen, respectively). Each sensor is equipped with a Doppler radar with
three sectors. An agent may activate at most one sector of a sensor at a given time or
switch the sensor off. While all of the sensor agents must actas a team to cooperatively
track the targets, there are some key difficulties in such tracking.

First, in order for a target to be tracked accurately, at least three agents must collab-
orate — concurrently activating overlapping sectors. For example, in Figure 1.b which
corresponds to the simulator in Figure 1.a, if an agent A1 detects a target 1 in its sec-
tor 0, it must coordinate with neighboring agents, A2 and A4 say, so that they activate
their respective sectors that overlap with A1’s sector 0. Activating a sector is an agent’s
operation. Since there are three sectors of 120 degrees, each agent has three operations.
Since target 1 exists in the range of a sector for all agents, any combination of operations
from three agents or all four agents can achieve the task of tracking target 1.

Second, there is ambiguity in selecting a sector to find a target. Since each sensor
agent can detect only the distance and speed of a target, an agent that detects a target
cannot tell other agents which sectors to activate. When there is only target 1 in Figure
1.b and agent A1 detects the target first, A1 can tell A4 to activate sector 1. However,

Sector Number

1
O

2

Target 1

Target 2

Agent A1 Agent A2

Agent A3 Agent A4

(a) hardware and simulator (b) sensor sectors

Fig. 1. A distributed sensor domain

A1 cannot tell A2 which of the two sectors (sector 1 or sector 2) to activate since it only
knows that there is a target in its sector 0. That is, agents don’t know which task is to be
performed. Identifying a task to perform depends on the result of other related agents’
operations.

Third, if there are multiple targets, that introduces resource contention — an agent
may be required to activate more than one sector, which it cannot! For instance, in
Figure 1.b, A4 needs to decide whether to perform either a task for target 1 or a task
for target 2. Since at most one sector can be activated at a given time, A4 should decide
which task to perform. Thus, the relationship among tasks will affect the difficulty of
the resource allocation problem.

Fourth, the situation is dynamic as targets move through thesensing range. The
dynamic property of the domain makes problems even harder. Since target moves over
time, after agents activate overlapping sectors and track atarget, they may have to find
different overlapping sectors.

The above application illustrates the difficulty of resource allocation among dis-
tributed agents in dynamic environment. Lack of a formalismfor dynamic distributed
resource allocation problem can lead to ad-hoc methods which cannot be easily reused.
On the other hand, adopting a formal model allows our problemand its solution to be
stated in a more general way, possibly increasing our solution’s usefulness. More im-
portantly, a formal treatment of the problem also allows us to study its complexity and
provide other researchers with some insights into the difficulty of their own resource al-
location problems. Finally, a formal model allows us to provide guarantees of soundness
and completeness of our results. The next section presents our general, formal model of
resource allocation.

3 Formalization of Resource Allocation
A Distributed Resource Allocation Problem consists of 1) a set of agents that can each
perform some set of operations, and 2) a set of tasks to be completed. In order to be
completed, a task requires some subset of agents to perform the necessary operations.
Thus, we can define a task by the operations that agents must perform in order to com-
plete it. The problem to be solved is an allocation of agents to tasks such that all tasks
are performed. This problem is formalized next.

A Distributed Resource Allocation Problem is a structure<Ag,
, �> where

– Ag is a set of agents,Ag = fA1, A2, ...,Ang.
–
 = fO11; O12 , ...,Oip, ...,Onq g is a set of operations, where operationOip denotes

the p‘th operation of agentAi. An operation can either succeed or fail. LetOp(Ai)

denote the set of operations ofAi. Operations inOp(Ai) aremutually exclusive; an
agent can only perform one operation at a time.

– � is a set of tasks, where a task is a collection of sets of operations that satisfy the
following properties:8T 2 �,
(i) T � P (
) (Power set of
)
(ii) T is nonempty and,8t 2 T , t is nonempty;
(iii) 8tr, ts 2 T , tr 6� ts andts 6� tr. tr andts are calledminimal sets. Two minimal
setsconflict if they contain operations belonging to the same agent.

Notice that there may be alternative sets of operations thatcan complete a given
task. Each such set is a minimal set. (Property (iii) above requires that each set of
operations in a task should be minimal in the sense that no other set is a subset of it.) A
solutionto a resource allocation problem then, involves choosing a minimal set for each
task such that the minimal sets do not conflict. In this way, when the agents perform the
operations in those minimal sets, all tasks are successfully completed.

To illustrate this formalism in the distributed sensor network domain, we cast each
sensor as an agent and activating one of its (three) sectors as an operation. We will useOip to denote the operation of agentAi activating sector p. For example, in Figure 1.b,
we have four agents, soAg = fA1, A2, A3, A4g. Each agent can perform one of three
operations, so
 =

SAi2AgOp(Ai), whereOp(Ai) = f Oi0,Oi1, Oi2 g.

