A Dynamic Distributed Constraint Satisfaction
Approach to Resource Allocation

Pragnesh Jay Modi Hyuckchul Jung Milind Tambe
Wei-Min Shen Shriniwas Kulkarni

University of Southern California/Information Sciencestitute
4676 Admiralty Way, Marina del Rey, CA 90292, USA

{modi,jungh,tambe,shen kulkaj@isi.edu

Abstract. In distributed resource allocation a set of agents musgagheir re-
sources to a set of tasks. This problem arises in many redéhwlomains such
as disaster rescue, hospital scheduling and the domaimifabdn this paper:
distributed sensor networks. Despite the variety of apgvea proposed for dis-
tributed resource allocation, a systematic formalizatibthe problem and a gen-
eral solution strategy are missing. This paper takes a stegrds this goal by
proposing a formalization of distributed resource allarathat represents both
dynamic and distributed aspects of the problem and a gesehation strategy
that uses distributed constraint satisfaction techniglieis paper defines the no-
tion of Dynamic Distributed Constraint Satisfaction Pexhl(DyDCSP) and pro-
poses two generalized mappings from distributed resolimeasion to DyDCSP,
each proven to correctly perform resource allocation m@nuisl of specific diffi-
culty and this theoretical result is verified in practice loyimplementation on a
real-world distributed sensor network.

1 Introduction

Distributed resource allocation is a general problem irchvlai set of agents must intelli-
gently perform operations and assign their resources toaf s&sks such that all tasks
are performed. This problem arises in many real-world dosiauch as distributed
sensor networks [7], disaster rescue[4], hospital sclireg|@], and others. Resource
allocation problems of this type are difficult because theytsothdistributedanddy-
namic A key implication of the distributed nature of this problérthat the control is
distributed in multiple agents; yet these multiple agentisincollaborate to accomplish
the tasks at hand. Another implication is that the multiglerets each obtain only local
information, and face global ambiguity — an agent may knoevrsults of its local
operations but it may not know which other collaboratorsesnvolved to fulfill the
global task and which operations these collaborators nerébpn for success. Finally,
the situation is dynamic so a solution to the resource dilocgroblem at one time
may become obsolete when the underlying tasks have chahigisdneans that once a
solution is obtained, the agents must continuously moitifor changes and must have
a way to express such changes in the problem.

In this paper, we first propose a formalization of distrilsltesource allocation that
is expressive enough to represent both dynamic and distdtaspects of the problem.
This formalization allows us to understand the complexitgifierent types of resource
allocation problems. Second, in order to address this typesmurce allocation prob-
lem, we define the notion of a Dynamic Distributed Constr&8atisfaction Problem

(DyDCSP). DyDCSP is a generalization of DCSP (Distributech€lraint Satisfaction
Problem) [8] that allows constraints to be added or remox@u the problem as exter-
nal environmental conditions change. Third, we presentreusable, generalized map-
pings from distributed resource allocation to DyDCSP, gachen to correctly perform
resource allocation problems of specific difficulty and ekpentally verified through
implementation in a real-world application. In summary;, oentral contribution is 1) a
formalization that may enable researchers to understanditficulty of their resource
allocation problem and 2) generalized mappings to DyDCSRwprovide automatic
guarantees for correctness of the solution.

There is significant research in the area of distributeduesoallocation; for in-
stance, Liu and Sycara’s work[5] extends dispatch schegtdi improve resource allo-
cation. Chia et al's work on distributed vehicle monitorargd general scheduling (e.g.
airport ground service scheduling) is well known but spawdétd preclude us from a
detailed discussion [1]. However, a formalization of thegyal problem in distributed
settings is yet to be forthcoming. Some researchers haweséocon formalizing re-
source allocation as a centralized CSP, where the issuelmfjaity does not arise[3].
The fact that resource allocation is distributed meansaimtiguity must be dealt with.
Dynamic Constraint Satisfaction Problem has been studigdd centralized case by
[6]. However, there is no distribution or ambiguity durifgetproblem solving process.

The paper is structured as follows: Section 2 describesppécation domain of
our resource allocation problem and Section 3 presents@aianodel and defines sub-
classes of the resource allocation problem. Section 4dntes Dynamic Distributed
Constraint Satisfaction Problems. Then, Sections 5 ands6rie solutions to sub-
classes of resource allocation problems of increasingcdiffi, by mapping them to
DyDCSP. Section 7 describes empirical results and Sectamm8ludes.

2 Application Domain

The domain in which this work has been applied is a distrithsensor domain. This
domain consists of multiple stationary sensors, each aldedrby an independentagent,
and targets moving through their sensing range (Figurdllusirates the real hardware
and simulator screen, respectively). Each sensor is egdipfith a Doppler radar with
three sectors. An agent may activate at most one sector aofs@rsat a given time or
switch the sensor off. While all of the sensor agents musasetteam to cooperatively
track the targets, there are some key difficulties in sudking.

First, in order for a target to be tracked accurately, attl#ase agents must collab-
orate — concurrently activating overlapping sectors. Kaneple, in Figure 1.b which
corresponds to the simulator in Figure 1.a, if an agent Aéasta target 1 in its sec-
tor 0, it must coordinate with neighboring agents, A2 and Ay, so that they activate
their respective sectors that overlap with Al’s sector Givating a sector is an agent’s
operation. Since there are three sectors of 120 degredsagant has three operations.
Since target 1 exists in the range of a sector for all agenysz@mbination of operations
from three agents or all four agents can achieve the taskckitrg target 1.

Second, there is ambiguity in selecting a sector to find atagjnce each sensor
agent can detect only the distance and speed of a targeteah thgt detects a target
cannot tell other agents which sectors to activate. Wher tiseonly target 1 in Figure
1.b and agent A1l detects the target first, A1l can tell A4 toratgisector 1. However,

,,,,, = & Agent A
Sen.sorl Sengorz
Sector Number
Ta?é;i
Sensor3 Sensor4
@ @
Agent A4
(a) hardware and simulator (b) sensor sectors

Fig. 1. A distributed sensor domain

Al cannot tell A2 which of the two sectors (sector 1 or secjdoZctivate since it only
knows that there is a targetin its sector 0. That is, agent¥ Kloow which task is to be
performed. Identifying a task to perform depends on thelre$wther related agents’
operations.

Third, if there are multiple targets, that introduces resewcontention — an agent
may be required to activate more than one sector, which itncahFor instance, in
Figure 1.b, A4 needs to decide whether to perform eitherlaftastarget 1 or a task
for target 2. Since at most one sector can be activated ata §ime, A4 should decide
which task to perform. Thus, the relationship among taslsaffect the difficulty of
the resource allocation problem.

Fourth, the situation is dynamic as targets move throughsémsing range. The
dynamic property of the domain makes problems even hariere $arget moves over
time, after agents activate overlapping sectors and traakget, they may have to find
different overlapping sectors.

The above application illustrates the difficulty of resauadlocation among dis-
tributed agents in dynamic environment. Lack of a formalfsmdynamic distributed
resource allocation problem can lead to ad-hoc methodswdaionot be easily reused.
On the other hand, adopting a formal model allows our protdenhits solution to be
stated in a more general way, possibly increasing our swlistusefulness. More im-
portantly, a formal treatment of the problem also allowsausttidy its complexity and
provide other researchers with some insights into the diffiof their own resource al-
location problems. Finally, a formal model allows us to pdewguarantees of soundness
and completeness of our results. The next section presenggoeral, formal model of
resource allocation.

3 Formalization of Resource Allocation

A Distributed Resource Allocation Problem consists of 1¢&af agents that can each
perform some set of operations, and 2) a set of tasks to beletedpIn order to be
completed, a task requires some subset of agents to peffiermecessary operations.
Thus, we can define a task by the operations that agents nmfistmén order to com-
plete it. The problem to be solved is an allocation of agemtasks such that all tasks
are performed. This problem is formalized next.

A Distributed Resource Allocation Problem is a structdtdg, (2, ©> where

— Agis asetofagentsdg = { A1, Ao, ..., An}.
- 2={0},0), ..,0}, ..., 0"} is a set of operations, where operatiofy denotes
the p‘th operation of agemt;. An operation can either succeed or fail. (&i(A4;)

denote the set of operations.4f. Operations irfOp(4;) aremutually exclusivean
agent can only perform one operation at a time.

— O s a set of tasks, where a task is a collection of sets of dpesathat satisfy the
following propertiesVT € O,
(i) T C P(£2) (Power set of2)
(i) T is nonempty andyt € T', t is nonempty;
(iii) Vt,,t, € T,t,. €ty andt, Z t,.. t, andt, are calledninimal setsTwo minimal
setsconflictif they contain operations belonging to the same agent.

Notice that there may be alternative sets of operationsdhatcomplete a given
task. Each such set is a minimal set. (Property (iii) abovpiires that each set of
operations in a task should be minimal in the sense that rey g#t is a subset of it.) A
solutionto a resource allocation problem then, involves choosingénmal set for each
task such that the minimal sets do not conflict. In this wayemtihe agents perform the
operations in those minimal sets, all tasks are succegsfoithpleted.

To illustrate this formalism in the distributed sensor netivdomain, we cast each
sensor as an agent and activating one of its (three) sect@ns aperation. We will use
O; to denote the operation of age#t activating sector p. For example, in Figure 1.b,
we have four agents, sdg = { A1, Ao, A3, A4}. Each agent can perform one of three
operations, s62 = |J Op(A;), whereOp(A;) ={ 0},0%, O} }.

A;€A

Now we only have !feft to define our task set We will define a separate task for
each target in a particular location, where a location gpoeds to an area of overlap
of sectors. In the situation illustrated in Figure 1.b, weéntwo targets shown, so we
define two tasks® = {T}, T>}. Since a target requires three agents to track it so that
its position can be triangulated, Tagk requires any three of the four possible agents
to activate their correct sector, so we define a minimal seesponding to the all (4
choose 3) combinations. Thus, = {{O}, 0%, O3}, {03, O}, O1}, {0}, O}, O1},
{0}, 03, O1}}. Note that the subscript of the operation denotes the numibtre
sector the agent must activate. Téagk can only be tracked by two agents, both of
which are needed, sb, = {{0}, O3} }.