Now we only have left to define our task set�. We will define a separate task for
each target in a particular location, where a location corresponds to an area of overlap
of sectors. In the situation illustrated in Figure 1.b, we have two targets shown, so we
define two tasks:� = fT1, T2g. Since a target requires three agents to track it so that
its position can be triangulated, TaskT1 requires any three of the four possible agents
to activate their correct sector, so we define a minimal set corresponding to the all (4
choose 3) combinations. Thus,T1 = ffO10, O22, O30g, fO22 , O30 , O41g, fO10, O30 , O41g,fO10, O22 , O41gg. Note that the subscript of the operation denotes the numberof the
sector the agent must activate. TaskT2 can only be tracked by two agents, both of
which are needed, soT2 = ffO30, O42gg.

For each task, we use� (Tr) to denote the union of all the minimal sets ofTr, and for
each operation, we useT (Oip) to denote the set of tasks that includeOip. For instance,� (T1) = fO10, O22 , O30 , O41g andT (O30) = f T1, T2 g. We will also require that every
operation should serve some task, i.e.8 Oip 2
, j T (Oip) j 6= 0. Formal definitions for� andT are as follows:

– 8 Tr 2 �, � (Tr) =
Str2Trtr

– 8 Oip 2
, T (Oip) = fTr j Oip 2 � (Tr)g
All the tasks in� may not always be present. We use�current (� �) to denote the

set of tasks that are currently present. This set is determined by the environment. We
call a resource allocation problemstatic if �current is constant over time anddynamic
otherwise. So in our distributed sensor network example, a moving target represents a
dynamic problem. Agents can execute their operations at anytime, but the success of
an operation is determined by the set of tasks that are currently present. The following
two definitions formalize this interface with the environment.

Definition 1: 8 Oip 2
, if Oip is executed and9 Tr 2 �current such thatOip 2� (Tr), thenOip is said tosucceed.
So in our example, if agentA1 executes operationO10 and if T1 2 �current, thenO10 will succeed, otherwise it will fail. Next, a task is performed when all the operations

in some minimal set succeed. More formally,
Definition 2: 8Tr 2 �, Tr is performediff 9tr 2 Tr such that all the operations intr succeed. All tasks that satisfy this definition are contained in�current.
Agents must somehow be informed of the set of current tasks. The notification pro-

cedure is outside of this formalism. Thus, the following assumption states that at least
one agent is notified that a task is present by the success of one of its operations. (This
assumption can be satisfied in the distributed sensor domainby agents “scanning” for
targets by rotating sectors when they are currently not tracking a target.)

Notification assumption: 8Tr 2 �, if Tr 2 �current, then9 Oip 2 � (Tr) such that8Ts(6= Tr) 2 �current, Oip 62 Ts andOip succeeds.
We now state some definitions that will allow us to categorizea given resource allo-

cation problem and analyze its complexity. In many resourceallocation problems, tasks
have the property that they require at leastk agents from a pool ofn (n > k) available
agents. That is, the task contains a minimal set for each of the

�nk� combinations. The
following definition formalizes this notion.

Definition 3: 8 Tr 2 �, Tr is task-
�nk�-exactiff Tr has exactly

�nk�minimal sets of
sizek, wheren = j � (Tr) j .

For example, the taskT1 (corresponding to target 1 in Figure 1.b) is task-
�43�-exact.

The following just defines the class of resource allocation problems where all tasks
satisfy the above definition.

Definition 4 :
�nk�-exactdenotes the class of resource allocation problems<Ag,
,�> such that8 Tr 2 �, Tr is task-

� nkr�-exact for somekr.
We find it useful to define a special case of

�nk�-exact resource allocation problems,
namely those whenk = n. In other words, the task contains only one minimal set.

Definition 5:
�nn�-exactdenotes the class of resource allocation problems<Ag,
,�> such that8 Tr 2 �, Tr is task-

�nrkr�-exact, wherenr = kr =j � (Tr) j.
For example,the taskT2 (corresponding to target 2 in Figure 1.b) is task-

�22�-exact.
Definition 6: Unrestricted denotes the class of resource allocation problems<Ag,
, �> with no restrictions on tasks.
The following definitions refer to relations between tasks.We define two types of

conflict-freeto denote resource allocation problems that have solutions, or equivalently,
problems where all tasks can be performed concurrently.

Definition 7: A resource allocation problem is calledstrongly conflict free (SCF)
if 8 Tr; Ts 2 �, the following statement is true:

– if Tr 6= Ts, then8 tr 2 Tr, 8 ts 2 Ts, 8 Ai 2 Ag, j tr \ Op(Ai) j + j ts \ Op(Ai) j � 1.

The SCF condition states that an operation of an agent can be required for no more
than one task. This implies that we can choose any minimal setfor each task and be
guaranteed a non-conflicting solution.

Definition 8: A resource allocation problem is calledweakly conflict free (WCF)
if 8 Tr; Ts 2 �, the following statement is true:

– if Tr 6= Ts, then9 tr 2 Tr, 9 ts 2 Ts 8 Ai 2 Ag, j tr \ Op(Ai) j + j ts \ Op(Ai) j � 1.