For each task, we u§&(7) to denote the union of all the minimal setsiof and for
each operation, we uge(O;) to denote the set of tasks that includg. For instance,
(1) = {0}, 03, 03, Ot} andT(03) = { T1, T» }. We will also require that every
operation should serve some task,\'ié);') €N, | T(();’)) | # 0. Formal definitions for
Y andT are as follows:

-VT,e0,7(T,)= U ¢t
t.€eT,

- VO enNTO)=A{T, |0} € T(T,)}

All the tasks in@ may not always be present. We 18¢,,.....; (C ©) to denote the
set of tasks that are currently present. This set is deteuwirtry the environment. We
call a resource allocation problestaticif ©,,r¢n: IS CcONstant over time andlynamic
otherwise. So in our distributed sensor network examplepaimg target represents a
dynamic problem. Agents can execute their operations atiemg; but the success of
an operation is determined by the set of tasks that are diyresent. The following
two definitions formalize this interface with the envirormhe

Definition 1: ¥ O} € 12, if O} is executed an@ T, € Ourren: SUch thatO}, €
1(T), thenO} is said tosucceed

So in our example, if agem; executes operatio®} and if 7 € Oyrrent, then
O} will succeed, otherwise it will fail. Next, a task is perfoechwhen all the operations
in some minimal set succeed. More formally,

Definition 2: VT,. € O, T, is performedff 3¢, € T such that all the operations in
t, succeed. All tasks that satisfy this definition are conting..,,.-¢n¢ -

Agents must somehow be informed of the set of current tagkes nbtification pro-
cedure is outside of this formalism. Thus, the followinguasption states that at least
one agent is notified that a task is present by the successaffats operations. (This
assumption can be satisfied in the distributed sensor dooya@igents “scanning” for
targets by rotating sectors when they are currently nokingca target.)

Notification assumption V1. € O, if T, € Ocyrrent, thend O; € T(T).) such that
VTy(# T;) € Ocurrent, O}, & Ty andO}, succeeds.

We now state some definitions that will allow us to categoaiggven resource allo-
cation problem and analyze its complexity. In many resoatoeation problems, tasks
have the property that they require at lelastgents from a pool af (n > k) available
agents. That is, the task contains a minimal set for eacheof}thcombinations. The
following definition formalizes this notion.

Definition 3: V 7). € O, T, is task-(}}) -exactiff T, has exactly(}) minimal sets of
sizek, wheren = | 1(T,) | .

For example, the task; (corresponding to target 1 in Figure 1.b) is ta@k-exact.
The following just defines the class of resource allocatiowbfems where all tasks
satisfy the above definition.

Definition 4 :(}) -exactdenotes the class of resource allocation problemg, 2,
©> suchthav 7, € 0, T, is task{lgf‘)-exact for somé,..

We find it useful to define a special case(§j-exact resource allocation problems,
namely those wheh = n. In other words, the task contains only one minimal set.

Definition 5: () -exactdenotes the class of resource allocation problemg, 2,
©> suchthav 7, € 0, T, is task{’,;:)-exact, wherey, = k, =| T (T,) |.

For example,the task; (corresponding to target 2 in Figure 1.b) is ta@k—exact.

Definition 6: Unrestricted denotes the class of resource allocation problemg,
2, ©> with no restrictions on tasks.

The following definitions refer to relations between tadkie define two types of
conflict-freeto denote resource allocation problems that have solyt@resjuivalently,
problems where all tasks can be performed concurrently.

Definition 7: A resource allocation problem is callstrongly conflict free (SCF)
if VT,,Ts € O, the following statement is true:

—if T, #Ts, thenVt, € T,,Vts € Ts, ¥V A; € Ag, | t. N Op(A;) | +| ts N Op(A;) | < 1.

The SCF condition states that an operation of an agent caggoéed for no more
than one task. This implies that we can choose any minimdbsetach task and be
guaranteed a non-conflicting solution.

Definition 8: A resource allocation problem is callegeakly conflict free (WCF)
if VT,,Ts € O, the following statement is true:

—if T, #T,,thent, € T, 3t € T, ¥ A; € Ag, | £, N Op(A:) | + | ts N Op(A:) | < 1.

The WCF condition is much weaker in that it implies that thexests a choice of
minimal sets from the tasks that are non-conflicting or ireotlvords, there exists at
least one solution.

4 Dynamic DCSP

In order to solve general resource allocation problemsabaform to our formalized
model, we will use distributed constraint satisfactiorht@iques. Existing approaches
to distributed constraint satisfaction fall short for owrposes however because they
cannot capture the dynamic aspects of the problem. In dynarablems, a solution to
the resource allocation problem at one time may become etesahen the underlying
tasks have changed. This means that once a solution is etitdhe agents must con-
tinuously monitor it for changes and must have a way to expsesh changes in the
problem. In order to address this shortcoming, the follgngaction defines the notion
of a Dynamic Distributed Constraint Satisfaction Probl&ywDCSP).

A Constraint Satisfaction Problem (CSP) is commonly defimed set of variables,
each associated with a finite domain, and a set of constramtise values of the vari-
ables. A solution is the value assignment for the variableghvsatisfies all the con-
straints. A distributed CSP is a CSP in which variables amstraints are distributed
among multiple agents. Each variable belongs to an agentnAtaint defined only
on the variable belonging to a single agent is callédcal constraint In contrast, an
external constraininvolves variables of different agents. Solving a DCSP nexgithat
agents not only solve their local constraints, but also camoate with other agents to
satisfy external constraints.

DCSP assumes that the set of constraints are fixed in advahiseassumption is
problematic when we attempt to apply DCSP to domains whexeifes of the envi-
ronment are not known in advance and must be sensed at renfion example, in
distributed sensor networks, agents do not know where tigetawill appear. This
makes it difficult to specify the DCSP constraints in advamather, we desire agents
to sense the environment and then activate or deactivastrains depending on the
result of the sensing action. We formalize this idea next.