The WCF condition is much weaker in that it implies that thereexists a choice of
minimal sets from the tasks that are non-conflicting or in other words, there exists at
least one solution.

4 Dynamic DCSP
In order to solve general resource allocation problems thatconform to our formalized
model, we will use distributed constraint satisfaction techniques. Existing approaches
to distributed constraint satisfaction fall short for our purposes however because they
cannot capture the dynamic aspects of the problem. In dynamic problems, a solution to
the resource allocation problem at one time may become obsolete when the underlying
tasks have changed. This means that once a solution is obtained, the agents must con-
tinuously monitor it for changes and must have a way to express such changes in the
problem. In order to address this shortcoming, the following section defines the notion
of a Dynamic Distributed Constraint Satisfaction Problem (DyDCSP).

A Constraint Satisfaction Problem (CSP) is commonly definedby a set of variables,
each associated with a finite domain, and a set of constraintson the values of the vari-
ables. A solution is the value assignment for the variables which satisfies all the con-
straints. A distributed CSP is a CSP in which variables and constraints are distributed
among multiple agents. Each variable belongs to an agent. A constraint defined only
on the variable belonging to a single agent is called alocal constraint. In contrast, an
external constraintinvolves variables of different agents. Solving a DCSP requires that
agents not only solve their local constraints, but also communicate with other agents to
satisfy external constraints.

DCSP assumes that the set of constraints are fixed in advance.This assumption is
problematic when we attempt to apply DCSP to domains where features of the envi-
ronment are not known in advance and must be sensed at run-time. For example, in
distributed sensor networks, agents do not know where the targets will appear. This
makes it difficult to specify the DCSP constraints in advance. Rather, we desire agents
to sense the environment and then activate or deactivate constraints depending on the
result of the sensing action. We formalize this idea next.

We take the definition of DCSP one step further by defining Dynamic DCSP (DyD-
CSP). DyDCSP allows constraints to be conditional on some predicate P. More specif-
ically, adynamicconstraint is given by a tuple (P, C), where P is an arbitrary predicate
that is continuously evaluated by an agent and C is a familiarconstraint in DCSP. When
P is true, C must be satisfied in any DCSP solution. When P is false, C may be violated.
An important consequence of dynamic DCSP is that agents no longer terminate when
they reach a stable state. They must continue to monitor P, waiting to see if it changes.
If its value changes, they may be required to search for a new solution. Note that a so-
lution when P is true is also a solution when P is false, so the deletion of a constraint
does not require any extra computation. However, the converse does not hold. When a
constraint is added to the problem, agents may be forced to compute a new solution. In
this work, we only need to address a restricted form of DyDCSPi.e. it is only necessary
that local constraintsbe dynamic.

AWC [8] is a sound and complete algorithm for solving DCSPs. An agent with local
variableAi, chooses a valuevi for Ai and sends this value to agents with whom it has

external constraints. It then waits for and responds to messages. When the agent receives
a variable value (Aj = vj) from another agent, this value is stored in an AgentView.
Therefore, an AgentView is a set of pairsf(Aj ; vj), (Ak, vk), ...g. Intuitively, the
AgentView stores the current value of non-local variables.A subset of an AgentView
is a NoGood if an agent cannot find a value for its local variable that satisfies all con-
straints. For example, an agent with variableAi may find that the setf(Aj ; vj), (Ak,vk)g is a NoGood because, given these values forAj andAk, it cannot find a value
for Ai that satisfies all of its constraints. This means that these value assignments can-
not be part of any solution. In this case, the agent will request that the others change
their variable value and a search for a solution continues. To guarantee completeness, a
discovered NoGood is stored so that that assignment is not considered in the future.

The most straightforward way to attempt to deal with dynamism in DCSP is to
consider AWC as a subroutine that is invoked anew everytime aconstraint is added.
Unfortunately, in many domains such as ours, where the problem is dynamic but does
not change drastically, starting from scratch may be prohibitively inefficient. Another
option, and the one that we adopt, is for agents to continue their computation even as
local constraints change asynchronously. The potential problem with this approach is
that when constraints are removed, a stored NoGood may now become part of a so-
lution. We solve this problem by requiring agents to store their own variable values
as part of non-empty NoGoods. For example, if an agent with variableAi finds that
a valuevi does not satisfy all constraints given the AgentViewf(Aj ; vj), (Ak, vk)g,
it will store the setf(Ai; vi), (Aj ; vj), (Ak, vk)g as a NoGood. With this modifica-
tion to AWC, NoGoods remain “no good” even as local constraints change. Let us call
this modified algorithm Locally-Dynamic AWC (LD-AWC) and the modified NoGoods
“LD-NoGoods” in order to distinguish them from the originalAWC NoGoods.

Lemma I: LD-AWC is sound and complete.
The soundness of LD-AWC follows from the soundness of AWC. The completeness

of AWC is guaranteed by the recording of NoGoods. A NoGood logically represents a
set of assignments that leads to a contradiction. We need to show that this invariant is
maintained in LD-NoGoods. An LD-NoGood is a superset of somenon-empty AWC
NoGood and since every superset of an AWC NoGood is no good, the invariant is true
when a LD-NoGood is first recorded. The only problem that remains is the possibility
that an LD-NoGood may later become good due to the dynamism oflocal constraints.
A LD-NoGood contains a specific value of the local variable that is no good but never
contains a local variable exclusively. Therefore, it logically holds information about
external constraints only. Since external constraints arenot allowed to be dynamic in
LD-AWC, LD-NoGoods remain valid even in the face of dynamic local constraints.
Thus the completeness of LD-AWC is guaranteed.

5 Solving SCF Problems via DyDCSP
In this section, we state the complexity of SCF resource allocation problems and map
our formal model of the resource allocation problem onto DyDCSP. Our goal is to
provide a general mapping so that any unrestricted SCF resource allocation problem
can be solved in a distributed manner by a set of agents by applying this mapping.

Our complexity analysis (not the DyDCSP mapping, but just the complexity analy-
sis) here assumes a static problem. This is because a dynamicresource allocation prob-

lem can be cast as solving a sequence of static problems, so a dynamic problem is at
least as hard as a static one. Furthermore, our results are based on a centralized problem
solver. We conjecture that distributed problem solving is no easier due to ambiguity,
which requires more search.

Theorem I: Unrestricted Strongly Conflict Free resource allocation problems
can be solved in time linear in the number of tasks.

proof: Greedily choose any minimal set for each task. They are guaranteed not to
conflict by the Strongly Conflict Free condition.2

We now describe a solution to this subclass of resource allocation problems by
mapping onto DyDCSP. Mapping I is motivated by the followingidea. The goal in
DCSP is for agents to choose values for their variables so allconstraints are satisfied.
Similarly, the goal in resource allocation is for the agentsto choose operations so all
tasks are performed. Therefore, in our first attempt we map variables to agents and
values of variables to operations of agents. So for example,if an agentAi has three
operations it can perform,fOi1; Oi2; Oi3g, then the variable corresponding to this agent
will have three values in its domain. However, this simple mapping attempt fails due
to the dynamic nature of the problem; operations of an agent may not always succeed.
Therefore, we define two values for every operation, one for success and the other for
failure. In our example, this would result in six values.

It turns out that even this mapping is inadequate due to ambiguity. Ambiguity arises
when an operation can be required for more than one task. We desire agents to be able
to not only choose which operation to perform, but also to choose for which task they
will perform the operation. For example in Figure 1.b, AgentA3 is required to active
the same sector for both targets 1 and 2. We want A3 to be able todistinguish between
the two targets, so that it does not unnecessarily require A2to activate sector 2 when
target 2 is present. So, for each of the values defined so far, we will define new values
corresponding to each task that an operation may serve.

Mapping I: Given a Resource Allocation ProblemhAg,
, �i, the corresponding
DyDCSP is defined over a set ofn variables,

– A = fA1, A2,...,Ang, one variable for eachAi 2 Ag. We will use the notationAi
to interchangeably refer to an agent or its variable.

The domain of each variable is given by:

– 8Ai 2 Ag, Dom(Ai) =
SOip2
 OipxT (Oip)xfyes,nog.

In this way, we have a value for every combination of operations an agent can per-
form, a task for which this operation is required, and whether the operation succeeds or
fails. For example in Figure 1.b, Agent A3 has two operations(sector 1 and 2) with only
one possible task (target) and one operation (sector 0) withtwo possible tasks (target 1
and 2). This means it would have 8 values in its domain.

A word about notation:8 Oip 2
, the set of values inOipxT (Oip)xfyesg will be
abbreviated by the termOip*yes and the assignmentAi = Oip*yes denotes that9v 2Oip*yes such thatAi = v. Intuitively, the notation is used when an agent detects that
an operation is succeeding, but it is not known which task is being performed. This

analogous to the situation in the distributed sensor network domain where an agent
may detect a target in a sector, but not know its exact location. Finally, when a variableAi is assigned a value, we assume the corresponding agent is required to execute the
corresponding operation.

Next, we must constrain agents to assign “yes” values to variables only when an
operation has succeeded. However, in dynamic problems, an operation may succeed
at some time and fail at another time since tasks are dynamically added and removed
from the current set of tasks to be performed. Thus, every variable is constrained by the
following dynamic local constraints.

– Dynamic Local Constraint 1 (LC1): 8Tr 2 �, 8Oip 2 �Tr), we have
LC1(Ai) = (P, C), where P:Oip succeeds.

C:Ai = Oip*yes
– Dynamic Local Constraint 2 (LC2): 8Tr 2 �, 8Oip 2 � (Tr), we have

LC2(Ai) = (P, C), where P:Oip does not succeed.
C:Ai 6= Oip*yes

The truth value of P is not known in advance. Agents must execute their operations,
and based on the result, locally determine if C needs to be satisfied. In dynamic prob-
lems, where the set of current tasks is changing over time, the truth value of P will
change, and hence the corresponding DyDCSP will also be dynamic.

We now define the external constraint (EC) between variablesof two different
agents. EC is a normal static constraint and is always present.