We take the definition of DCSP one step further by defining Dyicd>CSP (DyD-
CSP). DyDCSP allows constraints to be conditional on soradipate P. More specif-
ically, adynamicconstraint is given by a tuple (P, C), where P is an arbitraegizcate
that is continuously evaluated by an agent and C is a fanaitiastraint in DCSP. When
P is true, C must be satisfied in any DCSP solution. When Pdsf@l may be violated.
An important consequence of dynamic DCSP is that agentsmgelderminate when
they reach a stable state. They must continue to monitoriengao see if it changes.
If its value changes, they may be required to search for a ehutien. Note that a so-
lution when P is true is also a solution when P is false, so #ietidn of a constraint
does not require any extra computation. However, the ceavéoes not hold. When a
constraint is added to the problem, agents may be forcedtpuate a new solution. In
this work, we only need to address a restricted form of DyDC&R is only necessary
thatlocal constraintsbe dynamic.

AWC [8] is a sound and complete algorithm for solving DCSPs afyent with local
variableA;, chooses a value for A; and sends this value to agents with whom it has

external constraints. It then waits for and responds to agess When the agent receives
a variable value 4; = v;) from another agent, this value is stored in an AgentView.
Therefore, an AgentView is a set of paif§A;,v;), (Ak, vi), ...}. Intuitively, the
AgentView stores the current value of non-local variabfesubset of an AgentView
is a NoGood if an agent cannot find a value for its local vaaahht satisfies all con-
straints. For example, an agent with varialdlemay find that the sef(4;, v;), (Ax,
vi)} is a NoGood because, given these valuesAprand Ay, it cannot find a value
for A; that satisfies all of its constraints. This means that thafegvassignments can-
not be part of any solution. In this case, the agent will retjtigat the others change
their variable value and a search for a solution continueguarantee completeness, a
discovered NoGood is stored so that that assignment is msfadered in the future.

The most straightforward way to attempt to deal with dynamis DCSP is to
consider AWC as a subroutine that is invoked anew everytiroenstraint is added.
Unfortunately, in many domains such as ours, where the prolid dynamic but does
not change drastically, starting from scratch may be piitihdby inefficient. Another
option, and the one that we adopt, is for agents to contineie tomputation even as
local constraints change asynchronously. The potentallpm with this approach is
that when constraints are removed, a stored NoGood may noanteepart of a so-
lution. We solve this problem by requiring agents to stor@rtiown variable values
as part of non-empty NoGoods. For example, if an agent witfabke A; finds that
a valuev; does not satisfy all constraints given the AgentVig{t ;, v;), (Ax, vi)},
it will store the set{(4;,v;), (4;,v;), (Ax, vx)} as a NoGood. With this modifica-
tion to AWC, NoGoods remain “no good” even as local consteagmange. Let us call
this modified algorithm Locally-Dynamic AWC (LD-AWC) andehmodified NoGoods
“LD-NoGoods” in order to distinguish them from the origir&lVC NoGoods.

Lemma I: LD-AWC is sound and complete.

The soundness of LD-AWC follows from the soundness of AWG Tbmpleteness
of AWC is guaranteed by the recording of NoGoods. A NoGoodtclalty represents a
set of assignments that leads to a contradiction. We nedubtw that this invariant is
maintained in LD-NoGoods. An LD-NoGood is a superset of sorme-empty AWC
NoGood and since every superset of an AWC NoGood is no goedntariant is true
when a LD-NoGood is first recorded. The only problem that ries& the possibility
that an LD-NoGood may later become good due to the dynamidotaf constraints.
A LD-NoGood contains a specific value of the local variabkt fls no good but never
contains a local variable exclusively. Therefore, it la@diig holds information about
external constraints only. Since external constraintsnateallowed to be dynamic in
LD-AWC, LD-NoGoods remain valid even in the face of dynanocdl constraints.
Thus the completeness of LD-AWC is guaranteed.

5 Solving SCF Problems via DyDCSP

In this section, we state the complexity of SCF resourcecation problems and map
our formal model of the resource allocation problem onto DAEP. Our goal is to
provide a general mapping so that any unrestricted SCF res@llocation problem
can be solved in a distributed manner by a set of agents byiagphis mapping.

Our complexity analysis (not the DyDCSP mapping, but justdtbmplexity analy-
sis) here assumes a static problem. This is because a dyresuigce allocation prob-

lem can be cast as solving a sequence of static problems, woaaét problem is at
least as hard as a static one. Furthermore, our results sed ba a centralized problem
solver. We conjecture that distributed problem solvingaseasier due to ambiguity,
which requires more search.

Theorem I: Unrestricted Strongly Conflict Free resource albcation problems
can be solved in time linear in the number of tasks.

proof: Greedily choose any minimal set for each task. They are gteed not to
conflict by the Strongly Conflict Free condition.

We now describe a solution to this subclass of resource altmt problems by
mapping onto DyDCSP. Mapping | is motivated by the followidga. The goal in
DCSP is for agents to choose values for their variables stoabtraints are satisfied.
Similarly, the goal in resource allocation is for the agentshoose operations so all
tasks are performed. Therefore, in our first attempt we majahias to agents and
values of variables to operations of agents. So for exanifpdan agentA; has three
operations it can perforr{O%, O, Oi}, then the variable corresponding to this agent
will have three values in its domain. However, this simpleppiag attempt fails due
to the dynamic nature of the problem; operations of an agaytmot always succeed.
Therefore, we define two values for every operation, onedocsss and the other for
failure. In our example, this would result in six values.

It turns out that even this mapping is inadequate due to amtigAmbiguity arises
when an operation can be required for more than one task. Witedments to be able
to not only choose which operation to perform, but also tooslecfor which task they
will perform the operation. For example in Figure 1.b, Agéstis required to active
the same sector for both targets 1 and 2. We want A3 to be aldistioguish between
the two targets, so that it does not unnecessarily requiréo/Aitivate sector 2 when
target 2 is present. So, for each of the values defined so é&awilvdefine new values
corresponding to each task that an operation may serve.