– External Constraint: 8Tr 2 �, 8Oip 2 � (Tr), 8Aj 2 A,

EC(Ai, Aj): (1)Ai = OipTryes, and
(2) 8tr 2 Tr, Oip 2 tr, 9q Ojq 2 tr:) Aj = OjqTryes

The EC constraint requires some explanation. Condition (1)states that an agentAi
has found an operation that succeeds for taskTr. Condition (2) quantifies the other
agents whose operations are also required forTr. If Aj is one of those agents, the
consequent requires it to choose its respective operation for theTr. If Aj is not required
for Tr, condition (2) is false and EC is trivially satisfied. Finally, note that every pair of
variablesAi andAj , have two EC constraints between them: one fromAi to Aj and
another fromAj to Ai. The conjunction of the two unidirectional constraints canbe
considered one bidirectional constraint.

The following theorems state that our mapping can be used to solve any given SCF
Resource Allocation Problem. The first theorem states that our DyDCSP always has
a solution, and the second theorem states that if agents reach a solution, all current
tasks are performed. It is interesting to note that the converse of the second theorem
does not hold, i.e. it is possible for agents to be performingall tasksbeforea solution
state is reached. This is due to the fact that when all currenttasks are being performed,
agents whose operations are not necessary for the current tasks could still be violating
constraints.

Theorem II: Given an unrestricted SCF Resource Allocation Problem hAg,
,�i,�current � �, a solution always exists for the DyDCSP obtained from Mapping I.

proof: We proceed by presenting a variable assignment and showing that it is a
solution.

Let B = fAi 2 A j 9Tr 2 �current; 9Oip 2 � (Tr)g. We will first assign values
to variables inB, then assign values to variables that are not inB. If Ai 2 B, then9Tr 2 �current; 9Oip 2 � (Tr). In our solution, we assignAi = OipTryes. If Ai 62 B,
we may choose anyOipTrno 2 Dom(Ai) and assignAi = OipTrno.

To show that this assignment is a solution, we first show that it satisfies the EC
constraint. We arbitrarily choose two variables,Ai andAj , and show that EC(Ai, Aj)
is satisfied. We proceed by cases. LetAi; Aj 2 A be given.

– case 1:Ai 62 B
SinceAi = OipTrno, condition (1) of EC constraint is false and thus EC is trivially
satisfied.

– case 2:Ai 2 B;Aj 62 BAi = OipTryes in our solution. Lettr 2 Tr,Oip 2 tr. We know thatTr 2 �current
and sinceAj 62 B, we conclude that6 9Ojq 2 tr. So condition (2) of the EC con-
straint is false and thus EC is trivially satisfied.

– case 3:Ai 2 B;Aj 2 BAi = OipTryes andAj = OjqTsyes in our solution. Lettr 2 Tr, Oip 2 tr. Ts andTr must be strongly conflict free since both are in�current. If Ts 6= Tr, then 6 9Ojn 2
, Ojn 2 tr. So condition (2) of EC(Ai,Aj) is false and thus EC is trivially
satisfied. IfTs = Tr, then EC is satisfied sinceAj is helpingAi performTr.
Next, we show that our assignment satisfies the LC constraints. If Ai 2 B thenAi = OipTryes, and LC1, regardless of the truth value of P, is clearly not violated.

Furthermore, it is the case thatOip succeeds, sinceTr is present. Then the precondition
P of LC2 is not satisfied and thus LC2 is not present. IfAi 62 B andAi = OipTrno, it is
the case thatOip is executed and, by definition, does not succeed. Then the precondition
P of LC1 is not satisfied and thus LC1 is not present. LC2, regardless of the truth value
of P, is clearly not violated. Thus, the LC constraints are satisfied by all variables. We
can conclude that all constraints are satisfied and our valueassignment is a solution to
the DyDCSP.2

Theorem III: Given an unrestricted SCF Resource AllocationProblemhAg,
,�i,�current � � and the DyDCSP obtained from Mapping I, if an assignment of val-
ues to variables in the DyDCSP is a solution, then all tasks in�current are per-
formed.

proof: Let a solution to the DyDCSP be given. We want to show that all tasks in�current are performed. We proceed by choosing a taskTr 2 �current. Since our
choice is arbitrary and tasks are strongly conflict free, if we can show that it is indeed
performed, we can conclude that all members of�current are performed.

Let Tr 2 �current. By theNotification Assumption, some operationOip, required
by Tr will be executed. However, the corresponding agentAi, will be unsure as to
which task it is performing whenOip succeeds. This is due to the fact thatOip may be
required for many different tasks. It may randomly choose a task,Ts 2 T (Oip), and
LC1 requires it to assign the valueOipTsyes. The EC constraint will then require that all
other agentsAj , whose operations are required forTs also execute those operations and

assignAj = OjqTsyes. We are in solution, so LC2 cannot be present forAj . Thus,Ojq
succeeds. Since all operations required forTs succeed,Ts is performed. By definition,Ts 2 �current. But since we already know thatTs andTr have an operation in common,
the Strongly Conflict Free condition requires thatTs = Tr. Therefore,Tr is indeed
performed.2
6 Solving WCF problems via DyDCSP

In this section, we state the complexity of
�nk�-exact WCF resource allocation problems

and that of unrestricted WCF resource allocation problems.The following complexity
results are based on a centralized problem solver, but as mentioned we conjecture that
distributed problem solving is no easier. We also present a second mapping for WCF
problems onto DyDCSP (Section 6.1).