Mapping I: Given a Resource Allocation Problefig, (2, ©), the corresponding
DyDCSP is defined over a setofvariables,

- A={A,, A,,...,A,}, one variable for eacH; € Ag. We will use the notationi;
to interchangeably refer to an agent or its variable.

The domain of each variable is given by:

- VA; € Ag, Dom@;) = |J OixT(0.)x{yes,ng.
Oief2

In this way, we have a value for every combination of operetian agent can per-
form, a task for which this operation is required, and whethe operation succeeds or
fails. For example in Figure 1.b, Agent A3 has two operati@estor 1 and 2) with only
one possible task (target) and one operation (sector O)twilpossible tasks (target 1
and 2). This means it would have 8 values in its domain.

A word about notationy 0! € 2, the set of values iI0.xT'(O})x{yes} will be
abbreviated by the terr@;*yes and the assignment; = O;*yes denotes thaiv €
O;;*yes such thatd; = v. Intuitively, the notation is used when an agent detects tha
an operation is succeeding, but it is not known which taskeindp performed. This

analogous to the situation in the distributed sensor nétwlomain where an agent
may detect a target in a sector, but not know its exact locaEmally, when a variable
A; is assigned a value, we assume the corresponding agenuisecttp execute the
corresponding operation.

Next, we must constrain agents to assign “yes” values t@ks only when an
operation has succeeded. However, in dynamic problemsparation may succeed
at some time and fail at another time since tasks are dyn#dynazided and removed
from the current set of tasks to be performed. Thus, eveighigris constrained by the
following dynamic local constraints.

— Dynamic Local Constraint 1 (LC1): VT, € O, VO;’, € T'T,), we have
LC1(4;) = (P, C), where PO, succeeds.
C: A = O,*yes ,
— Dynamic Local Constraint 2 (LC2): VT € ©, VO,, € T(T}), we have
LC2(4;) = (P, C), where PO,, does not succeed.
C:A; # Oy*yes

The truth value of P is not known in advance. Agents must eegbeir operations,
and based on the result, locally determine if C needs to lisfiedt In dynamic prob-
lems, where the set of current tasks is changing over tineefrtith value of P will
change, and hence the corresponding DyDCSP will also bentigna

We now define the external constraint (EC) between variablesvo different
agents. EC is a normal static constraint and is always ptesen

— External Constraint: VT, € 0, Y0, € T(T;),VA; € A,

EC(4;, 4j): (1) A; = O, T,yes, and
(2)Vt, € T,, O} € t,,3q O € t,.
= A; =0T, yes

The EC constraint requires some explanation. Conditiors{dfes that an agent;
has found an operation that succeeds for tAskCondition (2) quantifies the other
agents whose operations are also requiredZforlf A; is one of those agents, the
consequent requires it to choose its respective operairdhd’;.. If A; is not required
for T.., condition (2) is false and EC is trivially satisfied. Finalote that every pair of
variablesA; and 4;, have two EC constraints between them: one fuéto A; and
another from4; to A;. The conjunction of the two unidirectional constraints ¢en
considered one bidirectional constraint.

The following theorems state that our mapping can be useolte any given SCF
Resource Allocation Problem. The first theorem states thatDyDCSP always has
a solution, and the second theorem states that if agenth eeaolution, all current
tasks are performed. It is interesting to note that the amevef the second theorem
does not hold, i.e. it is possible for agents to be perfornaihtpsksbeforea solution
state is reached. This is due to the fact that when all cutasiks are being performed,
agents whose operations are not necessary for the curséstdauld still be violating
constraints.

Theorem II: Given an unrestricted SCF Resource Allocation Poblem (Ag,2,0),
Ocurrent € O, a solution always exists for the DyDCSP obtained from Mappig |.

proof: We proceed by presenting a variable assignment and showaigttis a
solution.

LetB={A4;, € A| 3T, € @cumm,ﬂO,’; € T(T,)}. We will first assign values
to variables inB, then assign values to variables that are noBinf A; € B, then
T, € Ocurrent; 30}, € T(T)). In our solution, we assigd; = O} T,yes. If A; ¢ B,
we may choose an9? T,no € Dom(4;) and assignd; = O} T, no.

To show that this assignment is a solution, we first show thaatisfies the EC
constraint. We arbitrarily choose two variablels,and A;, and show that EC{;, A4;)
is satisfied. We proceed by cases. Ugt A; € A be given.

—caselA; ¢ B
Since4; = O;’,Trno, condition (1) of EC constraint is false and thus EC is tilyia
satisfied.

—case2:A;, € B)A; ¢ B
A; = O;Tryes in our solution. Let, € T, O; € t,. We know thafl, € O.yrrent
and sinced; ¢ B, we conclude thayEIOé € t,. So condition (2) of the EC con-
straint is false and thus EC is trivially satisfied.

—case3:4; € B,A;eB
A; = OLT,yes andA; = OIT,yes in our solution. Let, € T,, O} € t,. T, and
T, must be strongly conflict free since both are@p,,.;.cn:. If Ts # T, then A
O’ € 02,0 € t,.. So condition (2) of EC{;,A,) is false and thus EC is trivially
satisfied. Iff; = T, then EC is satisfied sincé; is helpingA; perform;.