Theorem IV:
�nn�-exact WCF resource allocation problems can be solved in

time linear in the number of tasks.
proof: Greedily choose the single minimal set for each task.
Theorem V:

�nk�-exact WCF resource allocation problems can be solved in time
polynomial in the number of tasks and operations.

proof: To prove this theorem, we convert a given
�nk�-exact resource allocation

problem to a network-flow problem which is known to be polynomial. See Appendix.
Theorem VI: Determining whether an unrestricted resource allocation prob-

lem is Weakly Conflict Free is NP-Complete.
proof-sketch: We reduce from 3 coloring problem. For reduction, let an arbitrary

instance of 3-color with colorsc1; c2; c3, verticesV and edgesE, be given. We construct
the resource allocation problem as follows:

– For each vertexv 2 V , add a taskTv to�.
– For each taskTv 2 �, for each colorck, add a minimal settckv to Tv.
– For each edgevi; vj 2 E, for each colorck, add an operatorOckvi;vj to
 and add

this operator to minimal setstckvi andtckvj .
– Assign each operator to a unique agentAOckvi;vj in Ag.

Figure 2 illustrates the mapping from a 3 node graph to a resource allocation prob-
lem. With the mapping above, it is somewhat easy to show that the 3-color problem has
a solution if and only if the constructed resource allocation problem is weakly conflict
free. (We preclude a detailed proof due to space limits)

Ov1,v2
R OR

v1,v3 Ov1,v2
G Ov1,v3

G

Ov1,v2
B Ov1,v3

B

Ov1,v2
R Ov1,v2

G Ov1,v2
B

OR
v1,v3 Ov1,v3

G Ov1,v3
B

Ov1,v2

Ck
O

Ck

v1,v3

Color = {R, G, B}

V1T = {{ , }, { , },

{ , }}

V2T = {{ }, { }, { }}

V3T = {{ }, { }, { }} V2 V3

V1

Fig. 2.Reduction of graph 3-coloring to Resource Allocation Problems

6.1 Mapping II

Our first mapping has allowed us to solve any SCF resource allocation problem. How-
ever, when we attempt to solve WCF resource allocation problems with this mapping,
it fails because the DyDCSP becomes overconstrained. This is due to the fact that the
mapping requires all agents who can possibly help perform a task to do so. In some
sense, this results in an overallocation of resources to some tasks. This in turn leaves
other tasks without sufficient resources to be performed. One way to solve this problem
is to modify the constraints in the mapping to allow agents toreason about relation-
ships among tasks. However, this requires adding non-binary external constraints to
the mapping. This is problematic in a distributed situationbecause there are no effi-
cient algorithms for non-binary distributed CSPs. Instead, create a new mapping that
has only binary external constraints. This mapping is similar to the dual of a version
of mapping I with non-binary external constraints. This newmapping allocates only
minimal resources to each task, allowing WCF problems to be solved. This mapping
is described next and proven correct. Here, each agent has a variable for each task in
which its operations are included.

Mapping II: Given a Resource Allocation ProblemhAg,
, �i, the corresponding
DyDCSP is defined as follows:

– Variables: 8Tr 2 �;8Oip 2 � (Tr), create a DyDCSP variableTr;i and assign it to
agentAi.

– Domain: For each variableTr;i, create a valuetr;i for each minimal set inTr, plus a
“NP” value (not present). The NP value allows agents to avoidassigning resources
to tasks that are not present and thus do not need to be performed.

Next, we must constrain agents to assign non-NP values to variables only when
an operation has succeeded, which indicates the presence ofthe corresponding task.
However, in dynamic problems, an operation may succeed at some time and fail at
another time since tasks are dynamically added and removed from the current set of
tasks to be performed. Thus, every variable is constrained by the following dynamic
local constraints.

– Dynamic Local (Non-Binary) Constraint (LC1):8Ai 2 Ag, 8Oip 2 Op(Ai), let B = f Tr;i j Oip 2 Tr g. Then let the constraint be
defined as a non-binary constraint over the variables in B as follows:
P:Oip succeeds
C: 9Tr;i 2 B Tr;i 6= NP.

– Dynamic Local Constraint (LC2): 8Tr 2 �, 8Oip 2 � (Tr), let the constraint be
defined onTr;i as follows:
P:Oip does not succeed
C: Tr;i = NP

We now define the constraint that defines a valid allocation ofresources and the
external constraints that require agents to agree on a particular allocation.

– Static Local Constraint (LC3): 8Tr;i; Ts;i, if Tr;i = tr;i, then the value ofTs;i
cannot conflict with the minimal settr;i. NP does not conflict with anything.