Next, we show that our assignment satisfies the LC consétdintl; € B then
A; = O;;T,yes, and LC1, regardless of the truth value of P, is clearly notated.
Furthermore, it is the case th@l;; succeeds, sincE. is present. Then the precondition
P of LC2 is not satisfied and thus LC2 is not presenti;I# B andA; = O;’,Trno, itis
the case thaﬁ);’, is executed and, by definition, does not succeed. Then tlcepdéion
P of LC1 is not satisfied and thus LC1 is not present. LC2, digas of the truth value
of P, is clearly not violated. Thus, the LC constraints atesBad by all variables. We
can conclude that all constraints are satisfied and our \zdsignment is a solution to
the DyDCSPO

Theorem IlI: Given an unrestricted SCF Resource AllocationProblem (Ag,2,0),
Ocurrent € © and the DyDCSP obtained from Mapping |, if an assignment of v&
ues to variables in the DyDCSP is a solution, then all tasks i®.,,r.n: are per-
formed.

proof: Let a solution to the DyDCSP be given. We want to show thataalks in
Ocurrent are performed. We proceed by choosing a taske O.ypreni. Since our
choice is arbitrary and tasks are strongly conflict free,éf@an show that it is indeed
performed, we can conclude that all member®gf,...; are performed.

LetT, € O.urrent- By theNotification Assumption, some operatioﬁ);, required
by T’ will be executed. However, the corresponding agéntwill be unsure as to
which task it is performing when);; succeeds. This is due to the fact th)j,t may be
required for many different tasks. It may randomly choosasktls € T(O;), and
LC1 requires it to assign the valﬂ}%Tsyes. The EC constraint will then require that all
other agentsl;, whose operations are required fgralso execute those operations and

assignd; = OgTsyes. We are in solution, so LC2 cannot be present4gr Thus,Og
succeeds. Since all operations requiredffpsucceed?’s is performed. By definition,
Ts € Ocyrrent- Butsince we already know thag and7’. have an operation in common,
the Strongly Conflict Free condition requires tlfat = T,.. ThereforeT, is indeed
performed™

6 Solving WCF problems via DyDCSP

In this section, we state the complexity@f)-exact WCF resource allocation problems
and that of unrestricted WCF resource allocation problérhs.following complexity
results are based on a centralized problem solver, but asaned we conjecture that
distributed problem solving is no easier. We also presemicarsd mapping for WCF
problems onto DyDCSP (Section 6.1).

Theorem IV: (Z)-exact WCF resource allocation problems can be solved in
time linear in the number of tasks.

proof: Greedily choose the single minimal set for each task.

Theorem V: (7)-exact WCF resource allocation problems can be solved in tien
polynomial in the number of tasks and operations.

proof: To prove this theorem, we convert a givéjc’])-exact resource allocation
problem to a network-flow problem which is known to be polynainSee Appendix.

Theorem VI: Determining whether an unrestricted resource dlocation prob-
lem is Weakly Conflict Free is NP-Complete.

proof-sketch: We reduce from 3 coloring problem. For reduction, let antaaby
instance of 3-color with colorg , ¢s, c3, verticesl” and edge#’, be given. We construct
the resource allocation problem as follows:

— For each vertex € V, add a task’, to ©.

— For each tasld’, € ©, for each color;,, add a minimal sef(* to T;,.

— For each edge;,v; € E, for each coloky, add an operata®;* , to {2 and add
this operator to minimal setg* andz{:.

— Assign each operator to a unique agﬂ'@tif,vj in Ag.

Figure 2 illustrates the mapping from a 3 node graph to a resallocation prob-
lem. With the mapping above, it is somewhat easy to show lizaB{color problem has
a solution if and only if the constructed resource allogatiooblem is weakly conflict
free. (We preclude a detailed proof due to space limits)

Color ={R, G, B}

To= Q12O e 1 Qw2 QT 1
{Qhyo Qe

T~ {{Q1b {Q14ah { Q1,3

T {Qh b {QTaah {QF, 3

Fig. 2. Reduction of graph 3-coloring to Resource Allocation Peats

6.1 Mapping Il
Our first mapping has allowed us to solve any SCF resourceaditm problem. How-
ever, when we attempt to solve WCF resource allocation problwith this mapping,
it fails because the DyDCSP becomes overconstrained. Jliise to the fact that the
mapping requires all agents who can possibly help perforask to do so. In some
sense, this results in an overallocation of resources tedasks. This in turn leaves
other tasks without sufficient resources to be performee.\@my to solve this problem
is to modify the constraints in the mapping to allow agentsetason about relation-
ships among tasks. However, this requires adding non¥imgernal constraints to
the mapping. This is problematic in a distributed situati@tause there are no effi-
cient algorithms for non-binary distributed CSPs. Insteadate a new mapping that
has only binary external constraints. This mapping is sintib the dual of a version
of mapping | with non-binary external constraints. This n@apping allocates only
minimal resources to each task, allowing WCF problems todbeed. This mapping
is described next and proven correct. Here, each agent hagadle for each task in
which its operations are included.

Mapping Il: Given a Resource Allocation Problefdg, 2, ©), the corresponding
DyDCSP is defined as follows:

— Variables: VT, € (-),VO;') € 7 (T;), create a DyDCSP variable ; and assign it to
agent4;.

— Domain: For each variablé ;, create a valug. ; for each minimal setiiff’,., plus a
“NP” value (not present). The NP value allows agents to a@si&lgning resources
to tasks that are not present and thus do not need to be pedorm

Next, we must constrain agents to assign non-NP values tablkas only when
an operation has succeeded, which indicates the preseribe obrresponding task.
However, in dynamic problems, an operation may succeedrae gone and fail at
another time since tasks are dynamically added and remawedthe current set of
tasks to be performed. Thus, every variable is constraietthé following dynamic
local constraints.