– External Constraint (EC): 8i; j; r Tr;i = Tr;j
We will now prove that Mapping II can also be used to solve any given WCF Re-

source Allocation Problem. The first theorem shows that our DyDCSP always has a
solution, and the second theorem shows that if agents reach asolution, all current tasks
are performed.

Theorem VII: Given a WCF Resource Allocation ProblemhAg,
,�i,�current ��, there exists a solution to DyDCSP obtained from Mapping II.
proof: For all variables corresponding to tasks that are not present, we can assign

the value “NP”. This value satisfies all constraints except possibly LC1. But the P con-
dition must be false since the task is not present, so LC1 cannot be violated. We are
guaranteed that there is a choice of non-conflicting minimalsets for the remaining tasks
(by the WCF condition). We can assign the values corresponding to these minimal sets
to those tasks and be assured that LC3 is satisfied. Since all variable corresponding to
a particular task get assigned the same value, the external constraint is satisfied. So we
have a solution to the DyDCSP.2

Theorem VIII: Given a WCF Resource Allocation ProblemhAg,
,�i,�current �� and the DyDCSP obtained from Mapping II, if an assignment of values to vari-
ables in the DyDCSP is a solution, then all tasks in�current are performed.

proof Let a solution to the DyDCSP be given. We want to show that all tasks in�current are performed. We proceed by randomly choosing a task from�current and
showing that it is performed. Since we are in a solution state, LC3 allows us to repeat
this argument for every task in�current.

Let Tr 2 �current. By theNotification Assumption, some operationOip, required
by Tr will be executed and (by definition) succeed. LC1 requires the corresponding
agentAi, to assign a minimal set, saytr to the variableTr;i. The EC constraint will
then require that all other agentsAj , whose operationOjq is in the minimal settr, to
assignTr;j = tr and execute that operation. LC2 requires that it succeeds. Since all
operations required forTr succeed,Tr is performed.2
7 Experiments in a Real-World Domain
We have successfully applied the DyDCSP approach to the distributed sensor network
problem, using the mapping introduced in Section 6. In the last evaluation trials con-
ducted in government labs in August and September 2000, thisDyDCSP implemen-
tation was successfully tested on four actual hardware sensor nodes (see Figure 1.a),
where agents collaboratively tracked a moving target. Thistarget tracking requires ad-
dressing noise, communication failures, and other real-world problems; although this
was done outside the DyDCSP framework and hence not reportedhere.

The unavailability of the hardware in our lab precludes extensive hardware tests; but
instead, a detailed simulator that very faithfully mirrorsthe hardware has been made
available to us. We have done extensive tests using this simulator to further validate the
DyDCSP formalization: indeed a single implementation runson both the hardware and
the simulator. One key evaluation criteria for this implementation is how accurately it
is able to track targets, e.g., if agents do not switch on overlapping sectors at the right
time, the target tracking has poor accuracy. Here, the accuracy of a track is measured in
terms of theRMS(root mean square) error in the distance between the real position of a

target and the target’s position as estimated by a team of sensor agents. Domain experts
termed the RMS error of upto 3 units as acceptable.

Table 1 presents our results from the implementation with the Mapping II in Sec-
tion 6. Experiments were conducted in different dynamic situations varying the type of
resource allocation problem, the number of nodes/targets,and the configuration. RMS
error, message number, and sector change are averaged over the number of involved
agents. In the “node number” column, the number in parentheses indicates the number
of rows and columns of the grid configuration where sensor agents are located. For in-
stance, the last row represents the result of the WCF resource allocation problem with
12 sensor nodes (in 3x4 grid) and 4 four targets: the RMS of 3.24 units with average 30
messages and 2 sector changes per node.

The results show that our mapping works, and agents are able to accurately track
targets, with average RMS around 3 units as the experts require. This proves the useful-
ness of the DyDCSP approach to this resource allocation problem. Furthermore, scaling
up the number of nodes and targets does not degrade the tracking accuracy. Some in-
teresting differences between WCF and SCF arise: WCF resource allocation problems
require more number of messages and sector changes than SCF problems. These are due
to the fact that, given WCF problems, agents need to reason about possible minimal sets
of the current tasks to be performed.

RAP type node numbertarget numberavg RMSavg message numberavg sector changes
WCF/SCF 4 (2x2) 1 2.58 14 0.5

SCF 8 (2x4) 2 3.21 17.08 0.5
SCF 9 (3x3) 2 3.21 21.89 0.2
SCF 16 (4x4) 4 2.58 23.13 0.5
WCF 6 (2x3) 2 2.50 45.17 1.6
WCF 12 (3x4) 4 3.24 30 2.0

Table 1.Results from sensor network domain for dynamic resource allocation problems.

8 Summary
In this paper, we proposed a formalization of distributed resource allocation that is
expressive enough to represent both dynamic and distributed aspects of the problem. We
define different categories of difficulties of the problem and present complexity results
for them. Table 2 summarizes these complexity results. To address these formalized
problems, we define the notion of Dynamic Distributed Constraint Satisfaction Problem
(DyDCSP) and present a generalized mapping from distributed resource allocation to
DyDCSP. Through both theoretical analysis and experimental verifications, we have
shown that this approach to dynamic and distributed resource allocation is powerful
and unique, and can be applied to real-problems such as the Distributed Sensor Network
Domain. Indeed, in the future, our formalization may enableresearchers to understand
the difficulty of their resource allocation problem, choosea suitable mapping using
DyDCSP, with automatic guarantees for correctness of the solution.

Acknowledgements

This research is sponsored in part by DARPA/ITO under contract number F30602-99-
2-0507, and in part by AFOSR under grant number F49620-01-1-0020.

SCF WCF�nn�-exact O(n) O(n)�nk�-exact O(n) O((n+m)3)
unrestrictedO(n) NP-Complete

Table 2.Complexity Classes of Resource Allocation,n = size of task set�,m = size of operation
set

References

1. M. Chia, D. Neiman, and V. Lesser. Poaching and distraction in asynchronous agent activities.
In ICMAS, 1998.

2. K. Decker and J. Li. Coordinated hospital patient scheduling. In ICMAS, 1998.
3. C. Frei and B. Faltings. Resource allocation in networks using abstraction and constraint

satisfaction techniques. InProc of Constraint Programming, 1999.
4. Hiroaki Kitano. Robocup rescue: A grand challenge for multi-agent systems. InICMAS,

2000.
5. J. Liu and K. Sycara. Multiagent coordination in tightly coupled task scheduling. InICMAS,

1996.
6. S. Mittal and B. Falkenhainer. Dynamic constraint satisfaction problems. InAAAI, 1990.
7. Sanders. Ecm challenge problem, http://www.sanders.com/ants/ecm.htm. 2001.
8. M. Yokoo and K. Hirayama. Distributed constraint satisfaction algorithm for complex local

problems. InICMAS, July 1998.

Appendix
Theorem V:

�nk�-exact WCF resource allocation problems can be solved in time
polynomial in the number of tasks and operations.

proof: We can convert a given
�nk�-exact resource allocation problem to a network-

flow problem known to be polynomial. Let such a resource allocation problem be given.
We first construct a tripartite graph and then convert it to a network-flow problem.

– Create three empty sets of vertices, U, V, and W and an empty edge set E.
– For each taskTr 2 �, add a vertexur to U.
– For each agentAi 2 Ag, add a vertexvi to V.
– For each agentAi, for each operationOip 2 Op(Ai), add a vertexwip to W.
– For each agentAi, for each operationOip 2 Op(Ai), add an edge between verticesvi, wip to E.
– For each taskTr, for each operationOip 2 � (Tr), add an edge between verticesur,wip to E.

We convert this tripartite graph into a network-flow graph inthe usual way. Add
two new vertices, a supersources, and supersinkt. Connects to all vertices in V and
assign a max-flow of 1. For all edges among V, W, and U, assign a max-flow of 1. Now,
connectt to all vertices in U and for each edge (ur, t), assign a max-flow ofkr. We now
have a network flow graph with an upper limit on flow of

Pj�ji=1 ki.
We show that the resource allocation problem has a solution if and only if the max-

flow is equal to
Pj�ji=1 ki.) Let a solution to the resource allocation problem be given. We will now construct

a flow equal to
Pj�ji=1 ki. This means, for each edge between vertexur in U andt, we

must assign a flow ofkr. It is required that the in-flow tour equalkr. Since each edge
between W and U has capacity 1, we must choosekr vertices from W that have an
edge intour and fill them to capacity. LetTr be the task corresponding to vertexur,
andtr 2 Tr be the minimal set chosen in the given solution. We will assign a flow of
1 to all edges (wip; ur) such thatwip corresponds to the operationOip that is required
in tr. There are exactlykr of these. Furthermore, since no operation is required for
two different tasks, when we assign flows through vertices inU, we will never choosewip again. For vertexwip such that the edge (wip, ur) is filled to its capacity, assign a
flow of 1 to the edge (vi, wip). Here, when a flow is assigned through a vertexwip, no
other flow is assigned throughwiq 2 Op(Ai) (p 6= q) because all operations inOp(Ai)
are mutually exclusive. Therefore,vi’s outflow cannot be greater than 1. Finally, the
assignment of flows froms to V is straightforward. Thus, we will always have a valid
flow (inflow=outflow). Since all edges from U tot are filled to capacity, the max-flow
is equal to

Pj�ji=1 ki.(Assume we have a max-flow equal to
Pj�ji=1 ki. Then for each vertexur in U,

there arekr incoming edges filled to capacity 1. By construction, the setof vertices in
W matched tour corresponds to a minimal set inTr. We choose this minimal set for
the solution to the resource allocation problem. For each such edge (wip, ur),wip has an
in-capacity of 1, so every other edge out ofwip must be empty. That is, no operation is
required by multiple tasks. Furthermore, since outgoing flow thoroughvi is 1, no more
than one operation inOp(Ai) is required. Therefore, we will not have any conflicts
between minimal sets in our solution.2