— Dynamic Local (Non-Binary) Constraint (LC1):
VA; € Ag, VO; € Op(A;), letB={T,; | O; € T, }. Then let the constraint be
defined as a non-binary constraint over the variables in Blésfs:
P: 0} succeeds
C: HTTJ €B Tni 76 NP.
— Dynamic Local Constraint (LC2): VT, € O, \1();; € T(T}), let the constraint be
defined orfl;, ; as follows:
P: O} does not succeed
C:T,;=NP

We now define the constraint that defines a valid allocatioresburces and the
external constraints that require agents to agree on apkartiallocation.

— Static Local Constraint (LC3): VT, ;, T ;, if T, ; = t,;, then the value of ;
cannot conflict with the minimal sef ;. NP does not conflict with anything.

— External Constraint (EC): Vi, j,r T} ; = T}

We will now prove that Mapping Il can also be used to solve aingmyWCF Re-
source Allocation Problem. The first theorem shows that oyidDOSP always has a
solution, and the second theorem shows that if agents resalution, all current tasks
are performed.

Theorem VII: Given a WCF Resource Allocation Problem{Ag,2,0), ©cyrrent C
O, there exists a solution to DyDCSP obtained from Mapping II.

proof: For all variables corresponding to tasks that are not ptesgncan assign
the value “NP”. This value satisfies all constraints exceysigibly LC1. But the P con-
dition must be false since the task is not present, so LClatdmnviolated. We are
guaranteed that there is a choice of non-conflicting minsetd for the remaining tasks
(by the WCF condition). We can assign the values correspgrtdithese minimal sets
to those tasks and be assured that LC3 is satisfied. Sincarable corresponding to
a particular task get assigned the same value, the extarnstraint is satisfied. So we
have a solution to the DyDCSP.

Theorem VIII: Given a WCF Resource Allocation Problem (Ag,(2,0), Ocyrrent C
© and the DyDCSP obtained from Mapping Il, if an assignment of \alues to vari-
ables in the DyDCSP is a solution, then all tasks i®.,,....,; are performed.

proof Let a solution to the DyDCSP be given. We want to show thataaks in
Ocurrent are performed. We proceed by randomly choosing a task 8og,....; and
showing that it is performed. Since we are in a solution sta®3 allows us to repeat
this argument for every task @, ¢n¢-

LetT, € O.urrent- By theNatification Assumption, some operatior’]);',, required
by T, will be executed and (by definition) succeed. LC1 requiresdbrresponding
agentA;, to assign a minimal set, say to the variabl€el’,. ;. The EC constraint will
then require that all other agents, whose operatioﬂ)g is in the minimal set,., to
assignl, ; = t, and execute that operation. LC2 requires that it succeedse &ll
operations required fdF, succeed?’,. is performed

7 Experiments in a Real-World Domain

We have successfully applied the DyDCSP approach to theldittd sensor network
problem, using the mapping introduced in Section 6. In tisé égaluation trials con-
ducted in government labs in August and September 2000DyiBCSP implemen-
tation was successfully tested on four actual hardwareosarsles (see Figure 1.a),
where agents collaboratively tracked a moving target. Triget tracking requires ad-
dressing noise, communication failures, and other realdyaroblems; although this
was done outside the DyDCSP framework and hence not repuoeted

The unavailability of the hardware in our lab precludes esiee hardware tests; but
instead, a detailed simulator that very faithfully mirréhe hardware has been made
available to us. We have done extensive tests using thidaiondo further validate the
DyDCSP formalization: indeed a single implementation rom&oth the hardware and
the simulator. One key evaluation criteria for this implenagion is how accurately it
is able to track targets, e.g., if agents do not switch onlapping sectors at the right
time, the target tracking has poor accuracy. Here, the acguf a track is measured in
terms of theRMS(root mean square) error in the distance between the reiiqrosf a

target and the target’s position as estimated by a team ebsagents. Domain experts
termed the RMS error of upto 3 units as acceptable.

Table 1 presents our results from the implementation wighMapping Il in Sec-
tion 6. Experiments were conducted in different dynamigagions varying the type of
resource allocation problem, the number of nodes/targatsthe configuration. RMS
error, message number, and sector change are averagedevarrber of involved
agents. In the “node number” column, the number in parepthieslicates the number
of rows and columns of the grid configuration where sensonisggre located. For in-
stance, the last row represents the result of the WCF resalioration problem with
12 sensor nodes (in 3x4 grid) and 4 four targets: the RMS @f @rits with average 30
messages and 2 sector changes per node.

The results show that our mapping works, and agents are @lalecurately track
targets, with average RMS around 3 units as the expertsreedtiis proves the useful-
ness of the DyDCSP approach to this resource allocatiorgrol-urthermore, scaling
up the number of nodes and targets does not degrade thengaaméduracy. Some in-
teresting differences between WCF and SCF arise: WCF resaliocation problems
require more number of messages and sector changes than&il#nps. These are due
to the fact that, given WCF problems, agents need to reasmut pbssible minimal sets
of the current tasks to be performed.

RAP type|node numbetarget numbgavg RMSavg message numharg sector changes
WCF/SCH 4 (2x2) 1 2.58 14 05

SCF 8 (2x4) 2 3.21 17.08 0.5

SCF 9 (3x3) 2 3.21 21.89 0.2

SCF 16 (4x4) 4 2.58 23.13 0.5

WCF 6 (2x3) 2 2.50 45.17 1.6

WCF 12 (3x4) 4 3.24 30 2.0

Table 1. Results from sensor network domain for dynamic resourceation problems.

8 Summary

In this paper, we proposed a formalization of distributesbrace allocation that is
expressive enough to represent both dynamic and distdlasigects of the problem. We
define different categories of difficulties of the problend gmesent complexity results
for them. Table 2 summarizes these complexity results. Thess these formalized
problems, we define the notion of Dynamic Distributed CaaistrSatisfaction Problem
(DyDCSP) and present a generalized mapping from distribrgéeource allocation to
DyDCSP. Through both theoretical analysis and experiniemetafications, we have
shown that this approach to dynamic and distributed resoaliocation is powerful
and unique, and can be applied to real-problems such as stréiDied Sensor Network
Domain. Indeed, in the future, our formalization may enabkearchers to understand
the difficulty of their resource allocation problem, cho@ssuitable mapping using
DyDCSP, with automatic guarantees for correctness of thaisn.

Acknowledgements

This research is sponsored in part by DARPA/ITO under cehtramber F30602-99-
2-0507, and in part by AFOSR under grant number F49620-0020.

| |[SCF]WCF |
()-exact |O(n)|O(n)

(3)-exact [O@m)|O((n + m)®)
unrestricteO(n)|NP-Complete

Table 2. Complexity Classes of Resource Allocatiors size of task se®, m = size of operation
sets?

References

1. M. Chia, D. Neiman, and V. Lesser. Poaching and distradgti@synchronous agent activities.

In ICMAS 1998.

K. Decker and J. Li. Coordinated hospital patient schiadulln ICMAS 1998.

3. C. Frei and B. Faltings. Resource allocation in networsieigi abstraction and constraint
satisfaction techniques. Proc of Constraint Programmindl.999.

4, Hiroaki Kitano. Robocup rescue: A grand challenge fortiragent systems. IICMAS
2000.

5. J. Liu and K. Sycara. Multiagent coordination in tightyupled task scheduling. IEMAS

1996.

S. Mittal and B. Falkenhainer. Dynamic constraint satigbn problems. IRMAAI, 1990.

Sanders. Ecm challenge problem, http://www.sandergaits/ecm.htm. 2001.

8. M. Yokoo and K. Hirayama. Distributed constraint satitifan algorithm for complex local
problems. INCMAS July 1998.

n

N o

Appendix
Theorem V: (Z)-exact WCF resource allocation problems can be solved in tim
polynomial in the number of tasks and operations.

proof: We can convert a give(ﬁ)-exact resource allocation problem to a network-
flow problem known to be polynomial. Let such a resource alion problem be given.

We first construct a tripartite graph and then convert it tevork-flow problem.

— Create three empty sets of vertices, U, V, and W and an empgty set E.

— For each tas’. € @, add a vertex.,. to U.

— For each agent; € Ag, add a vertex; to V.

— For each agent;, for each operatioﬁ);') € Op(4;),add a vertem;') to W.

— For each agend;, for each operatiow;, € Op(4;), add an edge between vertices
Vi, w; to E.

— For each tasK’,, for each operatio®;, € 7(T;), add an edge between vertiags

i
wy, to E.

We convert this tripartite graph into a network-flow graphtie usual way. Add
two new vertices, a supersourgeand supersink. Connects to all vertices in V and
assign a max-flow of 1. For all edges among V, W, and U, assigaxaftaw of 1. Now,
connect to all vertices in U and for each edge.(t), assign a max-flow of,. We now
have a network flow graph with an upper limit on fIOW@“ﬂ] k;.

We show that the resource allocation problem has a solutamdi only if the max-
flow is equal toZLi‘] k;.

= Let a solution to the resource allocation problem be giveaviil now construct
a flow equal toZLi‘l k;. This means, for each edge between vettein U andt, we

must assign a flow of,.. It is required that the in-flow ta,. equalk,.. Since each edge
between W and U has capacity 1, we must chdgsgertices from W that have an
edge intou,. and fill them to capacity. LeT,. be the task corresponding to vertex,
andt,. € T, be the minimal set chosen in the given solution. We will assidlow of
1 to all edges},u,) such thatw! corresponds to the operati@¥, that is required
in t,.. There are exactly:;,. of these. Furthermore, since no operation is required for
two different tasks, when we assign flows through verticdd,ime will never choose
w}, again. For vertexw, such that the edgew(, u,) is filled to its capacity, assign a
flow of 1 to the edgex(;, wl"’,). Here, when a flow is assigned through a vent%x no
other flow is assigned througbg € Op(A4;) (p # q) because all operations (tp(A4;)
are mutually exclusive. Therefore;’s outflow cannot be greater than 1. Finally, the
assignment of flows from to V is straightforward. Thus, we will always have a valid
flow (inflow=outflow). Since all edges from U toare filled to capacity, the max-flow
is equal toZLg:‘] ki.

< Assume we have a max-flow equalELi‘] k;. Then for each vertex, in U,
there arek, incoming edges filled to capacity 1. By construction, theodefertices in
W matched tou, corresponds to a minimal set .. We choose this minimal set for
the solution to the resource allocation problem. For each sdge ¢, u,.), w;; has an
in-capacity of 1, so every other edge outmjj‘ must be empty. That is, no operation is
required by multiple tasks. Furthermore, since outgoing fltoroughw; is 1, no more
than one operation i®p(A;) is required. Therefore, we will not have any conflicts
between minimal sets in our solutian.

